(19)
(11) EP 1 668 169 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
11.04.2012 Bulletin 2012/15

(21) Application number: 04775177.1

(22) Date of filing: 15.09.2004
(51) International Patent Classification (IPC): 
C23C 18/02(2006.01)
(86) International application number:
PCT/PL2004/000071
(87) International publication number:
WO 2005/031034 (07.04.2005 Gazette 2005/14)

(54)

ORGANOTITANIUM PRECURSORS, METHOD FOR THEIR PREPARATION AND METHOD OF PRODUCING MATERIAL AND/OR COMPOSITE MATERIAL USING THE SAME

ORGANOTITANVORLÄUFER, HERSTELLUNGSVERFAHREN DAFÜR UND VERFAHREN ZUR HERSTELLUNG VON MATERIAL UND/ODER VERBUNDMATERIAL DAMIT

PRECURSEURS D'ORGANOTITANE, PROCEDE POUR LEUR PREPARATION ET PROCEDE DE PRODUCTION DE MATERIAU ET/OU DE MATERIAU COMPOSITE UTILISANT LESDITS PRECURSEURS


(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

(30) Priority: 29.09.2003 PL 36249003

(43) Date of publication of application:
14.06.2006 Bulletin 2006/24

(73) Proprietor: West Pomeranian University of Technology Szczecin
70-310 Szczecin (PL)

(72) Inventors:
  • BIEDUNKIEWICZ, Anna
    PL-70-783 Szczecin (PL)
  • WYSIECKI, Mieczyslaw
    PL-71-013 Szczecin (PL)
  • NOWOROL, Przemyslaw
    PL-73 110 Stargard Szczecinski (PL)

(74) Representative: Zawadzka, Renata 
Zachodniopomorski Uniwersytet Technologiczny Aleja Piastow 17
70-310 Szczecin
70-310 Szczecin (PL)


(56) References cited: : 
   
  • KOC R: "KINETICS AND PHASE EVOLUTION DURING CARBOTHERMAL SYNTHESIS OF TITANIUM CARBIDE FROM ULTRAFINE TITANIA/CARBON MIXTURE" JOURNAL OF MATERIALS SCIENCE, CHAPMAN AND HALL LTD. LONDON, GB, vol. 33, no. 4, 15 February 1998 (1998-02-15), pages 1049-1055, XP000732813 ISSN: 0022-2461 cited in the application
  • MAITRE A ET AL: "Role of some technological parameters during carburizing titanium dioxide" JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, ELSEVIER SCIENCE PUBLISHERS, BARKING, ESSEX, GB, vol. 20, no. 1, January 2000 (2000-01), pages 15-22, XP004244420 ISSN: 0955-2219 cited in the application
  • WHITE G V ET AL: "CARBOTHERMAL SYNTHESIS OF TITANIUM NITRIDE. ÖPART II THE REACTION SEQUENCE" JOURNAL OF MATERIALS SCIENCE, CHAPMAN AND HALL LTD. LONDON, GB, vol. 27, no. 16, 15 August 1992 (1992-08-15), pages 4294-4299, XP000290241 ISSN: 0022-2461 cited in the application
  • KOHNO K: "Nitridation of the sol-gel derived TiO2 coating films and the infrared ray reflection" JOURNAL OF MATERIALS SCIENCE UK, vol. 27, no. 3, 1992, pages 658-660, XP009041778 ISSN: 0022-2461 cited in the application
  • ANANTHAPADMANABHAN P V ET AL: "Synthesis of titanium nitride in a thermal plasma reactor" JOURNAL OF ALLOYS AND COMPOUNDS, ELSEVIER SEQUOIA, LAUSANNE, CH, vol. 287, no. 1-2, 1 June 1999 (1999-06-01), pages 126-129, XP004182531 ISSN: 0925-8388 cited in the application
  • KOPF A ET AL: "Double-layer coatings on WC-Co hardmetals containing diamond and titanium carbide/nitride" DIAMOND AND RELATED MATERIALS, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 9, no. 3-6, April 2000 (2000-04), pages 494-501, XP004199804 ISSN: 0925-9635 cited in the application
  • CHATTERJEE-FISCHER R ET AL: "MEDIUM TEMPERATURE CVD FOR COATING STEEL PARTS" ADVANCED MATERIALS & PROCESSES, AMERICA SOCIETY FOR METALS. METALS PARK, OHIO, US, vol. 129, February 1986 (1986-02), pages 35-43, XP009041779 ISSN: 0882-7958 cited in the application
  • ARCHER N J: "PLASMA-ASSISTED CHEMICAL VAPOUR DEPOSITION OF TiC, TiN AND TiCxN1 minus x" THIN SOLID FILMS, vol. 80, no. 1/2/3, 19 June 1981 (1981-06-19), pages 221-225, XP000962357 cited in the application
   
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description


[0001] The subject of invention is organotitanium precursor and a method of producing and processing of organotitanium precursor, used to synthesis of carbides and/or nitrides and/or carbonitrides and/or carbon and/or carbides and/or nitrides and/or carbonitrides of metals and/or semi-metals. Such precursor is applicable to produce coatings forming materials and composites, which comprise above-mentioned compounds, for various substrates to be coated, and also to produce fibers, powders, sinters and foamed slags.

[0002] There are known, from the literature, methods of fabrication of titanium carbide, titanium carbonitride and titanium nitride, from solid, gaseous and liquid phase.

[0003] From liquid phase:
  1. a) method of carbothermic reduction at the temperature of synthesis, above 1200°C:

    TiO2 + C → TiC + CO2 - Rasit Koc, Journal of Materials Science, 1998, 33, 1049-1055;

    Alexandre Maitre, Daniel Tetard, Pierre Lefort, Journal of the European Ceramic Society, 2000, 20, 15-22

    TiO2 + 2C + N → TiC + CO -2TiO2 + 2NH3 → 2TiN + 4H2O + H2 - Kazushige Kohno, Journal of Materials Science, 27 (1992) 658-660,

    (ilmenit) FeTiO3 + CH4 +NH3 → Ti(C,N) - P.V. Ananthapadmanabhan, P.R. Taylor, WenXian Zhu, Journal of Alloys and Compounds, 287 (1999) 126-129.

  2. b) method of direct synthesis Ti + C → TiC.


[0004] Producing of these compounds form gaseous phase, are also known:
  1. a) Chemical Vapor Deposition method (CVD) at synthesis temperature above 1000°C
    Ti Cl4 + CH4 + H2 → TiC + 4HCl + H2
    2Ti Cl4 + N2 + 4H2 → 2TiN + 8HCl
    2Ti Cl4 + N2 + 2CH4 + H2 → Ti(C, N) + 8HCl + H2
    M. Ohring, The Materials Science of Thin Films, Academic Press Inc. Harcourd Brace Jovanovich, Publishers, 1992; A. Köpf, R. Haubner, B. Lux, Diamond and Related Materials, 9 (2000) 494÷501
  2. b) Moderate Temperature Chemical Vapor Deposition method (MTCVD) with addition of acetonitrile, carried at synthesis temperature between 700°C and 850°C
    Ti Cl4 + 2CH3CN + (5/2) H2 → Ti(C, N) + 4HCl +CH4 - R. Chatterjee-Fischer, P. Mayr, Metal Progress, 129 (1986) 35
  3. c) Plasma Assisted Chemical Vapor Deposition method (PACVD) at synthesis temperature between 300°C and 700°C
    2Ti Cl4 + 2N2 + 7H2 + AR PLASMA → 2Ti N + 8HCl + NH3 - Milion Ohring, "The Materials Science of Thin Films", Academic Press, Inc. Harcourd Brace Jovanovich, Publishers, 1992; T. Wierzchoń, Mat. 4-tej Szkoly Letniej "Modern Plasma Surface Technology", Mielno 1993, Koszalin (1994) 43; N.J. Archer, "Thin Solid Films", 80 (1981) 221 d) Metalorganic Chemical Vapor Deposition method (MOCDV) at synthesis temperature above 150°C with addition of the following organotitanium compounds: (C5H5)TiCl2, Ti[N(CH3)2]4,
    Ti[N(C2H5)2]4, Ti(bipy)3, Ti[CH2C(CH3)3] During testing, there were used organotitanium compounds, as follows: (C5H5)2TiCl2], Ti[N(CH3)2]4, Ti[N(C2H5)2]4, Ti(bipy)3, Ti[CH2C(CH3)3]4, Ti(i-OC3H7)4, 2CH3CN·TiCl4, (C5H5)2Ti (CH3)2, (C5H5)2Ti (CCC6H5)2, Ti(C5H5)2-µ-CH2, (C6H5)2Ti (OC3H7)2,
    TMT (tetrakis(diethylamide)titanium),
    BTET (Bis[N,N'- bis(tert-butyl)ethylenediamido]titanium(IV)).


[0005] There are also, known from the scientific literature and patent applications as well, methods of fabrication of organotitanium precursors, from liquid phase:

Sol-gel method, which is mainly used in oxide ceramics production. In such technique, as most often used, are alcoholates, i.e. compounds, which comprise metal-oxygen-carbon bonds, and which form gels after the hydrolysis and condensation. By shaping a gel into advisable form, a thin layer for example, and by following properly heat treatment, there can be a crystalline or amorphous ceramics obtained, at considerably lower temperature of process, than applied in traditional methods. There is a large technological advance in oxide ceramics production filed. As a precursor, there are solutions of tetraisopropyloxytitanium and tetrabutyloxytitanium applied. The thin layers of titanium dioxide (TiO2), are obtained after the thermal treatment of liquid precursor, even at 673K-773K. Considerably lesser advance is observed in non oxide compounds field, such as carbides, nitrides and carbonitrides of titanium. In this domain, there are interesting experiences with production of titanium carbide thin layers in polymerization process by transesterification of tetraisopropyloxytitanium with α, α'-diacetateorthoxylene, and in following thermal conversion of obtained polymer. For the sake of appearance of Ti-O-C type bond system in such polymer, conversion of these precursors to titanium carbide, is proceed at temperature above 1073 K, i.e. in conditions of carbothermic reduction of titanium carbide, which is proved by formation of carbon oxide in pyrolysis of polymer precursor process. Similar results were obtained, by polymerization of titanium alkoholates with polyalkoholates and hydroxylysed polymers, resins and cellulose, and dicarboxylic acids as well. Kind and quantity of ligands, effects on morphology of precursor and on the quality of final product the most, i.e. stoichiometric composition of titanium carbide, and the content of free carbon.



[0006] Organotitanium precursor according to invention comprising polymer compounds and solvent, is characterized by that it comprise polymer selected from polyimide PI and/or polyamide PA and/or polybenzimidazole PBI and/or polyacrylonitrile PAN and/or polyethylene terephthalate PET, and TiCl2 and/or TiCl3 and/or (C2H5)2TiCl2, both dissolved in organic solvent, in quantity of all range of solubility, where a solvent is selected from carbon tetrachloride CCl4 and/or acetonitrile CH3CN and/or chlorobenzene C6H5Cl and/or N,N-dimethylformamide (DMF) and/or dimethylsulphoxide (DMSO) and/or tetrahydrofuran (THF) and/or dimethylacetamide (DMAA) and/or N,N-diethylformamide (DEF).

[0007] Precursor enriched with additional components, i.e. oxides of metals and/or oxides of semi-metals and/or metals and/or semi-metals, forms titanium-metalic-semimetalic-organic precursor. Beneficially, as addition, precursor comprise V2O5 and/or V2O3 and/or MoO3 and/or Nb2O5 and/or Ta2O5 and/or FeO and/or Fe2O3 and/or Fe3O4 and/orSiO2 and/or Al2O3 and/or WO3 and/or Fe and/or Cr and/or W and/or Ti and/or Ta and/or Nb and/or Mo and/or V and/or Si and/or Al.

[0008] Method of producing of organotitanium precursor, according to invention consists in, that, polymer selected from polyimide PI and/or polyamide PA and/or polybenzimidazole PBI and/or polyacrylonitrile PAN and/or polyethylene terephthalate PET is dissolved in organic solvent selected from carbon tetrachloride CCl4 and/or acetonitrile CH3CN and/or chlorobenzene C6H5Cl and/or N,N-dimethylformamide (DMF) and/or dimethylsulphoxide (DMSO) and/or tetrahydrofuran (THF) and/or dimethylacetamide (DMAA) and/or N,N-diethylformamide (DEF). Such obtained solution is mixed and TiCl2 and/or TiCl3 and/or (C2H5)2TiCl2 are added, in quantity of all range of solubility, in following it's soaked in.inert gases atmosphere and it's held in constant temperature until its homogenization. After that the solution is cooled to ambient temperature, and such obtained dense liquid is seasoned, in dry and inert gases. Beneficially as gas and/or an argon and/or helium and/or neon and/or nitrogen is used.

[0009] Method of producing of titanium-metalic-semimetalic-organic precursor according to invention consists in, that into obtained dense liquid, oxides of metals and/or oxides of semi-metals and/or metals and/or semi-metals are added, beneficially V2O5 and/or V2O3 and/or MoO3 and/or Nb2O5 and/or Ta2O5 and/or FeO and/or Fe2O3 and/or Fe3O4 and/orSiO2 and/or Al2O3 and/or WO3 and/or Fe and/or Cr and/or W and/or Ti and/or Ta and/or Nb and/or Mo and/or V and/or Si and/or Al.

[0010] Precursor, obtained by method according to invention, is subjected to heat treatment in atmosphere of inert and/or active gases at temperature between 300°C and 2000°C, to synthesize, materials and/or components comprising titanium carbides and/or titanium nitrides and/or titanium carbonitrides and/or carbon and/or carbides and/or nitrides and/or carbonitrides of metals and/or semi-metals, in form of coatings for various substrates to be coated, and also in form of fibers, powders, sinters and foamed slags. In comparison with known methods, especially wide disseminated in industry CVD method and synthesis in solid phase process, method according to invention is more beneficial for sake of ability to synthesize at lower temperatures, even by a few hundred degrees, i.e. with lower expenditure of energy.

[0011] Subject of invention is represented by examples of work.

Example I



[0012] Into the glass reactor, with nitrogen atmosphere, there are loaded 0,7g of TiCl2, 280cm3 of dimethylacetamide and 15g of polyacrylonitrile as polymer with repeated donor atom. The content of the reactor is heated up to 150°C and it's held at such temperature for about 60 minutes. Such obtained solution is cooled to ambient temperature. Such obtained, dense, gely liquid is seasoned in dry and inert gases.

Example II



[0013] Into gel, obtained as per example I, a 3,75g of powdered V2O5 is added. The mixture is mixed in porcelain crucible, until the liquid gets homogeneous and dense.

Example III



[0014] Into gel, obtained as per example I, a 6,5g of powdered Ta2O5 is added. The mixture is mixed in porcelain crucible, until the liquid gets homogeneous and dense.

Example IV



[0015] Into the glass reactor, with argon atmosphere, there are loaded 1,5g of TiCl3, about 160cm3 of dimethylformamide, 20 cm3 of dimethylacetamide and 5g of polyacrylonitrile as polymer with repeated donor atom. The content of the reactor is heated up to 145°C and it's held at such temperature for about 60 minutes. Such obtained solution is cooled to ambient temperature. Such obtained, dense, gely liquid is seasoned in dry and inert gases for 60 hours.

Example V



[0016] Into gel, obtained as per example IV, a 67g of powdered MoO3 is added. The mixture is mixed in porcelain crucible, until the liquid gets homogeneous and dense.

Example VI



[0017] Into the glass reactor, with argon atmosphere, there are loaded 1,5g of (C2H5)2TiCl2, about 160cm3 of dimethylformamide, and 5g of polyamide as polymer with repeated donor atom. The content of the reactor is heated up to 145°C and it's held at such temperature for about 45 minutes. Such obtained solution is cooled to ambient temperature. Such obtained, dense, gely liquid is seasoned in dry and inert gases.

Example VII



[0018] The precursor, in form of homogenous gel, as in example I, is spread onto ceramic surface - sintered carbides. Such covered object is soaked at 650°C, in ammonia atmosphere of 45% degree of dissociation.

[0019] X-ray diffraction tests revealed amorphous structure of obtained coating. Chemical microanalysis, performed with WDS (Wavelenght Dispersive Spectrometry), revealed occurrence of titanium, carbon and nitrogen which are uniformly dispersed in coating.

Example VIII



[0020] Gel, as per example I, is placed in quartz vessel, and it's soaked at 1200°C in argon atmosphere. X-ray diffraction tests revealed, that such produced powder is double phase mixture, comprising nanocrystalline titanium-vanadium carbide (Ti,V)C.

Example IX



[0021] Gel, as per example IV, is placed into graphite mould, and it's vaporized at 350°C in nitrogen atmosphere, then it's compacted and soaked at 800°C in argon atmosphere. X-ray diffraction tests, revealed that such produced sinter is a double phase mixture, comprising titanium-molybdenum carbide.

Example X



[0022] Gel, as per example I, is spread onto ceramic surface - sintered carbides. Such covered ceramic object is soaked at 900°C in argon atmosphere. X-ray diffraction tests, revealed, that such produced layer is polycrystalline and has titanium carbide structure. Chemical microanalysis, performed with WDS (Wavelenght Dispersive Spectrometry), revealed occurrence of titanium and carbon in coasting.

Example XI



[0023] Gel, as per example I, is placed in quartz vessel, and it's soaked at 600°C in ammonium atmosphere. X-ray diffraction tests and chemical microanalysis, performed with WDS (Wavelenght Dispersive Spectrometry) revealed, that such produced powder is double phase mixture, comprising fine-crystalline titanium nitride and amorphous carbon.


Claims

1. Organotitanium precursor comprising polymer compounds and solvent, characterized in that it comprise polymer selected from polyimide PI and/or polyamide PA and/or polybenzimidazole PBI and/or polyacrylonitrile PAN and/or polyethylene terephthalate PET, and TiCl2 and/or TiCl3 and/or (C2H5)2TiCl2, both dissolved in organic solvent, in quantity of all range of solubility, where a solvent is selected from carbon tetrachloride CCl4 and/or acetonitrile CH3CN and/or chlorobenzene C6H5Cl and/or N,N-dimethylformamide (DMF) and/or dimethylsulphoxide (DMSO) and/or tetrahydrofuran (THF) and/or dimethylacetamide (DMAA) and/or N,N-diethylformamide (DEF).
 
2. Organotitanium precursor according to claim 1, characterized in that it comprises oxides of metals and/or oxides of semi-metals, beneficially V2O5 and/or V2O3 and/or MoO3 and/or Nb2O5 and/or Ta2O5 and/or FeO and/or Fe2O3 and/or Fe3O4 and/orSiO2 and/or Al2O3 and/or WO3.
 
3. Organotitanium precursor according to claim 1, characterized in that it comprises metals and/or semi-metals, beneficially Fe and/or Cr and/or W and/or Ti and/or Ta and/or Nb and/or Mo and/or V and/or Si and/or Al.
 
4. Method of producing of organotitanium precursor, characterized in that the polymer selected from polyimide PI and/or polyamide PA and/or polybenzimidazole PBI and/or polyacrylonitrile PAN and/or polyethylene terephthalate PET is dissolved in organic solvent selected from carbon tetrachloride CCl4 and/or acetonitrile CH3CN and/or chlorobenzene C6H5Cl and/or N,N-dimethylformamide (DMF) and/or dimethylsulphoxide (DMSO) and/or tetrahydrofuran (THF) and/or dimethylacetamide (DMAA) and/or N,N-diethylformamide (DEF), such obtained solution is mixed and TiCl2 and/or TiCl3 and/or (C2H5)2TiCl2 are added, in quantity of all range of solubility, in following it's soaked in inert gases atmosphere and it's held in constant temperature until its homogenization, after that the solution is cooled to ambient temperature, and such obtained dense liquid is seasoned, in dry and inert gases.
 
5. Method according to claim 4, characterized in that as a inert gas, an argon and/or helium and/or neon and/or nitrogen is used.
 
6. Method according to claim 4, characterized in that a oxides of metals and/or oxides of semi-metals are added, into obtained liquid, beneficially V2O5 and/or V2O3 and/or MoO3 and/or Nb2O5 and/or Ta2O5 and/or FeO and/or Fe2O3 and/or Fe3O4 and/orSiO2 and/or Al2O3 and/or WO3.
 
7. Method according to claim 4, characterized in that a metals and/or semi-metals are added, into obtained liquid, beneficially Fe and/or Cr and/or W and/or Ti and/or Ta and/or Nb and/or Mo and/or V and/or Si and/or Al.
 
8. Method of producing of material and/or composite material, comprising titanium carbides and/or titanium nitrides and/or titanium carbonitrides and/or carbon and/or carbides and/or nitrides and/or carbonitrides of metals and/pr semi-metals, from organotitanium precursor characterized in that the organotitanium precursor is heat treated in inert and/or active gases atmosphere at temperatures between 300°C and 2000°C
 
9. Method according to claim 8, characterized in that as an inert gas, an argon and/or helium and/or neon and/or nitrogen is used.
 
10. Method according to claim 8, characterized in that as an active gas, nitrogen and/or hydrogen and/or ammonium and/or argon and/or helium and/or neon is used.
 


Ansprüche

1. Titan-organischer Prekursor, welcher Polymerverbindungen mit organischem Lösungsmittel enthält, dadurch gekennzeichnet, dass er als Polymer Polyimid PI und/oder Polyamid PA und/oder Polybenzimidazol PBI und/oder Polyakrylonitril PAN und/oder Polyethylenterephthalat PET und/oder TiCl2 und/oder TiCl3 und/oder (C2H5)2TiCl2 enthält und im organischen Lösungsmittel in der Menge vom gesamten Löslichkeitsbereich gelöst wird, wobei das Lösungsmittel von Kohlenstofftetrachlorid CCl4 und/oder Acetonitril CH3CN und/oder Chlorbenzen C6H5Cl und/oder N,N- Dimetyloformamid (DMF) und/oder Dimethylsulfoxid (DMSO) und/oder Tetrahydrofuran (THF) und/oder Dimethylacetamid (DMAA), N,N-Diethylformamid (DEF) gewählt wird.
 
2. Titan-organischer Prekursor, gemäß Anspruch 1, dadurch gekennzeichnet, dass er Metall-und/oder Halbmetalloxide, vorzugsweise V2O5 und/oder V2O3 und/oder MoO3 und/oder Nb2O5 und/oder Ta2O5 und/oder FeO und/oder Fe2O3 und/oder Fe3O4 und/oder SiO2 und/oder AI2O3 und/oder WO3 enthält.
 
3. Titan-organischer Prekursor, gemäß Anspruch 1, dadurch gekennzeichnet, dass er Metalle und/oder Halbmetalle, vorzugsweise Fe und/oder Cr und/oder W und/oder Ti und/oder Ta und/oder Nb und/oder Mo und/oder V und/oder Si und/oder A1 enthält.
 
4. Gewinnungsmethode des titan-organischen Prekursors, dadurch gekennzeichnet, dass er als Polymer Polyimid PI und/oder Polyamid PA und/oder Polybenzimidazol PBI und/oder Polyakrylonitril PAN und/oder Polyethylenterephthalat PET enthält und im organischen Lösungsmittel in der Menge vom gesamten Löslichkeitsbereich gelöst wird, wobei das Lösungsmittel von Kohlenstofftetrachlorid CCl4 und/oder Acetonitril CH3CN und/oder Chlorbenzen C6H5Cl und/oder N,N- Dimetyloformamid (DMF) und/oder Dimethylsulfoxid (DMSO) und/oder Tetrahydrofuran (THF) und/oder Dimethylacetamid (DMAA), N,N-Diethylformamid (DEF) gewählt wird; die so gewonnene Lösung wird gemischt, dazu wird TiCl2 und/oder TiCl3 und/oder (C2H5)2TiCl2 in der Menge vom gesamten Löslichkeitsbereich zugefügt und danach wird sie in der Inertgasatmosphäre erhitzt und in konstanter Temperatur aufbewahrt, bis sie homogenisiert wird und daraufhin wird die gewonnene Lösung bis auf die Umgebungstemperatur gekühlt, und die gewonnene, dicke Flüssigkeit wird in trockenen inerten Gasen aufbewahrt.
 
5. Methode gemäß Anspruch 4, dadurch gekennzeichnet, dass als inertes Gas Argon und/oder Helium und/oder Neon und/oder Stickstoff angewendet wird.
 
6. Methode gemäß Anspruch 4, dadurch gekennzeichnet, dass zur gewonnenen Flüssigkeit Metall- und/oder Halbmetalloxide, vorzugsweise V2O5 und/oder V2O3 und/oder MoO3 und/oder Nb2O5 und/oder Ta2O5 und/oder FeO und/oder Fe2O3 und/oder Fe3O4 und/oder SiO2 und/oder AI2O3 und/oder WO3 zugefügt werden.
 
7. Methode gemäß Anspruch 4, dadurch gekennzeichnet, dass zur gewonnenen Flüssigkeit Metalle und/oder Halbmetalle, vorzugsweise Fe und/oder Cr und/oder W und/oder Ti und/oder Ta und/oder Nb und/oder Mo und/oder V und/oder Si und/oder A1 zugefügt werden.
 
8. Gewinnungsmethode des Materials und/oder Kompositen, welches Titancarbide und/oder Titannitride und/oder Titancarbid Nitride und/oder Kohlenstoff und/oder Carbide und/oder Nitride und/oder Carbid Nitride der Metalle und/oder Halbmetalle aus dem titan-organischen Prekursor enthält, dadurch gekennzeichnet, dass titan-organischer Prekursor der Wärmebehandlung in der Inertgas- und/oder Aktivgasatmosphäre im Temperaturbereich von 300°C bis 2000°C unterliegt.
 
9. Methode gemäß Anspruch 8, dadurch gekennzeichnet, dass als inertes Gas Argon, Helium, Neon, Stickstoff angewendet wird.
 
10. Methode gemäß Anspruch 8, dadurch gekennzeichnet, dass als aktives Gas Stickstoff und/oder Wasserstoff und/oder Ammoniak und/oder Argon und/oder Neon angewendet wird.
 


Revendications

1. Précurseur titano-organique comprenant les composés du polymère avec un solvant organique se caractérisant par le fait qu'en tant polymère comprend polyimide PI et/ou polyamide PS, et/ou polyamide PA, polybenzimidazole PBI, polacrylonitrile PAN, polytéréphtalate d'ethylène PET et/ou TiCl2 la et/ou TiCl3 et/ou(C2H5)2TiCl2 dissout dans le solvant organique en la quantité de tout étendu de la solubilité où le solvant est choisi de parmi tétrachlorure de carbone CCl4 et/ou acetonitrile CH3CN et / ou chlorobenzène C6H5Cl et/ou N,N-diéthylformamide (DMF) et/ou sulfoxyde diméthlique (DMSO) et/ou tetrahydrofuranne (THF) et/ou dimethylacétamide (DMMA) et/ou diethylformamide (DEF).
 
2. Précurseur titano-organique conformément à la réserve 1, se caractérisant par ceci qu'il comprend les oxydes des métaux et/ou les oxydes des métaux de transition,utile V2O5 et/ou V2O3 et/ou MoO3 et/ou Nb2O5 et/ou FeO et/ou Fe2O3 et/ou Fe3O4 et/ou SiO2 et/ou Al2O3 et/ou WO3.
 
3. Précurseur titano-organique conformément à la reserve 1,se caractrisant par le fait qu'il comprend les métaux et/ou les métaux de transition utiles Fe et/ou Cr et/ou W et/ouTi et/ou Ta et/ou Nb et/ou Mo et/ou V et/ou Si et/ou A1.
 
4. Le mode d'obtention du précurseur titano-organique se caractérisant par le fait qu'en tant polymère comprend polyimide PI et/ou polyamide PA et/ou polybenzimidazole PBI et/ou poliacyrylonitryle PAN et/ou polyteréphtalane d'étylène PET dissout en solvant organique chosisi de parmi tetrachlorure de carbone CCl4 et/ou acétonitrile CH3CN et/ou chlorobenzène C6H5Cl et/ou N,N-dimethyloformamide (DMF) et/ou sulfoxyde diméthylique (DMSO) et/ou tetrahydrofuranne (THF) et/ou diméthylacétamide (DMAA) et/ou N,N-diéthyloformamide (DEF) et la solution reçue de telle façon est mélagnée pour y ajouter: TiCl2 et/ou TiCl3 et/ou (C2H5)2TiCl2 en quantité de tout étendu de la solvabilité et ensuite chauffé à l'atmosphère des gaz inertes et maintenu en température constante jusqu'au moment de la homogénéisation après quoi le liquide obtenu est refroidi jusqu'à la température ambiante tandis que le liquide obtenu est soumise à la maturation dans des gaz secs et inertes.
 
5. Le mode conformément à la stipulation 4 se caractérisant par ceci que le gaz inerte est appliqué en forme d' argon,hélium,néon,azote.
 
6. Le mode conforme à la stipulation 4 se caractérisant par le fait qu'au liquide obtenu on ajoute les oxydes des métaux et/ou les oxydes des métaux de transition utiles V2O5 et/ou V2O3 et/ou MoO3 et/ou Nb2O5 et/ou Ta2O5 et/ou FeO et/ou Fe2O3 et/ou Fe3O4 et/ou SiO2 et/ou WO3.
 
7. Le mode conformément à la stipulation 4 se caractérisant par le fait qu'au liquide obtenu on ajoute les métaux et/ou les métaux de transition utiles ajoute les oxydes des métaux et/ou les oxydes des métaux de transition Fe et/ou Cr et/ou W et/ou Ti et/ou Ta et/ou Nb et /ou Mo et/ou V et/ou Si et/ou A1.
 
8. Le mode d'obtention du matériel et/ou du composite comprenant: carbures de titane et/ou nitrures de titane et/ou carbonitrures de titane et/ou carbone et/ou carbures et/ou carbonitrures des métaux ou/et des métaux de transition du précurseur titano-organique se caractérisant par ceci que le précurseur titano-organique est soumis au traitement thermique dans une atmosphères des gaz inertes et/ou actifs dans une étendue des températures de 300 degrés Celsius à 2000 degrés Celsius.
 
9. Le mode conformément à la stipulation 8 se caractérisant par ceci que le gaz inerte est appliqué en forme d' argon et/ou hélium et/ou néon et/ou azote.
 
10. Le mode conformément à la stipulation 8 se caractérisant par le fait que en tant que gaz actif on applique azote et/ou hydrogène et/ou ammoniaque et/ou argon et/ou hélium et/ou néon.
 






Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Non-patent literature cited in the description