[0001] The invention relates to a copper-tin electrolyte which is free of toxic constituents
such as cyanides. In particular, the invention relates to a corresponding electrolyte
having a novel brightener system. It likewise encompasses a process for the deposition
of decorative, white and yellow bronze layers on consumer goods and industrial articles
using the electrolyte of the invention.
[0002] Consumer goods or consumer articles as defined in the consumer articles regulations
are finished with thin, oxidation-stable metal layers for decorative reasons and in
order to prevent corrosion. These layers have to be mechanically stable and should
not display any tarnishing or signs of wear even after prolonged use. Since 2001,
the sale of consumer goods coated with nickel-containing finishing alloys has no longer
been permitted, or is possible only with observance of strict conditions, in Europe
pursuant to EU directive 94/27/EC since nickel and nickel-containing metal layers
are contact allergens. Bronze alloys in particular have become established as a replacement
for nickel-containing finishing layers and these enable such mass-produced consumer
goods to be finished inexpensively in barrel or rack electroplating processes to give
allergen-free, attractive products.
[0003] In the production of bronze layers for the electronics industry, the solderability
of the resulting layer and, if appropriate, its mechanical adhesive strength are the
critical properties of the layer to be produced. For use in this field, the appearance
of the layers is generally less important than their functionality. On the other hand,
for production of bronze layers on consumer goods, the decorative effect (shine and
brightness) and also a long service life of the resulting layer with an essentially
unchanged appearance are the important target parameters.
[0004] Apart from the conventional processes for producing bronze layers, which use cyanide-containing
and thus highly toxic, alkaline baths, various electroplating processes which can,
according to the composition of their electrolytes, usually be assigned to one of
two main groups found in the prior art are also known: processes using electrolytes
based on organosulfonic acids or processes using baths based on diphosphoric acid
(pyrophosphoric acid). For the purposes of the present text, "nontoxic" means that
the electrolytes according to the invention described in this way do not contain any
materials which are classified as "toxic" (T) or "very toxic" (T
+) according to the regulations applicable in Europe for handling dangerous goods and
hazardous materials.
[0005] For example,
EP 1 111 097 A2 describes an electrolyte comprising an organosulfonic acid and ions of tin and copper
together with dispersants and brightening additives and also, if appropriate, antioxidants.
EP 1 408 141 A1 describes a process for the electrochemical deposition of bronzes, in which an acidic
electrolyte comprising tin and copper ions together with an alkylsulfonic acid and
an aromatic, nonionic wetting agent.
DE 100 46 600 A1 describes an alkylsulfonic or alkanolsulfonic acid-containing bath which comprises
soluble tin and copper salts together with organic sulfur compounds, and a process
using this bath.
[0006] A significant disadvantage of such electrolytes produced on the basis of organosulfonic
acids is their high corrosivity. For example, baths based on methanesulfonic acids
frequently have pH values below one. The high corrosivity of these baths limits their
use range in respect of the substrate materials to be finished and requires the use
of particularly corrosion-resistant working materials for carrying out the process.
[0007] EP 1 146 148 A2 describes a cyanide-free copper-tin electrolyte based on diphosphoric acid, which
in addition to the reaction product of an amine and an epihalohydrin in a molar ratio
of 1:1 contains a cationic surfactant.
WO 2004/005528 describes a cyanide-free diphosphoric acid-copper-tin electrolyte which contains
an additive composed of amine derivative, an epihalohydrin and a glicidyl ether compound.
Electrolytes based on diphosphoric acid generally have very limited long-term stabilities
and have to be renewed frequently.
[0008] In addition, processes for producing solderable copper-tin layers which can be used
as replacement for tin-lead solders and in which a wide selection of acidic base electrolytes
can be used are known from the electronics industry. Thus,
EP 1 001 054 A2 describes a tin-copper electrolyte which comprises a water-soluble tin salt, a water-soluble
copper salt, an inorganic or organic acid or a water-soluble salt thereof and also
one or more compounds from the group consisting of generally toxic thiourea or thiol
derivatives. The inventive bath described there can additionally contain one or more
compounds selected from the group consisting of carboxylic acids, lactones, phosphoric
acid condensates, phosphonic acid derivatives or water-soluble salts of these or combinations
thereof.
[0009] WO2004/005528 describes a cyanide-free diphosphoric acid-copper-tin electrolyte which contains
an additive composed of an amine derivative, an epichlorohydrin and a glycidyl ether
compound in a molar ratio of 1:0.5 - 2:0.1 - 5. It was an object of this document
to further widen the current density range in which uniform deposition of the metals
in a shiny layer can be achieved. It is explicitly mentioned that such deposition
can only be attained when the additive added is made up of all three of the abovementioned
components.
[0010] US 2005067297A1 describes a pyrophosphate copper electroplating solution.
[0011] In view of the prior art just cited, it can be noted that those deposition processes
which ensure uniform deposition on metals over a wide current density range and also
use electrolytes which appear economically and ecologically advantageous in terms
of their composition are particularly advantageous. Furthermore, a successful electrolyte
should allow uniformly bright and shiny layers to be obtained, regardless of the thickness
of the bronze layer deposited.
[0012] It is therefore an object of the present invention to provide an electrolyte which
has long-term stability, is suitable for appropriately advantageous deposition of
mechanically stable and decoratively advantageous bronze layers on consumer goods
and industrial articles and is free of toxic constituents. It is a further object
of the present invention to provide a process for the application of decorative bronze
layers to consumer goods and industrial articles using such an electrolyte.
[0013] These objects and further objects which are not mentioned at the present juncture
but can be derived in an obvious way from the prior art are achieved by specification
of an electrolyte having the features of the present claim 1 and its use in a deposition
process according to the invention as set forth in claim 13. Preferred embodiments
referring back to these claims are defined in claims 2 to 12 and 14 -15.
[0014] The provision of a nontoxic electrolyte for the deposition of decorative bronze alloy
layers on consumer goods and industrial articles, which electrolyte contains the metals
to be deposited in the form of water-soluble salts and further comprises one or more
phosphonic acid derivatives as complexing agents and also a brighter system composed
of a disulfide compound and a carbonate or hydrogencarbonate salt, completely surprisingly
but nonetheless advantageously achieves the stated objects. The inventive electrolyte
having a different composition than in the prior art makes it possible to obtain excellent
electrolytic deposits of bronze layers. In particular, the good brightness and shine
of the bronze layers can be obtained independently of their thickness. The alloy composition
remains approximately constant over a wide current density range, which is in no way
suggested by the prior art.
[0015] In the electrolyte of the invention, the metals copper and tin or copper, tin and
zinc to be deposited are present in dissolved form as their ions. They are preferably
introduced in the form of water-soluble salts which are preferably selected from the
group consisting of pyrophosphates, carbonates, hydroxide-carbonates, hydrogencarbonates,
sulfites, sulfates, phosphates, nitrites, nitrates, halides, hydroxides, oxide-hydroxides,
oxides or combinations thereof. Very particular preference is given to the embodiment
in which the metals are used in the form of salts with ions selected from the group
consisting of pyrophosphate, carbonate, hydroxide-carbonate, oxide-hydroxide, hydroxide
and hydrogencarbonate. Which salts are introduced in which amount into the electrolyte
can determine the color of the resulting decorative bronze layers and can be adjusted
according to customer requirements. The metals to be deposited are, as indicated,
present in ionically dissolved form in the electrolyte for application of decorative
bronze layers to consumer goods and industrial articles. The ion concentration of
copper can be set in the range from 0.2 to 10 g/l, preferably from 0.3 to 4 g/l, of
electrolyte, the ion concentration of tin can be set in the range from 1.0 to 30 g/l,
preferably 2 - 20 g/l, of electrolyte and, if present, the ion concentration of zinc
can be set in the range from 1.0 to 20 g/l, preferably 0 - 3 g/l, of electrolyte.
For the finishing of consumer goods, the metals to be deposited are particularly preferably
introduced as salt of a pyrophosphate, carbonate, hydrogencarbonate or hydroxide-carbonate
in such a way that the resulting ion concentration is in the range from 0.3 to 4 gram
of copper, from 2 to 20 gram of tin and from 0 to 3 gram of zinc, in case per liter
of electrolyte.
[0016] The electrolyte of the invention has some concentration of carbonate or hydrogencarbonate
ions. These can be present in the electrolyte in the form of preferably soluble salts
selected from the group consisting of alkali metal and alkaline earth metal salts,
in particular sodium or potassium carbonate or sodium or potassium hydrogencarbonate.
However, the embodiment in which the metals which are used and are to be deposited
are also added either completely or partly in the form of carbonates or hydrogencarbonates
to the electrolyte is preferred. The embodiment in which only copper is present as
carbonate in the bath formulation is advantageous. Tin and zinc and also, during operation
of the bath, copper are then advantageously added as pyrophosphate. Addition of the
abovementioned salts enables a concentration of carbonate or hydrogencarbonate ions
in the electrolyte of from 0.5 to 100 g/l of electrolyte to be set. The concentration
is particularly preferably in the range from 5 to 40 g/l and very particularly preferably
from 15 to 30 g/l.
[0017] As further components of the electrolyte, mention may be made of disulfide compounds.
These can advantageously be selected from the group consisting of substituted and
unsubstituted bisalkyl or bis(hetero)aryl or alkyl (hetero)aryl disulfides, in particular
those of the general formula (I),
R-S-S-R' (I)
wherein
R and R' can each be, independently of one another, substituted or unsubstituted (C
1-C
8)-alkyl, (C
3-C
6)-cycloalkyl, (C
7-C
19)-alkylaryl, (C
6-C
18)-aryl, (C
7-C
19)-aralkyl, (C
3-C
18)-heteroaryl, (C
4-C
19)-alkylheteroaryl, (C
4-C
19)-heteroaralkyl. R and R' can also be joined to form a ring. Possible substitutents
for R and R' are in principle all groups of substituents which a person skilled in
the art would consider for this purpose. These are, in particular, substituents selected
from the group consisting of amine radicals, nitro groups, hydroxyl radicals, halide
radicals, acid radicals such as carboxylic acids, sulfonic acids and phosphonic acids.
[0018] Particularly advantageous disulfide compounds are compounds selected from the group
consisting of 2,2'-dithiodipyridine, 4,4'-dithiodipyridine, 6,6'-dithiodinicotinic
acid, bis(4-aminophenyl) disulfide, 2,2'-dithiosalicylic acid, D-cystine, L-cystine,
DL-cystine, 2,2'-dithio(bis)benzothiazole, 2,2'-dithiobis(5-nitropyridine). Very particular
preference is given in this context to the compound bis-(3-sodium sulfopropyl) disulfide,
referred to as SPS for short. The disulfide compounds are preferably used in an amount
of from 0.01 mg per liter to 10.0 g per liter of electrolyte. Particular preference
is given to use in a concentration range from 0.5 mg per liter to 7.5 g per liter
of electrolyte. The disulfide compound, in particular the abovementioned SPS, is very
particularly preferably used in a concentration range from 0.1 mg per liter to 5 g
per liter in the electrolyte.
[0019] The application of the decorative bronze layers to consumer goods and industrial
articles using the electrolyte of the invention is effected, as indicated, in an electroplating
process. It is important here that the metals to be deposited are kept permanently
in solution during the process, regardless of whether electroplating is carried out
in a continuous process or in a batch process. To ensure this, the electrolyte of
the invention contains phosphonic acids as complexing agents.
Preference is given to using compounds selected from the group consisting of hydroxyphosphonic,
nitrilophosphonic or aminophosphonic acid, e.g. 1-aminomethylphosphonic acid AMP,
aminotris(methylenephosphonic acid) ATMP, 1-aminoethylphosphonic acid AEP, 1-aminopropylphosphonic
acid APP, (1-acetylamino-2,2,2-trichloroethyl)phosphonic acid, (1-amino-1-phosphonooctyl)
phosphonic acid, (1-benzoylamino-2,2,2-trichloroethyl)phosphonic acid, (1-benzoylamino-2,2-dichlorovinyl)phosphonic
acid, (4-chlorophenylhydroxymethyl)phosphonic acid, diethylenetriaminepenta(methylenephosphonic
acid) DTPMP, ethylenediaminetetra(methylenephosphonic acid) EDTMP, 1-hydroxyethane(1,1-diphosphonic
acid) HEDP, hydroxyethylamino-di(methylenephosphonic acid) HEMPA, hexamethylenediaminetetra(methylphosphonic
acid) HDTMP, ((hydroxymethylphosphonomethylamino)methyl)phosphonic acid, nitrilotris(methylenephosphonic
acid) NTMP, 2,2,2-trichloro-1-(furan-2-carbonyl)amino ethylphosphonic acid, salts
derived therefrom and condensates derived therefrom, or combinations thereof.
[0020] Particular preference is given to using one or more compounds selected from the group
consisting of aminotris(methylenephosphonic acid) ATMP, diethylenetriamine-penta(methylenphosphonic
acid) DTPMP, ethylenediaminetetra(methylenephosphonic acid) EDTMP, 1-hydroxyethane(1,1-diphosphonic
acid) HEDP, hydroxyethylamino-di(methylenephosphonic acid) HEMPA, hexamethylenediaminetetra(methylphosphonic
acid) HDTMP, salts derived therefrom and condensates derived therefrom, or combinations
thereof. Preference is given to using from 10 to 400 gram of phosphonic acid derivatives
per liter of electrolyte, particularly preferably from 20 to 200 gram per liter of
electrolyte and very particularly preferably from 50 to 150 gram per liter of electrolyte.
[0021] The pH of the electrolyte is in the range from 6 to 14 required for the electroplating
application. Preference is given to a range of 8 - 12 and very particular preference
to about 10.
[0022] Apart from the metals to be deposited, the phosphonic acid derivatives used as complexing
agent and the brightener system composed of hydrogencarbonate salt and disulfide compound
which is used, the electrolyte can contain further organic additives which assume
functions as complexing ligands, brighteners, wetting agents or stabilizers. The electrolyte
of the invention can also dispense with the use of cationic surfactants. The addition
of further brighteners and wetting agents is only preferred in the case of the appearance
of the decorative bronze layers to be deposited having to meet special requirements.
They make it possible to adjust not only the color of the bronze layers, which depends
critically on the ratio of the metals to be deposited, but also the shine of the layers
in all gradations from matt silk to high gloss.
[0023] Preference is given to adding one or more compounds selected from the group consisting
of monocarboxylic and dicarboxylic acids and their salts, sulfonic acids and their
salts, betaines and aromatic nitro compounds. These compounds act as electrolyte bath
stabilizers. Particular preference is given to using oxalic acid, alkanesulfonic acids,
in particular methanesulfonic acid, or nitrobenzotriazoles or mixtures thereof. Suitable
alkanesulfonic acids are disclosed, for example, in
EP1001054.
[0024] As sulfonic acids, it can also be advantageous to use those of the general formula
(II) or salts thereof
R-SO
3H (II)
where
R is substituted or unsubstituted (C
1-C
8)-alkyl, (C
3-C
6)-cycloalkyl, (C
7-C
19)-alkylaryl, (C
6-C
18)-aryl, (C
7-C
19)-aralkyl, (C
3-C
18)-heteroaryl, (C
4-C
19)-alkylheteroaryl, (C
4-C
19)-heteroaralkyl. Possible substituents for R and R' are in principle all groups of
substituents which a person skilled in the art would consider for this purpose. These
are, in particular, substituents selected from the group consisting of amine radicals,
nitro groups, hydroxyl radicals, halide radicals, acid radicals such as carboxylic
acids, sulfonic acids and phosphonic acids. This applies analogously to the corresponding
salts, in particular salts with cations of the alkali metals or alkaline earth metals.
[0025] Preferred compounds are those selected from the group consisting of 3-mercapto-1-propanesulfonic
acid Na salt, 3-(2-benzothiazolyl-2-mercapto)propanesulfonic acid Na salt, saccharin-N-propylsulfonate
Na salt, 3-sulfopropyl N,N-dimethyl dithiocarbamate Na salt, 1-propanesulfonic acid
and 3[(ethoxythioxomethyl)thio] K salt.
[0026] In this context, very particular preference is given to the disulfide required for
the brightener system and the sulfonic acid being present in one compound, as is the
case, for example, for bis-(3-sodium sulfopropyl) disulfide.
[0027] It is also possible to use, for example, citric acid as carboxylic acid (Jordan,
Manfred, Die galvanische Abscheidung von Zinn und Zinnlegierungen, Saulgau 1993, page
156). Betaines to be used can preferably be found in
WO2004/005528 or in
Jordan, Manfred (Die galvanische Abscheidung von Zinn und Zinnlegierungen, Saulgau
1993, page 156). Particular preference is given to those presented in
EP636713. Further additives may be found in the literature (
Jordan, Manfred, Die galvanische Abscheidung von Zinn und Zinnlegierungen, Saulgau
1993).
[0028] Further complexing ligands which can advantageously be used are pyrophosphate ions.
These can be present in the electrolyte and can advantageously be introduced into
the electrolyte as anions of the metal salts to be deposited. However, the embodiment
in which the pyrophosphate ions are added in the form of salts of other metals, in
particular of alkali and alkaline earth metals in the electrolyte, is likewise possible.
The amount of pyrophosphate ions can be set in a precise manner by a person skilled
in the art. It is limited by the fact that the concentration in the electrolyte should
be above a minimum amount in order to be able still to bring about the effect discussed
to a sufficient extent. On the other hand, the amount of pyrophosphate to be used
is guided by economic aspects. In this context, reference may be made to
EP1146148 and the relevant information presented there. The amount of pyrophosphate to be used
in the electrolyte is preferably 1 - 400 g/l. Particular preference is given to using
an amount of 2 - 200 g/l of electrolyte. The pyrophosphate can, if it is, as indicated,
not introduced as salt constituent of the metals to be deposited, be used as sodium
or potassium diphosphate or as H
2P
2O
7 in combination with a base of the alkali or alkaline earth metals. Preference is
given to using K
2P
2O
7 for this purpose.
[0029] The electrolyte of the invention is free of hazardous materials classified as toxic
(T) or very toxic (T
+). No cyanides, no thiourea derivatives or similarly toxic materials are present.
The nontoxic electrolyte of the invention is particularly suitable for the electrochemical
application of decorative bronze layers to consumer goods and industrial articles.
It can be used in barrel, rack, belt or reel to reel electroplating plants.
[0030] In a corresponding process for the electrochemical application of decorative bronze
alloy layers, the consumer goods and industrial articles to be coated (hereinafter
referred to collectively as substrates) dip into the nontoxic electrolyte of the invention
and form the cathode. The electrolyte is preferably maintained in the range from 20
to 70°C. It is possible to set a current density which is in the range from 0.01 to
100 ampere per square decimeter [A/dm
2] and depends on the type of plating plant. In barrel plating plants, current densities
in the range from 0.05 to 0.75 A/dm
2 are preferred, more preferably from 0.1 to 0.5 A/dm
2 and very particularly preferably about 0.3 A/dm
2. In rack plating processes, current densities in the range from 0.2 to 10.0 A/dm
2 are preferably chosen, particularly preferably from 0.2 to 5.0 A/dm
2 and very particularly preferably from 0.25 to 1.0 A/dm
2.
[0031] Various anodes can be employed when using the nontoxic electrolyte of the invention.
Soluble or insoluble anodes are suitable, as is the combination of soluble and insoluble
anodes.
[0032] As soluble anodes, preference is given to using anodes made of a material selected
from the group consisting of electrolytic copper, phosphorus-containing copper, tin,
tin-copper alloy, zinc-copper alloy and zinc-tin-copper alloy. Particular preference
is given to combinations of different soluble anodes made of these materials, and
also combinations of soluble tin anodes with insoluble anodes.
[0033] As insoluble anodes, preference is given to using anodes made of a material selected
from the group consisting of platinized titanium, graphite, iridium-transition metal
mixed oxide and special carbon material ("Diamond Like Carbon", DLC) or combinations
of these anodes. Particular preference is given to mixed oxide anodes composed of
iridium-ruthenium mixed oxide, iridium-ruthenium-titanium mixed oxide or iridum-tantalum
mixed oxide.
[0034] If insoluble anodes are used, this is a particularly preferred embodiment of the
process when the substrates to be provided with decorative bronze layers, which represent
the cathode, are separated from the insoluble anode by an ion-exchange membrane so
as to form a cathode space and an anode space. In such a case, only the cathode space
is filled with the nontoxic electrolyte of the invention. An aqueous solution containing
only a conductive salt is preferably present in the anode space. Such an arrangement
prevents the anodic oxidation of tin(II) ions Sn
2+ to tin(IV) ions Sn
4+, which would have an adverse effect on the plating process.
[0035] In membrane processes which are operated using insoluble anodes and the nontoxic
electrolyte of the invention, current densities in the range from 0.05 to 2 A/dm
2 are preferably set. The electrolyte is preferably maintained in the range from 20
to 70°C. As ion-exchange membranes, it is possible to use cationic or anionic exchange
membranes. Preference is given to using membranes composed of Nafion which have a
thickness of from 50 to 200 µm.
[0036] The disadvantage of additive-free phosphonate-based copper-tin electrolytes is the
restriction to a narrow current density range and the lack of shine and the lower
brightness of the layers deposited. The novel brightener system avoids these disadvantages
in the phosphonate-based electrolyte system. Only when the electrolyte of the invention
is used is the deposition of bright and shiny layers made possible over a wide current
density range. None of the known cyanide-free substitute processes (pyrophosphate,
phosphonate, alkylsulfonate) achieves the properties of cyanide-containing baths (particularly
in the case of shine and brightness, also only to an extent). The use of the brightener
combination according to the invention for the first time makes it possible to achieve
the shine and brightness which is comparable to the cyanide-containing electrolytes
of the prior art and is thus significantly better than in all known cyanide-free substitute
processes.
[0037] In addition, management of the bath is simpler in the case of the electrolyte of
the invention. The novel brightener system enables the electrolyte to be operated
at higher copper contents. The combination of the compounds used, in particular those
of the brightener system comprising carbonate ions and disulfide compounds, is critical
here. In the presence of carbonate ions, even very small amounts of organic disulfidates
influence copper-tin alloy formation. In contrast to additive-free baths, a largely
constant alloy composition is obtained over a wider current density range as a result
of the addition of the brightener system (fig. 1 - comparison of copper-tin electrolyte
based on phosphonic acid with and without brightener system). In the case of additive-free
baths, tin is deposited preferentially at higher current densities, which leads to
a loss of shine of the layers.
[0038] For the purposes of the invention, (C
1-C
8)-alkyl is an alkyl radical having from 1 to 8 carbon atoms. This can be branched
as desired or in the case of (C
3-C
6)-cycloalkyl be cyclic. This is, in particular, radicals such as methyl, ethyl, propyl,
isopropyl, butyl, sec-butyl, isobutyl, pentyl, hexyl, cyclopropyl, cyclopentyl, cyclohexyl
etc.
[0039] (C
6-C
18)-Arryl is an aromatic system which is made up entirely of from 6 to 18 carbon atoms.
This is, in particular, selected from the group consisting of phenyl, naphthyl, anthracenyl
etc.
[0040] (C
7-C
19)-Alkylaryl radicals are radicals which have a (C
1-C
8)-alkyl radical on the (C
6-C
18)-aryl radical.
[0041] (C
7-C
19)-Aralkyl radicals are radicals which have a (C
6-C
18)-aryl radical on a (C
1-C
8)-alkyl radical, via which the radical is bound to the molecule concerned.
[0043] For the purposes of the invention, (C
4-C
19)-alkylheteroaryl is a (C
3-C
18)-heteroaryl radical which is supplemented by a (C
1-C
8)-alkyl substituent. The bonding to the molecule under consideration is via the heteroaromatic
here.
[0044] Conversely, (C
4-C
19)-heteroaralkyl is a (C
3-C
18)-heteroaryl which is bound to the molecule concerned via a (C
1-C
8)-alkyl substituent.
[0045] For the purposes of the invention, halide encompasses chloride, bromide and fluoride.
[0046] The examples described below and the comparative example illustrate the invention.
[0047] Alkyl(hetero)aryl is alkylaryl and alkylheteroaryl.
Examples:
[0048] Comparison of brightness values for phosphonate electrolyte with and without brightener
system (in L units according to the Cie-Lab method [http://www.cielab.de])
|
L*-values |
|
Current density 0.05 A/dm2 |
Current density 0.1 A/dm2 |
current density 0.2 A/dm2 |
|
|
|
|
Phosphonate electrolyte "without brightener system" |
79.5 |
81.5 |
81.9 |
|
|
|
|
Phosphonate electrolyte "with brightener system" |
83.5 |
83.5 |
83.8 |
[0049] The formation of dark streaks is significantly suppressed. Furthermore, the quality
of the layer is maintained even in the case of thick deposits.
[0050] An insoluble platinum-titanium anode was used in all experiments described.
Example 1 - general procedure:
[0051] Barrel deposition of white bronze layers was carried out using a nontoxic electrolyte
according to the invention containing 100 g/l of ethylenediaminetetra(methylenephosphonic
acid) EDTMP, 1.5 g/l of copper as copper hydroxide carbonate, 5 g/l of tin as tin
pyrophosphate, 2 g/l of zinc as zinc pyrophosphate, 10 m/l of methanesulfonic acid
(70%), 20 g/l of potassium hydrogencarbonate and 10 mg/l of bis(3-sodium sulfopropyl)
disulfide.
[0052] During the entire deposition procedure, the electrolyte was maintained at 50°C. At
a set current density of from 0.05 to 0.5 A/dm
2, optically uniform, high-shine bronze layers having the color typical of white bronze
were obtained in a drum plating apparatus.
Example 2:
[0053]
80 g/l |
of HEDP |
50 ml/l |
of methanesulfonic acid (70%) |
10 g/l |
of potassium carbonate |
30 mg/I |
of 2,2'-dithiodipyridine |
1.47 g/l |
of copper pyrophosphate |
10.2 g/l |
of tin pyrophosphate |
2.5 g/l |
of zinc pyrophosphate |
Parameters: |
pH 8.0 / 40°C / current densities: 0.05 - 0.5 A/dm2 |
Example 3:
[0054]
200 g/l |
of HEMPA |
5 ml/l |
of propanesulfonic acid |
2 g/l |
of potassium hydrogencarboonate |
25 mg/l |
2,2'-dithiodipyridine |
1.47 g/l |
of copper pyrophosphate |
10.2 g/l |
of tin pyrophosphate |
1.5 g/l |
of zinc pyrophosphate |
10 g/l |
citric acid |
Parameters: |
pH 11.0 / 25°C / current densities: 0.05 - 0.5 A/dm2 |
Example 4:
[0055]
50 g/l |
of ATMP |
100 g/l |
of potassium pyrophosphate |
20 g/l |
of citric acid |
4.2 g/l |
of copper hydroxide carbonate |
8.66 g/l |
of tin pyrophosphate |
4.5 g/l |
of zinc pyrophosphate |
10 g/l |
of potassium hydrogencarbonate |
0.5 g/l |
of 6,6'-dithiodinicotinic acid |
Parameters: |
pH 9.0 / 60°C / current densities: 0.05 - 0.5 A/dm2 |
Example 5: yellow bronze
[0056]
150 g/l |
of EDTMP |
10 ml/l |
of methanesulfonic acid (70%) |
20 g/l |
of potassium carbonate |
9 g/l |
of copper hydroxide carbonate |
8.66 g/l |
of tin pyrophosphate |
5.5 g/l |
of zinc pyrophosphate |
15 mg/l |
of bis(3-sodium sulfopropyl) disulfide |
Parameters: pH 10 / 60°C / current densities 0.05 - 0.5 A/dm2 |
1. An electrolyte for the deposition of decorative tin-bronze alloy layers on consumer
goods and industrial articles, which contains the metals to be deposited in the form
of water-soluble salts,
wherein
the electrolyte comprises one or more phosphonic acid derivatives as complexing agents
and a brightener system composed of a disulfide compound and a carbonate or hydrogencarbonate
salt.
2. The electrolyte as claimed in claim 1,
wherein ,
it contains the metal ions of copper and tin or copper, tin and zinc to be deposited.
3. The electrolyte as claimed in claim 2,
wherein
the water-soluble salts of the metals to be deposited are selected from the group
consisting of pyrophosphates, carbonates, hydroxide-carbonates, hydrogencarbonates,
sulfites, sulfates, phosphates, nitrites, nitrates, halides, hydroxides, oxide-hydroxides,
oxides and combinations thereof.
4. The electrolyte as claimed in one or more of the preceding claims,
wherein
the metals to be deposited are present in dissolved form, with the ion concentration
of copper being in the range from 0.2 to 10 gram per liter of electrolyte, the ion
concentration of tin being in the range from 1.0 to 30 gram per liter of electrolyte
and the ion concentration of zinc, if present, being in the range from 1.0 to 20 gram
per liter of electrolyte.
5. The electrolyte as claimed in claim 1,
wherein
it comprises, as carbonate or hydrogencarbonate salt, a salt of this type selected
from the group consisting of alkali metal and alkaline earth metal salts.
6. The electrolyte as claimed in claim 5,
wherein
the carbonate or hydrogencarbonate ions are present in an amount of 0.5 - 100 g/l
of electrolyte.
7. The electrolyte as claimed in claim 1,
wherein
it comprises, as disulfide compound, a compound of this type selected from the group
consisting of substituted and unsubstituted bisalkyl or bis(hetero)aryl or alkyl (hetero)aryl
disulfides.
8. The electrolyte as claimed in claim 7,
wherein
the disulfide compound is present in the electrolyte in an amount of 0.01 mg/l - 10.4
g/l.
9. The electrolyte as claimed in claim 1,
wherein
it contains, as phosphonic acid derivatives, one or more compounds selected from the
group consisting of 1-aminomethylphosphonic acid AMP, aminotris(methylenephosphonic
acid) ATMP, 1-aminoethylphosphonic acid AEP, 1-aminopropylphosphonic acid APP, (1-acetylamino-2,2,2-trichloroethyl)phosphonic
acid, (1-amino-1-phosphonooctyl)phosphonic acid, (1-benzoylamino-2,2,2-trichloroethyl)phosphonic
acid, (1-benzoylamino-2,2-dichlorovinyl)phosphonic acid, (4-chlorophenylhydroxymethyl)phosphonic
acid, diethylenetriamine-penta(methylenephosphonic acid) DTPMP, ethylenediaminetetra(methylenephosphonic
acid) EDTMP, 1-hydroxyethane(1,1-diphosphonic acid) HEDP, hydroxyethylaminodi(methylenephosphonic
acid) HEMPA, hexamethylenediaminetetra(methylphosphonic acid) HDTMP, ((hydroxymethylphosphonomethylamino)methyl)phosphonic
acid, nitrilotris(methylenephosphonic acid) NTMP, 2,2,2-trichloro-1-(furan-2-carbonyl)amino-ethylphosphonic
acid, salts derived therefrom and condensates derived therefrom, or combinations thereof.
10. The electrolyte as claimed in one or more of the preceding claims,
wherein
the pH of the electrolyte is in the range from 6 to 14.
11. The electrolyte as claimed in one or more of the preceding claims,
wherein
pyrophosphate ions are present in the electrolyte.
12. The electrolyte as claimed in one or more of the preceding claims,
wherein
one or more stabilizing compounds selected from the group consisting of monocarboxylic
and dicarboxylic acids, alkanesulfonic acids, betaines and aromatic nitro compounds
are present.
13. A process for the electrochemical application of decorative tin-bronze alloy layers
to consumer goods and industrial articles, in which the substrates to be coated are
dipped into an electrolyte containing the metals to be deposited in the form of water-soluble
salts,
wherein
an electrolyte as claimed in one or more of claims 1 to 12 is used.
14. The process as claimed in claim 13,
wherein
the electrolyte is maintained in the range from 20 to 70°C during deposition of the
metals.
15. The process as claimed in claim 13,
wherein
a current density in the range from 0.01 to 100 ampere per square decimeter is set.
1. Elektrolyt zur Abscheidung von dekorativen Zinn-Bronze-Legierungsschichten auf Gebrauchsgütern
und technischen Gegenständen, der die abzuscheidenden Metalle in Form von wasserlöslichen
Salzen enthält, dadurch gekennzeichnet, dass der Elektrolyt ein oder mehrere Phosphonsäurederivate als Komplexbildner und ein
Glanzbildnersystem aus einer Disulfidverbindung und einem Carbonat- bzw. Hydrogencarbonatsalz
aufweist.
2. Elektrolyt nach Anspruch 1, dadurch gekennzeichnet, dass er die abzuscheidenden Metallionen von Kupfer und Zinn oder Kupfer, Zinn und Zink
enthält.
3. Elektrolyt nach Anspruch 2, dadurch gekennzeichnet, dass die wasserlöslichen Salze der abzuscheidenden Metalle aus der Gruppe bestehend aus
Pyrophosphaten, Carbonaten, Hydroxidcarbonaten, Hydrogencarbonaten, Sulfiten, Sulfaten,
Phosphaten, Nitriten, Nitraten, Halogeniden, Hydroxiden, Oxidhydroxiden, Oxiden und
Kombinationen davon ausgewählt sind.
4. Elektrolyt nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die abzuscheidenden Metalle in gelöster Form vorliegen, wobei die Ionenkonzentration
des Kupfers im Bereich von 0,2 bis 10 Gramm pro Liter Elektrolyt, die Ionenkonzentration
des Zinns im Bereich von 1,0 bis 30 Gramm pro Liter Elektrolyt und die Ionenkonzentration
des Zinks, sofern vorhanden, im Bereich von 1,0 bis 20 Gramm pro Liter Elektrolyt
liegt.
5. Elektrolyt nach Anspruch 1, dadurch gekennzeichnet, dass er als Carbonat- bzw. Hydrogencarbonatsalz ein Salz dieses Typs, das aus der Gruppe
bestehend aus Alkali- und Erdalkalimetallsalzen ausgewählt ist, aufweist.
6. Elektrolyt nach Anspruch 5, dadurch gekennzeichnet, dass die Carbonat- bzw. Hydrogencarbonationen in einer Menge von 0,5-100 g/l Elektrolyt
zugegen sind.
7. Elektrolyt nach Anspruch 1, dadurch gekennzeichnet, dass er als Disulfidverbindung eine Verbindung dieses Typs, die aus der Gruppe bestehend
aus substituierten und unsubstituierten Bisalkyl- oder Bis(hetero)aryl- oder Alkyl(hetero)aryldisulfiden
ausgewählt ist, aufweist.
8. Elektrolyt nach Anspruch 7, dadurch gekennzeichnet, dass die Disulfidverbindung in einer Menge von 0,01 mg/l-10,0 g/l im Elektrolyt zugegen
ist.
9. Elektrolyt nach Anspruch 1, dadurch gekennzeichnet, dass er als Phosphonsäurederivate eine oder mehrere Verbindungen aus der Gruppe bestehend
aus 1-Aminomethylphosphonsäure AMP, Aminotris-(methylenphosphonsäure) ATMP, 1-Aminoethylphosphonsäure
AEP, 1-Aminopropylphosphonsäure APP, (1-Acetylamino-2,2,2-trichlorethyl)phosphonsäure,
(1-Amino-1-phosphonooctyl)phosphonsäure, (1-Benzoylamino-2,2,2-trichlorethyl)phosphonsäure,
(1-Benzoylamino-2,2-dichlorvinyl)phosphonsäure, (4-Chlorphenylhydroxymethyl)phosphonsäure,
Diethylentriaminpenta(methylenphosphonsäure) DTPMP, Ethylendiamintetra(methylenphosphonsäure)
EDTMP, 1-Hydroxyethan-(1,1-diphosphonsäure) HEDP, Hydroxyethylamino-di(methylenphosphonsäure)
HEMPA, Hexamethylendiamintetra(methylphosphonsäure) HDTMP, ((Hydroxymethylphosphonomethylamino)-methyl)phosphonsäure,
Nitrilotris(methylenphosphonsäure) NTMP, 2,2,2-Trichlor-1-(furan-2-carbonyl)aminoethylphosphonsäure,
davon abgeleiteten Salzen und davon abgeleiteten Kondensaten oder Kombinationen davon
enthält.
10. Elektrolyt nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der pH-Wert des Elektrolyts im Bereich von 6 bis 14 liegt.
11. Elektrolyt nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in dem Elektrolyt Pyrophosphationen vorhanden sind.
12. Elektrolyt nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine oder mehrere stabilisierend wirkende Verbindungen aus der Gruppe bestehend aus
Mono- und Dicarbonsäuren, Alkansulfonsäuren, Betainen und aromatischen Nitroverbindungen
enthalten sind.
13. Verfahren zur galvanischen Aufbringung von dekorativen Zinn-Bronze-Legierungsschichten
auf Gebrauchsgüter und technische Gegenstände, wobei die zu beschichtenden Substrate
in einen Elektrolyt getaucht werden, der die abzuscheidenden Metalle in Form von wasserlöslichen
Salzen enthält, dadurch gekennzeichnet, dass ein Elektrolyt gemäß einem oder mehreren der Ansprüche 1 bis 12 verwendet wird.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass der Elektrolyt während der Abscheidung der Metalle im Bereich von 20 bis 70°C temperiert
wird.
15. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass eine Stromdichte eingestellt wird, die im Bereich von 0,01 bis 100 Ampere pro Quadratdezimeter
liegt.
1. Electrolyte pour le dépôt de couches décoratives d'alliage étain-bronze sur des biens
de consommation et des articles industriels, qui contient les métaux à déposer sous
la forme de sels hydrosolubles, l'électrolyte comprenant un ou plusieurs dérivés d'acide
phosphonique comme agents complexants et un système brillanteur constitué d'un composé
de disulfure et d'un sel de carbonate ou d'hydrogénocarbonate.
2. Electrolyte selon la revendication 1, qui contient les ions métalliques de cuivre
et d'étain ou de cuivre, d'étain et de zinc à déposer.
3. Electrolyte selon la revendication 2, dans lequel les sels hydrosolubles des métaux
à déposer sont choisis dans le groupe constitué par les pyrophosphates, les carbonates,
les hydroxycarbonates, les hydrogénocarbonates, les sulfites, les sulfates, les phosphates,
les nitrites, les nitrates, les halogénures, les hydroxydes, les oxyhydroxydes, les
oxydes, et les combinaisons de ceux-ci.
4. Electrolyte selon l'une quelconque des revendications précédentes, dans lequel les
métaux à déposer sont présents sous forme dissoute, la concentration en ions cuivre
se situant dans la gamme de 0,2 à 10 grammes par litre d'électrolyte, la concentration
en ions étain se situant dans la gamme de 1,0 à 30 grammes par litre d'électrolyte,
et la concentration en ions zinc, si présents, se situant dans la gamme de 1,0 à 20
grammes par litre d'électrolyte.
5. Electrolyte selon la revendication 1, qui comprend, comme sel de carbonate ou d'hydrogénocarbonate,
un sel de ce type choisi dans le groupe constitué par les sels de métaux alcalins
et de métaux alcalino-terreux.
6. Electrolyte selon la revendication 5, dans lequel les ions carbonate ou hydrogénocarbonate
sont présents dans une quantité de 0,5-100 g/l d'électrolyte.
7. Electrolyte selon la revendication 1, qui comprend comme composé de disulfure, un
composé de ce type choisi dans le groupe constitué par les disulfures de bisalkyle
ou de bis(hétéro)aryle ou d'alkyl(hétéro)aryle substitués et non substitués.
8. Electrolyte selon la revendication 7, le composé de disulfure étant présent dans l'électrolyte
dans une quantité de 0,01 mg/l 10,0 g/l.
9. Electrolyte selon la revendication 1, qui contient, comme dérivés d'acide phosphonique,
un ou plusieurs composés choisis dans le groupe constitué par l'acide 1-aminométhylphosphonique
AMP, l'aminotris(acide méthylènephosphonique) ATMP, l'acide 1-aminoéthylphosphonique
AEP, l'acide 1-aminopropylphosphonique APP, l'acide (1-acétylamino-2,2,2-trichloroéthyl)phosphonique,
l'acide (1-amino-1-phosphonooctyl)phosphonique, l'acide (1-benzoylamino-2,2,2-trichloroéthyl)phosphonique,
l'acide (1-benzoylamino-2,2-dichlorovinyl)phosphonique, l'acide (4-chlorophénylhydroxyméthyl)phosphonique,
le diéthylènetriamine-penta(acide méthylènephosphonique) DTPMP, l'éthylènediamine-tétra(acide
méthylènephosphonique) EDTMP, le 1-hydroxyéthane(1,1-diacide phosphonique) HEDP, l'hydroxyéthylaminodi(acide
méthylènephosphonique) HEMPA, l'hexaméthylènediamine-tétra(acide méthylphosphonique)
HDTMP, l'acide ((hydroxyméthylphosphonométhylamino)méthyl)phosphonique, le nitrilotris(acide
méthylènephosphonique) NTMP, l'acide 2,2,2-trichloro-1-(furan-2-carbonyl)amino-éthylphosphonique,
les sels dérivés de ceux-ci et les condensats dérivés de ceux-ci, ou leurs combinaisons.
10. Electrolyte selon l'une quelconque des revendications précédentes, le pH de l'électrolyte
se situant dans la gamme de 6 à 14.
11. Electrolyte selon l'une quelconque des revendications précédentes, des ions pyrophosphate
étant présents dans l'électrolyte.
12. Electrolyte selon l'une quelconque des revendications précédentes, dans lequel un
ou plusieurs composés stabilisants choisis dans le groupe constitué par les acides
monocarboxyliques et dicarboxyliques, les acides alcanesulfoniques, les bétaïnes et
les composés aromatiques nitrés sont présents.
13. Procédé d'application électrochimique de couches décoratives d'alliage étain-bronze
sur des biens de consommation et des articles industriels, dans lequel les substrats
à revêtir sont plongés dans un électrolyte contenant les métaux à déposer sous la
forme de sels hydrosolubles, un électrolyte selon une ou plusieurs des revendications
1 à 12 étant utilisé.
14. Procédé selon la revendication 13, dans lequel l'électrolyte est maintenu dans la
gamme de 20 à 70 °C pendant le dépôt des métaux.
15. Procédé selon la revendication 13, dans lequel une densité de courant dans la gamme
de 0,01 à 100 ampères par décimètre carré est imposée.