[0001] The invention relates to a melt spinning method for producing a composite yarn as
defined in the preamble of claim 1, as well as a composite yarn as defined in the
preamble of claim 15.
[0002] A generic method of melt spinning as well as a generic composite yarn are disclosed
in
DE 101 16 294 A1.
[0003] For textile applications of synthetic fibers it is common to use in part so-called
effect yarns, which exhibit special yarn effects, such as, for example structure effects,
glaze effects, or color effects. Such yarn effects can be produced by blending dissimilar
synthetic fibers. In this connection, one distinguishes in the art between a two-stage
method, wherein the synthetic fibers are produced separately from one another and
wound to packages in a first process stage. In a second process stage, the yarns are
unwound from feed yarn packages and combined to a composite yarn. A method of this
type is disclosed, for example, in
US 5,980,355 or
US 5,943,852.
[0004] In a second variant, the dissimilar fibers are extruded in a spinning process and
combined to a composite yarn in a single stage. The invention proceeds from this variant
of producing a composite yarn. In the melt spinning method disclosed in
DE 101 16 294, two filament bundles are extruded side by side from a polymer melt, for example,
a polyester. After extruding, one of the filament bundles is cooled and drawn in such
a manner that a POY yarn with a preoriented molecular structure is formed. The parallel
extruded second filament bundle is cooled and drawn in such a manner that an HOY yarn
forms with a highly oriented molecular structure. After cooling and drawing, the two
yarns are combined to a composite yarn. Composite yarns of this type distinguish themselves
by a high shrinkage difference in the fibers, since a POY yarn has a high boiling
water shrinkage, and an HOY yarn has a relatively low boiling water shrinkage in the
fibers. These composite yarns are especially suited for producing structure effects,
such as, for example, bulkiness.
[0005] In practice, however, it is desired to make such composite yarns accessible to a
wide spectrum of applications with different yarn effects.
[0006] US 5,858,290 discloses a melt spinning method for producing a composite yarn, wherein two filament
bundles are extruded parallel in side-by-side relationship, and cooled under identical
conditions, so that after cooling two POY yarns form with a preoriented molecular
structure. Before combining the two yarns, one of the yarns is fully drawn, so that
an FOY yarn forms. The POY yarn and the FOY yarn are then combined to the composite
yarn. However, the fiber differences which originate from drawing, have the disadvantage
that the limited withdrawal speed of a POY yarn permits producing only very limited
differences in the physical properties of the fibers.
[0007] In comparison therewith,
DD 266 598 A1 discloses a method of producing a composite yarn, wherein the filament bundles advance
through different setting zones directly after extruding and before cooling. In this
process, the action of a so-called.afterheater is used to attain a delayed crystallization
in one of the filament bundles. After a joint cooling, the filament bundles are combined
and wound as a composite yarn to a package. Likewise, this process permits producing
different physical properties in the individual fibers only within relatively narrow
limits. Thus, the composite yarns disclosed in
US 5,858,290 and
DD 266 598 A1 are limited to a maximum shrinkage difference in the fibers of at most 30%.
[0009] EP-A-1 361 300 discloses a method for manufacturing polyester mixed fiber yarn by melt-extruding
a polyester composition A which comprises a substrate polymer comprising a polyester
and 0,5 to 5,0 percent by weight of a polymer P being different from the substrate
polymer. The object of said document is to provide a method for stably producing a
polyester blended yarn which comprises two or more filament groups having different
elongations, giving a woven or knitted fabric exhibiting a higher-grade texture than
those of conventional fabrics and being excellent in post processability.
[0010] US-B1-6 723 265 relates to a method for producing polyester-based combined filament yarn, wherein
a polymer different from a base polymer comprising a polyester component in an amount
within the range of 0,3 to 5,0 percent by weight based on the base polymer is added
to the base polymer. The filaments of the yarn are taken off at a speed of 2.500 m/min
or above, wherein a spinneret hole diameter of a filament group without being subjected
to a heat treatment is 1,5 times or above a spinneret hole diameter of a filament
group in a open state subjected to a heat treatment.
[0011] JP-A-10 298839 discloses a method for producing a yarn for a fabric having light weight and spun-like
fuzzy feeling although having high density. The combined filament yarn is composed
of a HOY yarn A and a polyester-based slightly shrinkable yarn B having a lower hot
water shrinkage percentage than yarn A.
[0012] WO-A1-93 10292 relates to a process for improving the properties of a mixed shrinkage yarn of spin-oriented
polyester filaments of elongation-to-break 40 to 120 percent comprising polyester
filaments of high boil-off shrinkage greater than 15 percent and of low shringage
polyester filaments. The mixed shrinkage yarn is cold-drawn without heat-setting to
provide drawn filaments of elongation-to break less than 30 percent from drawing said
filaments of high boil-off shrinkage, and wherein said low shrinkage filaments are
of tenacity at 7 percent elongation at least 0,7 grams/denier, boil-off shrinkage
less than 10 percent, thermal stability as shown by an value less than +1 percent,
net shrinkage less than 8 percent, maximum shrinkage tension less than 0,3 grams/denier,
density 1,35 to 1,39 grams/cubic centimeter, and crystal size 55 to 90 Angstroms and
also at least (250p - 282,5) Angstroms.
[0013] It is therefore an object of the invention to further develop the generic melt spinning
method for producing a composite yarn as well as the composite yarn such that a widest
possible spectrum for producing yarn effects is created while maintaining a highest
possible shrinkage difference.
[0014] A special object of the invention consists in attaining as much as possible for each
desired yarn effect an optimum of the fiber blend in the composite yarn.
[0015] In accordance with the invention, this object is accomplished by a melt spinning
method with the steps of claim 1, as well as by a composite yarn with the features
of claim 15.
[0016] Advantageous further developments of the invention are defined by the features and
feature combinations of the respective dependent claims.
[0017] The invention is based on the knowledge that the blending ratio of the fibers in
the composite yarn as well as the fiber cross sections are decisive for defining the
characteristic and thus the possible application of the composite yarn. In this connection,
limit values have crystallized for the application in the textile field, which are
to be maintained for adjusting the yarn effects that are common for textile applications.
The filaments of the POY yarns and the filaments of the HOY yarns are thus combined
in the composite yarn at a mass ratio of M
POY/M
HOY ≤ 2.5. In this combination, the filaments of the POY yarn have a denier ≥ 2.0 deniers,
and the filaments of the HOY yarn have a denier of ≤ 4.0 deniers, preferably ≤ 1.5
deniers. This guarantees on the one hand the required strengths which are largely
defined by the POY yarn. On the other hand, a bulkiness of a shrunk yarn which is
produced by loops and curls, is advantageously formed by the filaments of the HOY
yarn. In this case, it is possible to obtain an open loop structure by the mass ratio.
[0018] Depending on the case of application and the therewith connected yarn effect, it
is possible to produce the composite yarn with different mass percentages of the POY
yarn and HOY yarn. Thus, the ranges of the mass ratio of M
POY/M
HOY from 1.0 to 2.5 are especially suited for producing structure effects and color effects
in the composite yarn. To produce color effects, a range of the mass ratio of M
POY/M
HOY from 0.5 to 0.75 has also been found very advantageous.
[0019] To be able to still better influence the possibility of combination and the characteristic
of the composite yarn, the further development of the method according to the invention
is especially preferred, wherein the POY yarn and the HOY yarn are each formed from
a different number of filaments in the filament bundle with different deniers of the
filaments. With that, it is possible to realize individual combinations between the
POY yarns and the HOY yarns.
[0020] An essential aspect in the melt spinning process of a composite yarn is the combination
of the POY yarn and the HOY yarn. In this connection, the variant of the method has
shown especially useful, wherein the composite is produced by a multistage entanglement,
with a first stage occurring in an initial entanglement after cooling, and a second
stage by a main entanglement before winding the composite yarn. The initial entanglement
occurring after cooling has the advantage that the POY yarn and the HOY yarn can jointly
advance in the spinning process for their further treatment, without producing an
overly intensive yarn cohesion. Only before winding, will a main entanglement take
place, which causes the two yarns to combine by means of entanglement knots.
[0021] In this process, an adequate yarn cohesion will advantageously be reached, when the
main entanglement is performed under an overpressure of the air, which permits producing
in the composite yarn at least a number of 25 entanglement knots per meter.
[0022] In the case that the main entanglement is carried out between two godets, it is possible
to perform as an alternative a third entanglement of the composite yarn for purposes
of causing the filaments to intermingle as is needed for the further treatment of
the composite yarn.
[0023] To combine the filaments of the POY yarn and the filaments of the HOY yarn, the filaments
of the POY yarn are lubricated after cooling and advancing through a spin zone ≥ 800
mm. In this process, a greater spin zone of the POY yarn enables a slower cooling,
which is accompanied by an increase of the withdrawal speed. In so doing, the filament
bundle of the POY yarn and the filament bundle of the HOY yarn are withdrawn at the
same withdrawal speed.
[0024] In the case that the POY yarn is cooled by a cooling air stream that is generated
in the direction of the advancing yarn, withdrawal speeds in range above 3,500 m/min.
and higher are possible.
[0025] To be able to attain yet maximal shrinkage differences in the composite yarn, an
advantageous further development provides for adjusting cooling and withdrawal of
the filament bundle of the POY yarn such that a boiling water shrinkage results of
at least 50%, preferably in ranges from 50% to 70%. In comparison therewith, the cooling
and withdrawal of the filament bundle of the HOY yarn are adjusted such that a boiling
water shrinkage results in the yarn of at most 10%, preferably in a range from 4%
to 10%. With that, it is possible to realize boiling water shrinkage differences in
the composite yarn of ≥40%, preferably ≥45%.
[0026] Despite the common withdrawal of the two filament bundles, it is possible to ensure
a great individual adjustability while extruding and cooling the filament bundles,
in that the method steps are performed by separately controllable processing units.
[0027] At the end of the process, the composite yarn is wound to a package, with the takeup
speed being adjusted only insignificantly higher than the withdrawal speed. To be
able to attain the characteristic of the POY yarn and the HOY yarn, the takeup speed
differs from the withdrawal speed only by a factor in a range from 0.95 to 1.2.
[0028] The composite yarn of the invention distinguishes itself as effect yarn for textile
applications. The composition of the POY yarn and the HOY yarn in accordance with
the invention permits generating in the composite yarn both structure effects and
color effects in a particularly intensive way. The similar crystalline structure of
the POY yarn and the HOY yarn is especially advantageous during a subsequent dyeing
of the composite yarn. The filaments of the composite yarn absorb dyes with the same
intensity, so that no color differences develop within the composite yarn.
[0029] It has been found that as a function of the desired yarn effects, certain ranges
of the mass ratios are considered especially suited for attaining between the POY
yarn and the HOY yarn, effects that are directed in particular to the yarn effects.
In this connection, mass ratios of 1.0 to 2.5 or 0.5 to 0.75 have crystallized as
advantageous ranges.
[0030] It is thus possible to produce structure effects in particular at a mass ratio in
a range from 1.0 to 1.5, at which the broken filaments of the HOY yarn are produced
in a subsequent texturing process, to obtain, for example, a wooly effect or a spun-like
effect. The filament deniers of the HOY yarn are in a range of ≤ 1.5 deniers.
[0031] Color effects, such as, for example, a mixed color effect, can be very advantageously
produced by the mass ratio M
POPY/M
HOY in a range from 1.5 to 2.0 or, alternatively, also in a range from 0.5 to 0.75.
[0032] The composite yarn of the invention distinguishes itself in particular by the high
shrinkage difference in the filament, so that so-called flat effects can be produced
with high shrinkage differences of more than 40%. The composite yarn of the invention
opens totally new possibilities for textile applications, which have so far been reserved
only to composite yarns that were produced by the two-stage process.
[0033] To guarantee the yarn cohesion that is required for further processing the composite
yarn, the filaments of the POY yarn and the HOY yarn are interconnected by a high
number of entanglement knots. In this connection, it is absolutely necessary to maintain
a lower limit value of 25 entanglement knots per meter.
[0034] In the following, the method for producing the composite yarn is described in greater
detail by means of an embodiment with reference to Figure 1.
[0035] Figure 1 is a schematic view of the setup of a spinning apparatus. The spinning apparatus
comprises a POY spinning position 1 as well as an HOY spinning position 2, which are
arranged side by side with no space inbetween. The spinning position 1 includes a
driven spin pump 1.1 which connects to a source of melt not shown. The spin pump 1.1
connects to a spinneret 1.2. The spinneret 1.2 which experts also name spin pack is
arranged in a heatable spin head 1.3. On its underside, the spinneret 1.2 comprises
a plurality of spin holes (not shown). Downstream of the spin head 1.3, a cooling
device 1.4 extends. The construction of the cooling device 1.4 within the POY spinning
position is basically disclosed in
DE 101 16 294 A1, so that this publication is herewith incorporated by reference. The special feature
of the cooling device 1.4 is that the filament strands are cooled by means of a cooling
tube, in which a cooling air stream generated in the direction of the advancing yarn
cools the filament bundle as much as possible free of stress. At the outlet end of
the cooling device 1.4, a yarn lubrication device 1.5 is provided for combining the
cooled filaments to a POY yarn 3.
[0036] The HOY spinning position 2 comprises likewise a driven spin pump 2.1, which connects
to a source of melt. In the production of the composite yarn from a polymer melt,
it is common to connect the spin pumps 1.1 and 2.1 to an extruder.
[0037] The spin pump 2.1 connects to a spinneret 2.2, which comprises on its underside a
plurality of spin holes for extruding a plurality of filament strands. The spinneret
2.2 is arranged in a heatable spin head 2.3. Downstream of the spin head 2.3, a cooling
device 2.4 extends, and at the outlet end of the cooling device 2.4, a yarn lubrication
device 2.5 follows. The construction of the cooling device is likewise disclosed in
DE 101 16 294 A1, so that for the description of the cooling device, the foregoing publication is
herewith incorporated by reference. Essential is that the cooling device 2.4 is operated
separately and independently from the cooling device 1.4, so that the filaments produced
in the HOY spinning position 2 are differently cooled than the filaments spun in the
POY spinning position 1. In this connection, it is essential that the spin zone, in
which the filaments are cooled, is made, because of process conditions, substantially
shorter in the HOY spinning position 2 than in the POY spinning position 1. In this
connection, the spin zone is identified by the distance of the yarn lubrication devices
1.5 and 2.5 from the respective undersides of spinnerets 1.2 and 2.2. In the case
of the POY spinning position 1, the spin zone has a length of at least 800 mm. Preferably,
it is made longer than the spin zone of the HOY spinning position 2, which has a maximum
length of 900 mm.
[0038] In the HOY spinning position 2, the yarn lubrication device 2.5 combines the filaments
to an HOY yarn 4.
[0039] The POY yarn 3 and the HOY yarn 4 are withdrawn by a godet unit 7, which comprises
a driven withdrawal godet 8 and a guide roll 9. In so doing, the HOY yarn 4 advances
downstream of the yarn lubrication device 2.5 over deflection rolls 5.1 and 5.2 into
the path of the advancing POY yarn 3. As deflection rolls 5.1 and 5.2, it is preferred
to use freely rotatable rolls, preferably supported in air bearings, to generate the
least possible yarn frictions. Downstream of the deflection roll 5.2 is a first entanglement
unit 6. The first entanglement unit 6 comprises a yarn channel, through which the
POY yarn 3 and the HOY yarn 4 advance jointly. The yarn channel receives compressed
air for entangling the filaments of the two yarns, so that in a first stage, a yarn
cohesion occurs for forming a composite yarn 10. After looping the godet unit 7 several
times, the composite yarn 10. advances over a subsequent draw godet 12 by partially
looping same. Between the draw godet 12 and the godet unit 7, a main entanglement
unit 11 extends, in which the filaments of the composite yarn 10 receive a final yarn
cohesion.
[0040] At the end, the composite yarn 10 enters a takeup device 13, and is wound to a package
14. The takeup device 13 is constructed as a winding machine with a turret, as is
disclosed, for example, in
EP 0 937 008 B1. With this type of takeup, it is possible to wind the composite yarn to packages
in a continuous operation. For a description in greater detail of the takeup device
13, the foregoing publication is herewith incorporated by reference.
[0041] To carry out the method of the invention, the spinnerets 1.2 and 2.2 are selected
with respect to the number of their spin holes and choice of the capillary diameters
of the spin holes such that a defined mass ratio of the mass of the POY yarn M
POY to the mass of the HOY yarn M
HOY adjusts in the composite yarn. The spin holes of the spinneret 1.2 have a capillary
diameter of at least 0.25 mm to be able to produce a filament denier in the POY yarn
of ≥ 2 deniers. In comparison therewith, the spin holes of the spinneret 2.2 are made
smaller to be able to produce, for example a filament denier in the HOY yarn of 1.5
deniers. Both the mass of the POY yarn 3 and the mass of the HOY yarn 4 are determined
by the denier that results after withdrawing the filaments, and the number of the
respective filaments. Thus, the spinnerets 1.2 and 2.2 may be made different both
with respect to their number of spin holes and the size of the capillary diameters.
In this connection, the mass ratio that is decisive for the composite yarn is selected
as a function of the yarn effect that is to be produced in the composite yarn.
[0042] To produce the composite yarn, a source of melt supplies a polymer melt, which is
delivered by the spin pump 1.1 to the spinneret 1.2 and by the spin pump 2.1 to the
spinneret 2.2. In their deliveries, the spin pumps 1.1 and 1.2 are adapted to the
respective constellation of the spin holes in the spinnerets 1.2 and 2.2 as well as
the selected withdrawal speed. Thus, it is possible to adjust in the POY spinning
position 1 and the HOY spinning position 2 the deliveries of the spin pumps 1.1 and
1.2 each individually.
[0043] After extruding the filament strands through the spinneret 1.2, same are cooled in
the cooling device 1.4 by a cooling air stream that is largely directed in the direction
of the advancing yarn. At the end of the spin zone, the filaments are combined by
the yarn lubrication device 1.5 to a POY yarn 3. To be able to adjust a highest possible
withdrawal speed, the method of the invention requires maintaining a spin zone of
at least 800 mm during the cooling of the POY yarn. It is preferred to select a still
longer spin zone for a stressfree cooling of the filaments of the POY yarn.
[0044] In comparison therewith, the filament strands of the HOY yarn are cooled in a spin
zone that is shorter than 900 mm. Preferably the spin zone for producing the HOY yarn
4 is shorter than the spin zone of the POY yarn 3. These differences in lengths of
the yarn path make it possible to deflect the HOY yarn, preferably downstream of the
lubrication device, directly into the path of the POY yarn, so as to enable a joint
advance and a joint withdrawal by a withdrawal godet unit. To ensure the advance of
the yarn on the withdrawal godet unit 7, the POY yarn 3 and the HOY yarn 4 are entangled
in a first stage. The entanglement by the first entanglement unit 6 is adjusted such
that the filaments undergo a slight entanglement, so as to not impede the formation
of the POY yarn with a partially oriented molecular structure, and the formation of
the HOY yarn with a highly oriented molecular structure. In this connection, the withdrawal
speed of the withdrawal godet unit 7 is adjusted to values above 3,500 m/min. With
a corresponding cooling of the POY yarn, it is possible to achieve withdrawal speeds
greater than 5,000 m/min.
[0045] The final combination of the filaments of the POY yarn and the HOY yarn to the composite
yarn proceeds in the main entanglement unit 11 after withdrawal by the godet unit
7. In this process, the compressed air entering the yarn channel of the main entanglement
unit 11 is adjusted to an overpressure, which leads to an intensive knot formation.
It is thus possible to produce in the composite yarn a minimum number of 25 knots
per running meter. The main entanglement of the composite yarn 10 occurs between the
godet unit 7 and the draw godet 12. In this process, the draw godet 12 is driven at
a somewhat higher circumferential speed than the withdrawal godet 8, so that a predefined
yarn tension can be adjusted for the entanglement. Finally, the composite yarn 10
is wound by the takeup device 13 to a package 14.
[0046] In this process, the composite yarn 10 is wound at a takeup speed, which is only
insignificantly higher than the withdrawal speed, so as to prevent unacceptable drawing.
Preferably, the takeup speed is adjusted to differ from the withdrawal speed by a
factor of 0.95 to 1.2.
[0047] The construction of the apparatus for carrying out the method of the invention as
shown in Figure 1 is exemplary. Basically, the cooling devices 1.4 and 2.4 may include
modifications, in which the filaments strands first advance through a first uncooled
heating zone. In particular in the HOY spinning position 2, so-called annealers may
be arranged between the cooling device 2.4 and the spin head 2.3 in order to produce
an especially low-shrinkage HOY yarn.
[0048] Furthermore, the combination of the composite yarn 10 can be further improved before
the takeup by arranging a third entanglement unit between the draw godet 12 and the
takeup device 12. With that, it is possible to achieve in a third stage a further
entanglement of the filaments that is directed in particular to the yarn lengths forming
between the knots.
[0049] The composite yarn of the invention that is produced by the method of the invention
is thus especially suited for use in textile applications as a effect yarn with a
structure effect or a color effect. As a function of the desired yarn effect, a mass
ratio of the filaments of the POY yarn and the HOY yarn is selected. In so doing,
it is necessary to maintain certain filament deniers of the POY yarn and the HOY yarn
respectively, to ensure on the one hand a strength of the yarn as is required for
its application, and to obtain on the other hand the desired effects in structure
or color. The composite yarn of the invention is therefore defined by limit ranges
of the filament deniers. Thus, when combining the filaments, it is necessary to see
that the filaments of the POY yarn have a denier ≥ 2.0 deniers, and the filaments
of the HOY yarn a denier ≤ 4.0 deniers, preferably < 1.0 denier. In so doing, it is
necessary to maintain a mass ratio of the filaments of the POY yarn to the filaments
of the HOY yarn of M
POY/M
HOY ≥ 2.5. In the case of larger mass ratios, there is no adequate guarantee for the
properties as are required for textile yarns.
[0050] To produce conventional bulked synthetic composite yarns with a high shrinkage difference,
a combination of the POY yarn and the HOY yarn has been found especially advantageous,
wherein the mass ratio is in a range from 1.2 to 2.5. Table 1 lists a plurality of
typical composite yarns, which were produced by the method of the invention. The composite
yarns are within a total denier range from 135 denier to 450 denier, with the number
of filaments being at least 60 and at most 168. The composite yarns listed in Table
1 were extruded from polyester. They are especially suited for producing a so-called
flat effect with a high shrinkage difference. In all combinations, the boiling water
shrinkage measured on the filaments of the POY yarn ranged from 50 to 70%. In comparison
therewith, it was possible to produce the HOY yarn with a low boiling water shrinkage
in a range from 4 to 10%, so that it was possible to adjust shrinkage differences
of more than 60%. The takeup speeds were set in a range from 4,500 to 6,500 m/min.
[0051] Tables 2 and 3 show further embodiments of the composite yarn according to the invention,
which were likewise extruded from a polyester material. The composite yarns listed
in Table 2 are preferred and suited to produce a so-called wooly effect. In this instance,
the composite yarn is textured in a further processing step, wherein individual breaks
of the filaments of the HOY yarn occur. With that, a surface is created, which is
similar to a wool yarn. For such structure effects, it is desired that the mass ratio
M
POY/M
HOY be preferably in a range from 1.0 to 1.5. In this case, the filament deniers of the
HOY yarn are preferably ≤ 1.5 deniers.
[0052] Similar effects can be achieved with the composite yarns shown in Table 3. The composite
yarns listed in Table 3 are preferably used for producing so-called spun-like effects.
Likewise in this case the mass ratio M
POY/M
HOY is in a range from 1.0 to 1.5.
[0053] The composite yarn of the invention is also particularly suited for dyeing. Because
of similar crystallinity of the POY yarn and the HOY yarn, it is possible to achieve
an intensive coloring. It is likewise possible to adjust special color effects, such
as, for example, a mixed color effect. To do so, it has been found that the mass ratio
M
POY/M
HOY should be in a range from 1.5 to 2.0, or alternatively in a range from 0.5 to 0.75.
In this respect, the composite yarn can be used for textile applications in many ways.
The combination between a POY yarn and an HOY yarn can be realized by the use of one
polymer type, or also by the use of different modifications of a base polymer or a
plurality of polymer types.
[0054] The method of the invention distinguishes itself in particular by high withdrawal
speeds and a thus accompanying high productivity in the production of a composite
yarn in a single stage process. Likewise, the expenditure for processing units is
advantageous, in particular in the takeup region, since both parallel spun yarns are
jointly withdrawn at the same withdrawal speed.
NOMENCLATURE
[0055]
- 1
- POY spinning position
- 1.1
- Spin pump
- 1.2
- Spinneret
- 1.3
- Spin head
- 1.4
- Cooling device
- 1.5
- Yarn lubrication device
- 2
- HOY spinning position
- 2.1
- Spin pump
- 2.2
- Spinneret
- 2.3
- Spin head
- 2.4
- Cooling device
- 2.5
- Yarn lubrication device
- 3
- POY yarn
- 4
- HOY yarn
- 5.1, 5.2
- Deflection rolls
- 6
- First entanglement unit
- 7
- Withdrawal godet unit
- 8
- Withdrawal godet
- 9
- Guide roll
- 10
- Composite yarn
- 11
- Main entanglement unit
- 12
- Draw godet
- 13
- Takeup device
- 14
- Package
1. Melt spinning method for producing a composite yarn, wherein two filament bundles
are separately extruded from a polymer melt of the same source of melt, wherein one
of the filament bundles is cooled to a POY yarn with a partially oriented molecular
structure, wherein the second filament bundle is cooled to an HOY yarn with a highly
oriented molecular structure, wherein the POY yarn and the HOY are jointly withdrawn,
combined, and wound as a composite yarn to a package, and wherein the POY yarn is
less orientated than the HOY yarn,
characterized in that
the filaments of the POY yarn and the filaments of the HOY yarn are combined at a
mass ratio in the composite yarn of 1.0 ≤ MPOY/MHOY ≤ 2.5 or 0.5 ≤ MPOY/RHOY ≤ 0.75, wherein the filaments of the POY yarn have a denier ≥ 2.0 deniers (2.22 dtex)
and the filaments of the HOY yarn have a denier of ≤ 4.0 deniers (4.44 dtex), preferably
≤ 1.5 deniers (1.66 dtex),
wherein the mixture of the filaments of the POY yarn and the HOY yarn is generated
by a multistage entanglement, with a first stage occurring by an initial entanglement
after cooling, and a second stage by a main entanglement before winding the composite
yarn, and
wherein the main entanglement is carried out with an overpressure of the air, which
permits producing in the composite yarn at least a number of at least 25 knots per
meter.
2. Method of claim 1,
characterized in that
the POY yarn and the HOY yarn are each formed from different numbers of filaments
in the filament bundles with different filament deniers of the filaments.
3. Method of claim 1,
characterized in that
the main entanglement of the composite yarn is performed on a yarn length advancing
between two godets, and that the composite yarn undergoes a subsequent entanglement
in a third stage.
4. Method of one of claims 1-3, characterized in that
the filaments of the POY yarn are combined, after cooling and advancing through a
spin zone of > 800 mm, by applying a yarn lubricant.
5. Method of one of claims 1-4,
characterized in that
the filaments of the HOY yarn are combined, after cooling and advancing through a
spin zone of ≤ 900 mm, by applying a yarn lubricant.
6. Method of one of claims 1-5,
characterized in that
after extruding, the filament bundle of the POY yarn and the filament bundle of the
HOY yarn are withdrawn at the same withdrawal speed.
7. Method of claim 6,
characterized in that
the withdrawal speed is in a range above 3,500 m/min, with the POY yarn being cooled
by a cooling air stream that is generated in the direction of the advancing yarn.
8. Method of one of claims 1-7,
characterized in that
the extruding and cooling of the filament bundles is performed by separately controllable
processing units.
9. Method of one of the foregoing claims,
characterized in that
the composite yarn is wound to a package at a winding speed, which differs from the
withdrawal speed by a factor in a range from 0.95 to 1.2.
10. Composite yarn consisting of two
filament bundles that are produced parallel in a melt spinning process and that are
separately extruded from a polymer melt of the same source of melt, with one of the
filament bundles being a POY yarn with a partially oriented molecular structure, and
the second filament bundle being an HOY yarn with a highly oriented molecular structure,
and wherein the POY yarn is less orientated than the HOY yarn,
characterized in that
the filaments of the POY yarn have a denier ≥ 2.0 deniers (2.22 detex), and the filament
bundles of the HOY yarn have a denier ≤ 4.0 (4.44 dtex), preferably ≤ 1.5 deniers
(1.66 dtex), and that the filaments of the POY yarn and of the HOY yarn are present
at a mass ratio of 1.0 ≤ MPOY/MHOY ≤ 2.5 or 0.5 ≤ MPOY/MHOY ≤ 0.75,
wherein the filaments of the POY yarns and of the HOY yarn are joined by entanglement
knots by at least 25 knots per meter.
11. Composite yarn of claim 10,
characterized in that
for producing a wooly effect or a spun-like effect, the mass ratio MPOY/MHOY is in a range from 1.0 to 1.5.
12. Composite yarn of claim 10,
characterized in that
for producing a flat effect with a shrinkage difference > 40%, the mass ratio MPOY/MHOY is in a range from 1.2 to 2.5.
13. Composite yarn of claim 10,
characterized in that
for producing a mixed color effect, the mass ratio MPOY/MHOY is in a range from 1.5 to 2.0 or 0.5 to 0.75.
14. Composite yarn of one of claims 10-13,
characterized in that
the POY yarn and the HOY yarn are each formed from a different number of filaments
in the filament bundles with different filament deniers of the filaments.
1. Schmelzspinnverfahren zur Herstellung eines Verbundfadens, bei welchem zwei Filamentbündel
unabhängig voneinander aus einer Polymerschmelze der gleichen Schmelzequelle extrudiert
werden, bei welchem eines der Filamentbündel zu einem POY-Faden mit vororientierter
Molekularstruktur abgekühlt wird, bei welchem das zweite Filamentbündel zu einem HOY-Faden
mit hochorientierter Molekularstruktur abgekühlt wird und bei welchem der POY-Faden
und der HOY-Faden gemeinsam abgezogen, kombiniert und als Verbundfaden zu einer Spule
aufgewickelt werden und bei welchem der POY-Faden weniger stark als der HOY-Faden
orientiert ist,
dadurch gekennzeichnet, dass
die Filamente des POY-Fadens und die Filamente des HOY-Fadens zu einem Masseverhältnis
in dem Verbundfaden von 1,0≤MPOY/MHOY≤2,5 oder 0,5≤MPOY/MHOY≤0,75 kombiniert werden, wobei die Filamente des POY-Fadens einen Titer von ≥2,0 den
(2,22 dtex) und die Filamente des HOY-Fadens einen Titer von ≤4,0 den (4,44 dtex)
und vorzugsweise ≤1,5 den (1,66 dtex) aufweisen,
wobei die Mischung der Filamente des POY-Fadens und des HOY-Fadens durch eine mehrstufige
Verwirbelung erzeugt wird, wobei eine erste Stufe durch eine Vorverwirbelung nach
dem Abkühlen und eine zweite Stufe durch eine Hauptverwirbelung vor dem Aufwickeln
des Verbundfadens erfolgt, und
wobei die Hauptverwirbelung mit einem Überdruck der Luft ausgeführt wird, durch welchen
zumindest eine Anzahl von mindestens 2 5 Knoten pro Meter in dem Verbundfaden herstellbar
ist.
2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass
der POY-Faden und der HOY-Faden jeweils aus einer unterschiedlichen Anzahl von Filamenten
in den Filamentbündeln mit unterschiedlichen Filamenttitern der Filamente gebildet
werden.
3. Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass
die Hauptverwirbelung des Verbundfadens an einem zwischen zwei Galetten geführten
Fadenstück durchgeführt wird und dass der Verbundfaden in einer dritten Stufe durch
eine Nachverwirbelung verwirbelt wird.
4. Verfahren nach einem der Ansprüche 1-3, dadurch gekennzeichnet, dass
die Filamente des POY-Fadens nach dem Abkühlen und Durchlaufen einer Spinnstrecke
von ≥800 mm durch einen Präparationsauftrag zusammengefasst werden.
5. Verfahren nach einem der Ansprüche 1-4,
dadurch gekennzeichnet, dass
die Filamente des HOY-Fadens nach dem Abkühlen und Durchlauf einer Spinnstrecke von
≤900 mm durch einen Präparationsauftrag zusammengefasst werden.
6. Verfahren nach einem der Ansprüche 1-5,
dadurch gekennzeichnet, dass
das Filamentbündel des POY-Fadens und das Filamentbündel des HOY-Fadens mit gleich
großer Abzugsgeschwindigkeit nach dem Extrudieren abgezogen werden.
7. Verfahren nach Anspruch 6,
dadurch gekennzeichnet, dass
die Abzugsgeschwindigkeit in einem Bereich oberhalb 3.500 m/min liegt, wobei der POY-Faden
durch einen in Fadenlaufrichtung erzeugten Kühlluftstrom abgekühlt wird.
8. Verfahren nach einem der Ansprüche 1-7,
dadurch gekennzeichnet, dass
das Extrudieren und das Abkühlen der Filamentbündel durch separat steuerbare Prozessaggregate
ausgeführt wird.
9. Verfahren nach einem der vorgenannten Ansprüche,
dadurch gekennzeichnet, dass
der Verbundfaden mit einer Aufwickelgeschwindigkeit zu einer Spule aufgewickelt wird,
die um einen Faktor im Bereich von 0,95 bis 1,2 höher liegt als die Abzugsgeschwindigkeit.
10. Verbundfaden bestehend aus zwei in einem Schmelzspinnprozess parallel hergestellten
Filamentbündeln, die unabhängig voneinander aus einer Polymerschmelze der gleichen
Schmelzequelle extrudiert werden, wobei eines der Filamentbündel ein POY-Faden mit
vororientierter Molekularstruktur und das zweite Filamentbündel ein HOY-Faden mit
hochorientierter Molekularstruktur ist, wobei der POY-Faden weniger stark als der
HOY-Faden orientiert ist, dadurch gekennzeichnet, dass
die Filamente des POY-Fadens einen Titer von ≥2,0 den (2,22 dtex) und die Filamentbündel
des HOY-Fadens einen Titer von ≤4,0 den (4,44 dtex) und vorzugsweise ≤1,5 den (1,66
dtex) aufweisen und dass die Filamente des POY-Fadens und des HOY-Fadens in einem
Masseverhältnis von 1,0≥MPOY/MHOY≤52,5 oder 0,5≥MPOY/MHOY≤0,75 vorliegen,
wobei die Filamente des POY-Fadens und des HOY-Fadens durch Verwirbelungsknoten mit
mindestens 25 Knoten pro Meter verbunden sind.
11. Verbundfaden nach Anspruch 10,
dadurch gekennzeichnet, dass
zur Herstellung eines Wooly-Effektes oder eines Spun-Like-Effektes das Masseverhältnis
MPOY/MHOY im Bereich von 1,0 bis 1,5 liegt.
12. Verbundfaden nach Anspruch 10,
dadurch gekennzeichnet, dass
zur Herstellung eines Flat-Effektes mit einem Differenzschrumpf >40% das Masseverhältnis
MPOY/MHOY im Bereich von 1,2 bis 2,5 liegt.
13. Verbundfaden nach Anspruch 10,
dadurch gekennzeichnet, dass
zur Herstellung eines Melange-Effektes das Masseverhältnis MPOY/MHOY im Bereich von 1,5 bis 2,0 oder 0,5 bis 0,75 liegt.
14. Verbundfaden nach einem der Ansprüche 10-13,
dadurch gekennzeichnet, dass
der POY-Faden und der HOY-Faden jeweils aus einer unterschiedlichen Anzahl von Filamenten
in den Filamentbündeln mit unterschiedlichen Filamenttitern der Filamente gebildet
sind.
1. Procédé de filage à l'état fondu permettant de produire un fil composite, dans lequel
deux faisceaux de filaments sont extrudés séparément à partir d'une matière fondue
polymère de la même source de matière fondue, dans lequel l'un des faisceaux de filaments
est refroidi pour donner un fil partiellement orienté (POY) ayant une structure moléculaire
partiellement orientée, dans lequel le second faisceau de filaments est refroidi pour
donner un fil fortement orienté (HOY) ayant une structure moléculaire fortement orientée,
dans lequel le fil partiellement orienté et le fil fortement orienté sont retirés
ensemble, combinés, et enroulés sous forme de fil composite pour donner un enroulement,
et dans lequel le fil partiellement orienté est moins orienté que le fil fortement
orienté, caractérisé en ce que
les filaments du fil partiellement orienté et les filaments du fil fortement orienté
sont combinés dans un rapport massique dans le fil composite de 1,0 ≤ MPOY/MHOY ≤ 2,5 ou 0,5 ≤ MPOY/MHOY ≤ 0,75, dans lequel les filaments du fil partiellement orienté possèdent un denier
≥ 2,0 deniers (2,22 dtex) et les filaments du fil fortement orienté possèdent un denier
de ≤ 4,0 deniers (4,44 dtex), de préférence ≤ 1,5 deniers (1,66 dtex),
dans lequel le mélange des filaments du fil partiellement orienté et du fil fortement
orienté est effectué par un enchevêtrement en plusieurs étapes, une première étape
se faisant par un enchevêtrement initial après refroidissement, et une deuxième étape
par un enchevêtrement principal avant l'enroulement du fil composite, et
dans lequel l'enchevêtrement principal est réalisé avec une surpression de l'air,
ce qui permet de produire dans le fil composite au moins un nombre d'au moins 25 noeuds
par mètre.
2. Procédé selon la revendication 1, caractérisé en ce que le fil partiellement orienté et le fil fortement orienté sont chacun formés de nombres
de filaments différents dans les faisceaux de filaments avec des deniers de filaments
différents.
3. Procédé selon la revendication 1, caractérisé en ce que l'enchevêtrement principal du fil composite est effectué sur une longueur de fil
avançant entre deux galets, et en ce que le fil composite est soumis ensuite à un enchevêtrement dans une troisième étape.
4. Procédé selon l'une des revendications 1-3, caractérisé en ce que les filaments du fil partiellement orienté sont combinés, après refroidissement et
avancement à travers une zone de filage de ≥ 800 mm, par application d'un lubrifiant
pour fils.
5. Procédé selon l'une des revendications 1-4, caractérisé en ce que les filaments du fil fortement orienté sont combinés, après refroidissement et avancement
à travers une zone de filage de ≤ 900 mm, par application d'un lubrifiant pour fils.
6. Procédé selon l'une des revendications 1-5, caractérisé en ce que, après l'extrusion, le faisceau de filaments du fil partiellement orienté et le faisceau
de filaments du fil fortement orienté sont retirés à la même vitesse de retrait.
7. Procédé selon la revendication 6, caractérisé en ce que la vitesse de retrait est dans une gamme de plus de 3 500 m/min, le fil partiellement
orienté étant refroidi par un courant d'air de refroidissement qui est créé dans la
direction de l'avancement du fil.
8. Procédé selon l'une des revendications 1-7, caractérisé en ce que l'extrusion et le refroidissement des faisceaux de filaments est effectué par des
unités de fabrication susceptibles d'être commandées séparément.
9. Procédé selon l'une des revendications précédentes, caractérisé en ce que le fil composite est enroulé pour donner un enroulement à une vitesse d'enroulement,
qui diffère de la vitesse de retrait d'un facteur dans une gamme de 0,95 à 1,2.
10. Fil composite constitué de deux faisceaux de filaments qui sont produits en parallèle
dans un procédé de filage à l'état fondu et qui sont extrudés séparément à partir
d'une matière fondue polymère de la même source de matière fondue, l'un des faisceaux
de filaments étant un fil partiellement orienté ayant une structure moléculaire partiellement
orientée, et le second faisceau de filaments étant un fil fortement orienté ayant
une structure moléculaire fortement orientée, et dans lequel le fil partiellement
orienté est moins orienté que le fil fortement orienté,
caractérisé en ce que les filaments du fil partiellement orienté possèdent un denier ≥ 2,0 deniers (2,22
dtex), et les faisceaux de filaments du fil fortement orienté possèdent un denier
≤ 4,0 (4,44 dtex), de préférence ≤ 1,5 deniers (1,66 dtex), et en ce que les filaments du fil partiellement orienté et du fil fortement orienté sont présents
dans un rapport massique de 1,0 ≤ MPOYMHOY ≤ 2,5 ou 0,5 ≤ MPOY/MHOY ≤ 0,75,
dans lequel les filaments du fil partiellement orienté et du fil fortement orienté
sont reliés par des noeuds d'enchevêtrement à raison d'au moins 25 noeuds par mètre.
11. Fil composite selon la revendication 10, caractérisé en ce que, pour produire un effet laineux ou un effet filé, le rapport massique MPOYlMHOY est dans une gamme de 1,0 à 1,5.
12. Fil composite selon la revendication 10, caractérisé en ce que, pour produire un effet plat avec une différence de rétrécissement > 40%, le rapport
massique MPOY/MHOY est dans une gamme de 1,2 à 2,5.
13. Fil composite selon la revendication 10, caractérisé en ce que, pour produire un effet de couleur mélangée, le rapport massique MPOY/MHOY est dans une gamme de 1,5 à 2,0 ou de 0,5 à 0,75.
14. Fil composite selon l'une des revendications 10-13, caractérisé en ce que le fil partiellement orienté et le fil fortement orienté sont chacun formés d'un
nombre différent de filaments dans les faisceaux de filaments avec des deniers de
filaments différents.