(19)
(11) EP 1 957 583 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
03.10.2012 Bulletin 2012/40

(21) Application number: 06838899.0

(22) Date of filing: 04.12.2006
(51) International Patent Classification (IPC): 
C08L 67/02(2006.01)
C08L 69/00(2006.01)
(86) International application number:
PCT/US2006/046189
(87) International publication number:
WO 2007/067465 (14.06.2007 Gazette 2007/24)

(54)

POLYESTER-POLYCARBONATE COMPOSITIONS, METHODS OF MANUFACTURE, AND METHODS OF USE

POLYESTER-POLYCARBONAT-ZUSAMMENSETZUNGEN SOWIE HERSTELLUNGSVERFAHREN UND VERWENDUNGSVERFAHREN DAFÜR

COMPOSITIONS DE POLYESTER-POLYCARBONATE, METHODES DE FABRICATION ET METHODES D'UTILISATION


(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

(30) Priority: 05.12.2005 US 294074
29.11.2006 US 564406

(43) Date of publication of application:
20.08.2008 Bulletin 2008/34

(73) Proprietor: SABIC Innovative Plastics IP B.V.
4612 PX Bergen op Zoom (NL)

(72) Inventors:
  • AGARWAL, Parminder
    Evansville, IN 47712 (US)
  • FONSECA, Rodney, W.
    Evansville, IN 47712 (US)
  • LIAO, Songping
    Shanghai 201204 (CN)
  • SHI, Hongtao
    Shanghai 201101 (CN)
  • VOLLENBERG, Peter, H.
    Evansville, IN 47712 (US)
  • ZHANG, Huiping
    Evansville, IN 47712 (US)

(74) Representative: Müller Schupfner & Partner 
Bavariaring 11
80336 München
80336 München (DE)


(56) References cited: : 
EP-A- 0 537 577
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF THE INVENTION



    [0001] Transparent blends of polycarbonates and polyester have been known for several decades. Property wise they represent an amalgamation of various properties of the two polymer systems — some properties of one being boosted, but usually at the expense of the other polymer's property. Some of the areas that could use overall improvement are impact, particularly low temperature impact, solvent resistance, and high melt flow. Through the addition of a copolycarbonate system, we have maintained light transmission characteristics of the polycarbonate polyester system while significantly improving its ductility particularly at low temperature, after aging, and in the presence of steam, while having improved solvent resistance to basic organic chemical system.

    [0002] One application where thermoplastic polycarbonate-polyesters blends are especially useful is in cellular telephones and other personal electronic devices. Due to continuing innovation in function and design, more robust materials are required, but such materials must also meet stringent manufacturing process requirements. For example, current design trends for cellular telephones and other personal electronic devices phones require use of in-mold-decoration (IMD) processes, in-mold-labeling (IML) processes, over-molding (or two-shot molding) processes, and thin-wall molding. Part thickness for these devices has evolved from about 1.5 to 2.0 mm down to 0.8 to 1.2 mm, and even as thin as 0.5 mm. In addition, complicated design structures are required, including lens covers (windows) with curvatures, lens covers with camera holes, integrated lens covers and housings, and the like. Lens covers must be able to provide protection to the devices inside the phone and/or allow see-through.

    [0003] In IMD (also called "ink transfer" processes), since the carrier for the pattern and the ink pattern itself cannot withstand very high temperatures, materials moldable at lower injection molding temperatures are preferred, to prevent ink washout. The thermoplastic materials also advantageously have high flow, to minimize mold-in stress that can damage the carrier and the printed layer. Lower processing temperatures are also preferred for in-mold labeling (IML) and two-shot molding processes. In two-shot molding processes, it is critical that the thermoplastic material of the second shot has a lower melt temperature than the thermoplastic material of the first shot, to protect the first shot from washout or warpage caused by the hot melt of the second shot. Thin parts not only require high flow but also high impact from the material used. Industrial designers are increasing integrating several of the above design trends into one application, for example a cellular phone cover housing with a camera hole area, a transparent lens area and some geometric features, which is produced by a two-shot molding process, where the first shot is a high-temperature opaque-colored polycarbonate, and the second shot is a low temperature high flow transparent material, which is covered with IMD print and has a wall thickness of about 0.5 mm.

    [0004] Acrylic resins such as poly(methyl methacrylate) (PMMA) have been used in the foregoing processes, because such resins are transparent and have a process temperature of about 220 to 230°C. However, the brittleness of PMMA and other acrylic-based resins limit their use as cellular phone lenses with curvature designs and complicated structural features. Polycarbonate alone provides high impact strength, but is processed at higher temperatures, usually about 290 to 310°C. Higher flow polycarbonates are available, but show insufficient impact strength for these applications due to the fact that the higher flow is achieved at least in part by using a lower molecular weight polycarbonate. Efforts to increase the flow of polycarbonate-polyester compositions, for example by reducing the molecular weight of the polycarbonate resin, often results in the loss of ductility.

    [0005] Document EP0537577 A1 discloses transparent compositions comprising 20 wt.% polysiloxane-polycarbonate block copolymer (fully aromatic), 60 wt.% cycloaliphatic polyester (81 mole% cyclohexanedimethanol) and 20 wt.% bisphenol-A based polycarbonate. It is silent about the melt flow rate.

    [0006] There accordingly remains a need the art for polycarbonate-polyester blends that have high flow at lower temperatures, that can be manufactured to be transparent, and that can maintain good impact properties.

    SUMMARY OF THE INVENTION



    [0007] In accordance with the invention, there is a composition comprising, based on the total weight of polymer components in the composition, about 3 to about 15 wt % of a polysiloxane polycarbonate block copolymer comprising repeating structural units of formula (I)

    wherein at least 60 percent of the total number of R1 groups are aromatic organic radicals and the balance thereof are aliphatic, alicyclic, or aromatic radicals, and repeating structural units of formula (IV)

    wherein R2 is independently at each occurrence a monovalent organic radical having I to 13 carbon atoms, R3 is a divalent aliphatic radical having 1 to 8 carbon atoms or an aromatic radical having 6 to 8 carbon atoms, R4 is independently at each occurence a hydrogen, halogen, alkaxy having 1 to 8 carbon atoms, alkyl having 1 to 8 carbon atoms, or aryl having 6 to 13 carbon atoms, and n is an integer less than or equal to 1000 ; about 33 to about 77 wt % of a cycloaliphatic polyester having repeating units of formula (VI)

    wherein R7 and R8 are independently at each occurrence a divalent aromatic, aliphatic or cycloaliphatic group having 2 to 20 carbon atoms, with the proviso that at least one of R7 and R8 is a cycloaliphatic group-containing radical; and about 17 to about 65 wt % of a polycarbonate that is different from the polycarbonate block copolymer, having a weight average molecular weight of less than about 20,000 Daltons, and that comprises repeating structural units of formula (XVIII)

    wherein at least 60 percent of the total number of R9 groups are aromatic organic radicals and the balance thereof are aliphatic, alicyclic, or aromatic radicals; and further herein the composition has a melt volume rate of about 20 to about 40 cm3/10 minutes, measured in accordance with ISO 1133 at 265°C and 2.16 kg.

    [0008] In another embodiment, a composition comprises, based on the total weight of polymer components in the composition, about 3 to about 15 wt % of a polysiloxane polycarbonate block copolymer comprising repeating structural units of formula (I) wherein at least 60 percent of the total number of R1 groups are aromatic organic radicals and the balance thereof are aliphatic, alicyclic, or aromatic radicals, and repeating structural units of formula (IV) wherein R2 is independently at each occurrence a monovalent organic radical having 1 to 13 carbon atoms, (see page 3) and n is an integer less than or equal to 1000, about 33 to about 77 wt °/u of a cycloaliphatic polyester having repeating units of formula (VI) wherein R7 and R8 are independently at each occurrence a cycloaliphatic group-containing radical having from 5 to 20 carbon atoms; and about 17 to about 65 wt % of a polycarbonate that is different from the polycarbonate block copolymer, having a weight average molecular weight of less than about 20,000 Daltons, and that comprises repeating structural units of formula (XVIII) wherein at least 60% of the R9 groups are derived from a bisphenol of formula (XX)

    wherein R10 and R11 independently at each occurrence are a halogen atom or a monovalent hydrocarbon group, p and q are each independently integers from 0 to 4, and X represents one of the groups of formula (XXI) or (XXII)

    wherein R12 and R13 independently at each occurrence are a hydrogen atom or a monovalent linear or cyclic hydrocarbon group having 1 to 8 carbon atoms, and R14 is a divalent hydrocarbon group having 1 to 8 carbon atoms; and further wherein the composition has a melt volume rate of about 24 to about 35 cm3/10 minutes, measured in accordance with ISO 1133 at 265°C and 2.16 kg.

    [0009] In still another embodiment, a composition comprises, based on the total weight of polymer components in the composition, about 4 to about 7 wt % of a polysiloxane polycarbonate block copolymer comprising repeating structural units of formula (I) wherein at least 60 wt % of the R1 groups are derived from bisphenol A; repeating structural units of formula (IV)

    wherein R2 is independently at each occurrence a methyl, trifluoropropyl, or phenyl, R3 is propylene, and n is an integer of about 10 to about 100; about 38 to about 70 wt % of poly(1,4-cyclohexane-dimethanol-1,4-dicarboxylate); and about 25 to about 55 wt of a polycarbonate that is different from the polycarbonate block copolymer, having a weight average molecular weight of less than about 19,000 Daltons, and that comprises repeating structural units of formula (XVIII) wherein at least 60 percent of the total number of R9 groups are derived from bisphenol A; and further wherein the composition has a melt volume rate of about 24 to about 35 cm3/10 minutes, measured in accordance with ISO 1133 at 265°C and 2.16 kg.

    [0010] Also disclosed is a method of manufacture of any of the above-described compositions, comprising melt blending the components of the compositions.

    [0011] Further disclosed is a method of forming an article comprising injection molding, extrusion, injection blow molding, gas assist blow molding, or vacuum forming the above-described compositions to form the article.

    [0012] In another embodiment, an article comprises one of the above-described compositions.

    BRIEF DESCRIPTION OF THE FIGURES



    [0013] Figure 1 is six graphs (A-F) illustrating the effect of heat aging on weight average molecular weight of various samples described below.

    DETAILED DESCRIPTION OF THE INVENTION



    [0014] The inventors have found that a useful balance of properties can be obtained using a blend of a specific type of a polyester, in particular a cycloaliphatic polyester, and a specific type of polycarbonate copolymer, in particular a polycarbonate copolymer containing both aromatic polycarbonate units and polysiloxane units. Such blends have excellent transparency, together with excellent hydrolytic stability, that is, stability over time in the presence of heat and/or humidity. Other properties of the blends can also be maintained, in particular solvent resistance and impact properties, particularly at low temperature.

    [0015] In another embodiment, it has unexpectedly been found that the properties of the blends, in particular flow at lower processing temperatures, can be improved even further. Such improvements are obtained by use of a polyorganosiloxane/polycarbonate block copolymer having a specific molecular weight range, in particular less than 20,000 Daltons, especially less than 19,000 Daltons. The improvements are obtained without significantly adversely affecting other desirable properties of the polycarbonates, in particular light transmittance and impact properties, particularly at low temperature. These blends are especially useful in the formation of thin, transparent parts, for example transparent cell phone covers.

    [0016] The singular forms "a", "an", and "the" include plural referents unless the context clearly dictates otherwise. "Optional" or "optionally" as used herein means that the subsequently described event or circumstance may or may not occur, and that the description includes instances where the event occurs and instances where it does not.

    [0017] The polyorganosiloxane/polycarbonate block copolymer comprises polycarbonate blocks and polyorganosiloxane blocks. The polycarbonate blocks comprise repeating structural units of the formula (I),

    in which at least 60 percent of the total number of R1 groups are aromatic organic radicals and the balance thereof are aliphatic, alicyclic, or aromatic radicals. R1 may be an aromatic organic radical of the formula (II),

    wherein each of A1 and A2 is a monocyclic divalent aryl radical and Y1 is a bridging radical having one or two atoms which separate A1 from A2. In one embodiment, one atom separates A1 from A2. Illustrative non-limiting examples of radicals of this type include -O-, -S-, -S(O)-, -S(O)2-, -C(O)-, methylene, cyclohexyl-methylene, 2-[2.2.1]-bicycloheptylidene, ethylidene, isopropylidene, neopentylidene, cyclohexylidene, cyclopentadecylidene, cyclododecylidene, and adamantylidene. The bridging radical Y1 may be an unsaturated hydrocarbon group or a saturated hydrocarbon group such as methylene, cyclohexylidene, or isopropylidene.

    [0018] The polyorganosiloxane blocks comprise repeating structural units of the formula (IV),

    wherein R2 is independently at each occurrence a monovalent organic radical having 1 to 13 carbon atoms. R3 is independently at each occurrence a divalent aliphatic radical having 1 to 8 carbon atoms or aromatic radical having 6 to 8 carbon atoms. In one embodiment each occurrence of R3 is in the ortho or para position relative to the oxygen. R4 is independently at each occurrence a hydrogen, halogen, alkoxy having 1 to 8 carbon atoms, alkyl having 1 to 8 carbon atoms or aryl having 6 to 13 carbon atoms and "n" is an integer less than or equal to about 1000, specifically less than or equal to about 100, or, more specifically, less than or equal to about 75 or, even more specifically, less than or equal to about 60. As is readily understood by one of ordinary skill in the art, n represents an average value.

    [0019] In one embodiment in the above formula (IV), R2 is independently at each occurrence an alkyl radical having 1 to 8 carbons, R3 is independently at each occurrence a dimethylene, trimethylene or tetramethylene, R4 is independently at each occurrence a halogen radical, such as bromo and chloro; alkyl radical such as methyl, ethyl, and propyl; alkoxy radical such as methoxy, ethoxy, and propoxy; aryl radical such as phenyl, chlorophenyl, and tolyl. In one embodiment R3 is methyl, a mixture of methyl and trifluoropropyl, or a mixture of methyl and phenyl.

    [0020] The polyorganosiloxane/polycarbonate copolymers may have a -average molecular weight (, measured, for example, by ultra-centrifugation or light scattering, of greater than or equal to about 10,000 to about 200,000, or, more specifically, about 20,000 to about 100,000. It is generally desirable to have polydimethylsiloxane units contribute about 0.5 to about 80 weight percent of the total weight of the polyorganosiloxane/polycarbonate copolymer or an equal molar amount of other polydiorganosiloxane. Even more specific is a range of about 1 to about 10 weight percent of siloxane units in the polyorganosiloxane/polycarbonate copolymer.

    [0021] The polyorganosiloxane/polycarbonate block copolymer comprises polyorganosiloxane domains having an average domain size of less than or equal to 45 nanometers- Within this range the polyorganosiloxane domains may be greater than or equal to about 5 nanometers. Also within this range the polyorganosiloxane domains may be less than or equal to about 40 nanometers, or, more specifically, less than or equal to about 10 nanometers.

    [0022] Domain size may be determined by Transmission Electron Microscopy (TEM) as follows. A sample of the polyorganosiloxane/polycarbonate block copolymer is injection molded into a sample 60 millimeters square and having a thickness of 3.2 millimeters. A block (5 millimeters by 10 millimeters) is cut from the middle of the sample. The block is then sectioned from top to bottom by an ultra microtome using a diamond knife at room temperature. The sections are 100 nanometers thick. At least 5 sections are scanned by TEM at 100 to 120 kilovolts (kV) and the images recorded at 66,000X magnification. The polysiloxane domains were counted and measured, the domain size reflecting the longest single linear dimension of each domain. The domain sizes over the 5 sections were then averaged to yield the average domain size.

    [0023] Also specifically envisioned are polyorganosiloxane/polycarbonate block copolymers prepared by direct synthesis comprising a polycarbonate matrix and the desired embedded polysiloxane domains. In a blend of two polyorganosiloxane/polycarbonate copolymers the individual copolymers are generally difficult to separate or to distinguish. With Transmission Electron Microscopy (TEM) it is however possible to distinguish in the blend a polycarbonate matrix and embedded polysiloxane domains.

    [0024] Polyorganosiloxane/polycarbonate copolymers may be made by a variety of methods such as interfacial polymerization, melt polymerization, and solid-state polymerization. For example, the polyorganosiloxane/polycarbonate copolymers may be made by introducing phosgene under interfacial reaction conditions into a mixture of a dihydric aromatic compound, such as bisphenol A (hereinafter at times referred to as BPA), and a hydroxyaryl-terminated polyorganosiloxane. The polymerization of the reactants may be facilitated by use of a tertiary amine catalyst or a phase transfer catalyst.

    [0025] The hydroxyaryl-terminated polyorganosiloxane may be made by effecting a platinum catalyzed addition between a siloxane hydride of the formula (V),

    and an aliphatically unsaturated monohydric phenol wherein R2 and n are as previously defined.

    [0026] Non-limiting examples of the aliphatically unsaturated monohydric phenols, which may be used to make the hydroxyaryl-terminated polyorganosiloxanes include, for example, 4-allyl-2-methoxy phenol (herein after referred to as eugenol); 2-alkylphenol, 4-allyl-2-methylphenol; 4-allyl-2-phenylphenol; 4-allyl-2-bromophenol; 4-allyl-2-t-butoxyphenol; 4-phenyl-2-phenylphenol; 2-methyl-4-propylphenol; 2-allyl-4,6-dimethylphenol; 2-allyl-4-bromo-6-methylphenol; 2-allyl-6-methoxy-4-methylphenol and 2-allyl-4,6-dimethylphenol. Mixtures of aliphatically unsaturated monohydric phenols may also be used.

    [0027] Among the suitable phase transfer catalysts which may be utilized are catalysts of the formula (R5)4Q+X, where R5 is independently at each occurrence an alkyl group having 1 to 10 carbons, Q is a nitrogen or phosphorus atom, and X is a halogen atom, or an —OR6 group, where R6 is selected from a hydrogen, an alkyl group having I to 8 carbon atoms and an aryl group having 6 to 18 carbon atoms. Some of the phase transfer catalysts which may be used include [CH3(CH2)3]4NX, [CH3(CH2)3]4PX, [CH3(CH2)5]4NX, [CH3(CH2)6]4NX, [CH3(CH2)4]4NX, CH3[CH3(CH2)3]3NX, CH3[CH3(CH2)2]3NX wherein X is selected from Cl-, Br- or —OR6. Mixtures of phase transfer catalysts may also be used. An effective amount of a phase transfer catalyst is greater than or equal to 0.1 weight percent (wt %) and in one embodiment greater than or equal to 0.5 wt % based on the weight of bisphenol in the phosgenation mixture. The amount of phase transfer catalyst may be less than or equal to about 10 wt % and more specifically less than or equal to 2 wt % based on the weight of bisphenol in the phosgenation mixture.

    [0028] Non-limiting examples of dihydric aromatic compounds which may be subjected to phosgenation include, resorcinol; 4-bromoresorcinol; hydroquinone; 4,4'-dihydroxybiphenyl; 1,6-dihydroxynaphthalene; 2,6-dihydroxynaphthalene; bis(4-hydroxyphenyl)methane; bis(4-hydroxyphenyl)diphenylmethane; bis(4-hydroxyphenyl)-1-naphthylmethane; 1,1-bis(4-hydroxyphenyl)methane; 1,1-bis(4-hydroxyphenyl)ethane; 1,2-bis(4-hydroxyphenyl)ethane; 1,1 -bis(4-hydroxyphenyl)-1-phenylethane; 2,2-bis(4-hydroxyphenyl)propane; 2-(4-hydroxyphenyl)-2-)3-hydroxyphenyl)propane; 2,2-bis(4-hydroxyphenyl)butane; 2,2-bis(4-hydroxyphenyl) octane; 1,1-bis(4-hydroxyphenyl)propane; 1,1-bis(4-hydroxyphenyl)n-butane; bis(4-hydroxyphenyl)phenylmethane; 2,2-bis(4-hydroxy-1-methylphenyl) propane; 1,1-bis(4-hydroxy-tert-butylphenyl)propane; 2,2-bis(4-hydroxy-3-bromophenyl)propane; 1,1-bis (hydroxyphenyl)cyclopentane; 1,1-bis(4-hydroxyphenyl)cyclohexane; 1,1-bis(4-hydroxyphenyl)isobutene; 1,1-bis(4-hydroxyphenyl)cyclododecane; trans-2,3-bis(4-hydroxyphenyl)-2-butene; 2,2-bis(4-hydroxyphenyl)adamantine; (alpha, alpha'-bis(4-hydroxyphenyl)toluene. bis(4-hydroxyphenyl)acetonitrile; 2,2-bis(3-methyl-4-hydroxyphenyl)propane; 2,2-bis(3-ethyl-4-hydroxyphenyl)propane; 2,2-bis(3-n-propyl-4-hydroxyphenyl)propane; 2,2-bis(3-isopropyl-4-hydroxyphenyl)propane; 2,2-bis(3-sec-butyl-4-hydroxyphenyl)propane; 2,2-bis(3-t-butyl-4-hydroxyphenyl)propane; 2,2-bis(3-cyclohexyl-4-hydroxyphenyl)propane; 2,2-bis(3-allyl-4-hydroxyphenyl)propane; 2,2-bis(3-methoxy-4-hydroxyphenyl)propane; 2,2-bis(4-hydroxyphenyl)hexafluoropropane; 1,1-dichloro-2,2-bis(4-hydroxyphenyl)ethylene; 1,1-dibromo-2,2-bis(4-hydroxyphenyl)ethylene; 1,1-dichloro-2,2-bis(5-phenoxy-4-hydroxyphenyl)ethylene; 4,4'-dihydroxybenzophenone; 3,3-bis(4-hydroxyphenyl)-2-butanone; 1,6-bis(4-hydroxyphenyl)-1,6-hexanedione; ethylene glycol bis(4-hydroxyphenyl)ether; bis(4-hydroxyphenyl)ether; bis(4-hydroxyphenyl)sulfide; bis(4-hydroxyphenyl)sulfoxide; bis(4-hydroxyphenyl)sulfone; 9,9-bis(4-hydroxyphenyl)fluorine; 2,7-dihydroxypyrene; 6,6'-dihydroxy-3,3,3',3'- tetramethylspiro(bis)indane("spirobiindane bisphenol"); 3,3-bis(4-hydroxyphenyl)phthalide; 2,6-dihydroxydibenzo-p-dioxin; 2,6-dihydroxythianthrene; 2,7-dihydroxyphenoxathin; 2,7-dihydroxy-9,10-dimethylphenazine; 3,6-dihydroxydibenzofuran; 3,6-dihydroxydibenzothiophene and 2,7-dihydroxycarbazole. Mixtures of dihydric aromatic compounds may also be used.

    [0029] The polyorganosiloxane/polycarbonate block copolymer may be produced by blending aromatic dihydroxy compound with an organic solvent and an effective amount of phase transfer catalyst or an aliphatic tertiary amine, such as triethylamine, under interfacial conditions. Sufficient alkali metal hydroxide may be utilized to raise the pH of the bisphenol reaction mixture prior to phosgenation, to 10.5 pH. This may result in the dissolution of some of the bisphenol into the aqueous phase. Suitable organic solvents that may be used are, for example, chlorinated aliphatic hydrocarbons, such as methylene chloride, chloroform, carbon tetrachloride, dichloroethane, trichloroethane, tetrachloroethane, dichloropropane, and 1,2-dichloroethylene; substituted aromatic hydrocarbons such as chlorobenzene, o-dichlorobenzene, and the various chlorotoluenes. Mixtures of organic solvents may also be used. In one embodiment the solvent comprises methylene chloride.

    [0030] Aqueous alkali metal hydroxide or alkaline earth metal hydroxide addition may be used to maintain the pH of the phosgenation mixture near the pH set point, which may be in the range of 10 to 12. Some of the alkali metal or alkaline earth metal hydroxides, which may be employed, are for example, sodium hydroxide, potassium hydroxide, and calcium hydroxide. In one embodiment the alkali metal hydroxide used comprises sodium hydroxide.

    [0031] During the course of phosgene introduction at a pH of 10 to 12, and depending upon the rate of phosgene addition, the pH may be lowered to allow for the introduction of the hydroxyaryl-terminated polyorganosiloxane. End-capping agents such as phenol, p-butylphenol, p-cumylphenol, octylphenol, nonylphenol, and other mono hydroxy aromatic compounds may be used to regulate the molecular weight or to terminate the reaction.

    [0032] Alternatively the polyorganosiloxane/polycarbonate copolymer may be produced by an aromatic dihydroxy compound in the presence of a phase transfer catalyst at a pH of 5 to 8 to form bischloroformate oligomers. Then to this is added a hydroxyaryl-terminated polyorganosiloxane, which is allowed to react at a pH of 9 to 12 for a period of time sufficient to effect the reaction between the bischloroformate oligomers and the hydroxyaryl-terminated polydiorganosiloxane, typically a time period of 10 to 45 minutes. Generally there is a large molar excess of chloroformate groups relative to hydroxyaryl groups. The remaining aromatic dihydroxy compound is then added, and the disappearance of chloroformates is monitored, usually by phosgene paper. When substantially all chloroformates have reacted, an end-capping agent and optionally a trialkylamine are added and the reaction phosgenated to completion at a pH of 9 to 12.

    [0033] The polyorganosiloxane/polycarbonate copolymer may be made in a wide variety of batch, semi-batch or continuous reactors. Such reactors are, for example, stirred tank, agitated column, tube, and recirculating loop reactors. Recovery of the polyorganosiloxane/ polycarbonate copolymer may be achieved by any means known in the art such as through the use of an anti-solvent, steam precipitation or a combination of anti-solvent and steam precipitation.

    [0034] The thermoplastic composition may comprise blends of two or more polyorganosiloxane/polycarbonate block copolymers. These block copolymers are transparent or translucent.

    [0035] The cycloaliphatic polyester in the thermoplastic composition comprises a polyester having repeating units of the formula VI,

    wherein R7 and R8 are independently at each occurrence an aryl, aliphatic or cycloalkane having 2 to 20 carbon atoms and chemical equivalents thereof, with the proviso that at least one of R7 and R8 is a cycloalkyl containing radical. The cycloaliphatic polyester is a condensation product where R7 is the residue of a diol or chemical equivalents and R8 is decarboxylated residue of a diacid or chemical equivalents. In one embodiment cycloaliphatic polyesters are those wherein both R7 and R8 are cycloaliphatic-containing radicals.

    [0036] Cycloaliphatic polyesters may be formed from mixtures of aliphatic diacids and aliphatic diols but must contain at least 50 mole % of cyclic diacid and/or cyclic diol components, the remainder, if any, being linear aliphatic diacids and/or diols.

    [0037] The cycloaliphatic polyesters may be obtained through the condensation or ester interchange polymerization of the diol or diol chemical equivalent component with the diacid or diacid chemical equivalent component.

    [0038] In one embodiment R7 and R8 are cycloalkyl radicals independently selected from the following formulae VII to XVI.











    [0039] In one embodiment the cycloaliphatic radical R8 is derived from the 1,4-cyclohexyl diacids with generally greater than about 70 mole % thereof in the form of the trans isomer and the cycloaliphatic radical R7 is derived from the 1,4-cyclohexyl primary diols such as 1,4-cyclohexyl dimethanol with greater than about 70 mole % thereof in the form of the trans isomer. The cycloaliphatic polyesters have a weight-average molecular weight (Mw), measured, for example, by ultra-centrifugation or light scattering, of about 25,000 Daltons to about 85,000 Daltons. The weight average molecular weight is more specifically about 30,000 Daltons to about 80,000 Daltons and most specifically about 60,000 to about 80,000 Daltons.

    [0040] Other diols that may be used in the preparation of the cycloaliphatic polyester are straight chain, branched, or cycloaliphatic alkane diols and may contain 2 to 20 carbon atoms. Examples of such diols include, but are not limited to, ethylene glycol; propylene glycol, i.e., 1,2- and 1,3-propylene glycol; 2,2-dimethyl-1,3-propane diol; 2-ethyl-2-methyl-1,3-propane diol; 1,3- and 1,5-pentane diol; dipropylene glycol; 2-methyl-1,5-pentane diol; 1,6-hexane diol; dimethanol decalin, dimethanol bicyclo octane; 1,4-cyclohexane dimethanol and particularly its cis- and trans-isomers; 2,2,4,4-tetramethyl-1,3-cyclobutanediol (TMCBD); triethylene glycol; 1;10-decane diol; and mixtures of any of the foregoing. In one embodiment the diol or chemical equivalent thereof used is 1,4-cyclohexane dimethanol or its chemical equivalents.

    [0041] Chemical equivalents of the diols include esters, such as dialkylesters, diaryl esters, and the like.

    [0042] In one embodiment the diacids are cycloaliphatic diacids. This is includes carboxylic acids having two carboxyl groups each of which is attached to a saturated carbon. Specific diacids are cyclo or bicyclo aliphatic acids, non-limiting examples of which include, decahydro naphthalene dicarboxylic acids, norbornene dicarboxylic acids, bicyclo octane dicarboxylic acids, 1,4-cyclohexanedicarboxylic acid, or chemical equivalents. Most specifically the diacids include trans-1,4-cyclohexanedicarboxylic acid or chemical equivalent. Linear dicarboxylic acids like adipic acid, azelaic acid, dicarboxyl dodecanoic acid, and succinic acid may also be useful.

    [0043] In a further embodiment the diacids are aromatic diacids, for example, terephthalic acid and isophthalic acid. Cycloaliphatic or linear aliphatic diacids can be also employed in a mixture with the aromatic diacids. Terephthalic and isophthalic acids are preferred, most desirably being terephthalic acid. When there is no cycloaliphatic diacid being employed, then at least some of the diols must be cycloaliphatic diol. Various such diols have been disclosed and can be employed, the most desirable one being 1,4-cyclohexanedimethanol, as previously disclosed. Various polymers can be used with this dimethanol, particularly those with terephthalic acid such as those with low levels of cyclohexanedimethanol and high levels of ethylene glycol such as PETG, high levels of cyclohexanedimethanol and low levels of ethylene glycol such as PCTG, and all cyclohexanedimethanol such as PCT. Other aliphatic diols can be used such as butylene glycol or propylene glycol together with the cyclohexanedimethanol and other cycloaliphatic diols as previously mentioned. PETG, PCTG, and PCT are the most desirable.

    [0044] Cyclohexane dicarboxylic acids and their chemical equivalents may be prepared, for example, by the hydrogenation of cycloaromatic diacids and corresponding derivatives such as isophthalic acid, terephthalic acid or naphthalenic acid in a suitable solvent such as water or acetic acid using a suitable catalysts such as rhodium supported on a carrier such as carbon or alumina. They may also be prepared by the use of an inert liquid medium in which a phthalic acid is at least partially soluble under reaction conditions and with a catalyst of palladium or ruthenium on carbon or silica.

    [0045] Typically, in the hydrogenation, two isomers are obtained in which the carboxylic acid groups are in cis- or trans-positions. The cis- and trans-isomers may be separated by crystallization with or without a solvent, for example, using n-heptane, or by distillation. The cis- and trans- isomers have different physical properties and may be used independently or as a mixture. Mixtures of the cis- and trans-isomers are useful herein as well.

    [0046] When the mixture of isomers or more than one diacid or diol is used, a copolyester or a mixture of two polyesters may be used as the cycloaliphatic polyester.

    [0047] Chemical equivalents of these diacids may include esters, alkyl esters, e.g., dialkyl esters, diaryl esters, anhydrides, salts, acid chlorides, acid bromides, and the like. In one embodiment the chemical equivalent comprises the dialkyl esters of the cycloaliphatic diacids, and most specifically the chemical equivalent comprises the dimethyl ester of the acid, such as dimethyl-1,4-cyclohexane-dicarboxylate.

    [0048] In one embodiment the cycloaliphatic polyester is poly(cyclohexane-1,4-dimethylene cyclohexane-1,4-dicarboxylate) also referred to as poly(1,4-cyclohexane-dimethanol-1,4-dicarboxylate) (hereinafter referred to as PCCD) which has recurring units of formula XVII,



    [0049] With reference to formula VI for PCCD, R7 is derived from 1,4-cyclohexane dimethanol; and R8 is a cyclohexane ring derived from cyclohexanedicarboxylate or a chemical equivalent thereof. The favored PCCD has a cis/trans formula.

    [0050] The polyester polymerization reaction may be run in melt in the presence of a suitable catalyst such as a tetrakis (2-ethyl hexyl) titanate, in a suitable amount, generally 50 to 200 ppm of titanium based upon the total weight of the polymerization mixture.

    [0051] In one embodiment the cycloaliphatic polyester has a glass transition temperature (Tg) greater than or equal to about 50°C, or, more specifically greater than or equal to about 80°C, or, even more specifically, greater than or equal to about 100°C.

    [0052] Also contemplated herein are the above polyesters with 1 to about 50 percent by weight of units derived from polymeric aliphatic acids and/or polymeric aliphatic polyols to form copolyesters. The aliphatic polyols include glycols, such as poly(ethylene glycol) or poly(butylene glycol). Such polyesters may be made in accordance with the processes disclosed in for example, U.S. Pat. Nos. 2,465,319 and 3,047,539.

    [0053] The thermoplastic composition optionally further comprises a polycarbonate resin. Polycarbonate resins comprise repeating structural units of the formula XVIII,

    in which at least 60 percent of the total number of R9 groups are aromatic organic radicals and the balance thereof are aliphatic, alicyclic, or aromatic radicals. In one embodiment, R9 is an aromatic organic radical and, more specifically, a radical of the formula (XIX),

            —A3—Y2—A4—     (XIX);

    wherein each of A3 and A4 is a monocyclic divalent aryl radical and Y2 is a bridging radical having one or two atoms which separate A3 from A4. In an exemplary embodiment, one atom separates A3 from A4. Illustrative non-limiting examples of radicals of this type are -O-, -S-, -S(O)-, -S(O)2-, -C(O)-, methylene, cyclohexylmethylene, 2-[2.2.1]-bicycloheptylidene, ethylidene, isopropylidene, neopentylidene, cyclohexylidene, cyclopentadecylidene, cyclododecylidene, and adamantylidene. The bridging radical Y2 may be a hydrocarbon group or a saturated hydrocarbon group such as methylene, cyclohexylidene, or isopropylidene.

    [0054] Polycarbonates may be produced by the interfacial reaction of dihydroxy compounds in which only one atom separates A3 and A4. As used herein, the term "dihydroxy compound" includes, for example, bisphenol compounds having general formula XX as follow:

    wherein R10 and R11 independently at each occurrence are a halogen atom or a monovalent hydrocarbon group; p and q are each independently integers from 0 to 4; and X represents one of the groups of formula XXI or XXII,

    wherein R12 and R13 independently at each occurrence are a hydrogen atom or a monovalent linear or cyclic hydrocarbon group having 1 to 8 carbons and R14 is a divalent hydrocarbon group having 1 to 8 carbons.

    [0055] Some illustrative, non-limiting examples of suitable dihydroxy compounds include the dihydroxy-substituted aromatic hydrocarbons disclosed by name or formula (generic or specific) in U.S. Patent 4,217,438. A nonexclusive list of specific examples of the types of dihydroxy compounds includes the following: resorcinol; 4-bromoresorcinol; hydroquinone; 4,4'-dihydroxybiphenyl; 1,6-dihydroxynaphthalene; 2,6-dihydroxynaphthalene; bis(4-hydroxyphenyl)methane; bis(4-hydroxyphenyl)diphenylmethane; bis(4-hydroxyphenyl)-1-naphthylmethane; 1,1-bis(4-hydroxyphenyl)methane; 1,1-bis(4-hydroxyphenyl)ethane; 1,2-bis(4-hydroxyphenyl)ethane; 1,1 1-bis(4-hydroxyphenyl)-1-phenylethane; 2,2-bis(4-hydroxyphenyl)propane; 2-(4-hydroxyphenyl)-2-)3-hydroxyphenyl)propane; 2,2-bis(4-hydroxyphenyl)butane; 2,2-bis(4-hydroxyphenyl) octane; 1,1-bis(4-hydroxyphenyl)propane; 1,1-bis(4-hydroxyphenyl)n-butane; bis(4-hydroxyphenyl)phenylmethane; 2,2-bis(4-hydroxy-1-methylphenyl) propane; 1,1-bis(4-hydroxy-tert-butylphenyl)propane; 2,2-bis(4-hydroxy-3-bromophenyl)propane; 1,1-bis (hydroxyphenyl)cyclopentane; 1,1-bis(4-hydroxyphenyl)cyclohexane; 1,1-bis(4-hydroxyphenyl)isobutene; 1,1-bis(4-hydroxyphenyl)cyclododecane; trans-2,3-bis(4-hydroxyphenyl)-2-butene; 2,2-bis(4-hydroxyphenyl)adamantine; (alpha, alpha'-bis(4-hydroxyphenyl)toluene bis(4-hydroxyphenyl)acetonitrile; 2,2-bis(3-methyl-4-hydroxyphenyl)propane; 2,2-bis(3-ethyl-4-hydroxyphenyl)propane; 2,2-bis(3-n-propyl-4-hydroxyphenyl)propane; 2,2-bis(3-isopropyl-4-hydroxyphenyl)propane; 2,2-bis(3-sec-butyl-4-hydroxyphenyl)propane; 2,2-bis(3-t-butyl-4-hydroxyphenyl)propane; 2,2-bis(3-cyclohexyl-4- hydroxyphenyl)propane; 2,2-bis(3-allyl-4-hydroxyphenyl)propane; 2,2-bis(3-methoxy-4-hydroxyphenyl)propane; 2,2-bis(4-hydroxyphenyl)hexafluoropropane; 1,1-dichloro-2,2-bis(4-hydroxyphenyl)ethylene; 1,1-dibromo-2,2-bis(4-hydroxyphenyl)ethylene; 1,1-dichloro-2,2-bis(5-phenoxy-4-hydroxyphenyl)ethylene; 4,4'-dihydroxybenzophenone; 3,3-bis(4-hydroxyphenyl)-2-butanone; 1,6-bis(4-hydroxyphenyl)-1,6-hexanedione; ethylene glycol bis(4-hydroxyphenyl)ether; bis(4-hydroxyphenyl)ether; bis(4-hydroxyphenyl)sulfide; bis(4-hydroxyphenyl)sulfoxide; bis(4-hydroxyphenyl)sulfone; 9,9-bis(4-hydroxyphenyl)fluorine; 2,7-dihydroxypyrene; 6,6'-dihydroxy-3,3,3',3'- tetramethylspiro(bis)indane("spirobiindane bisphenol"); 3,3-bis(4-hydroxyphenyl)phthalide; 2,6-dihydroxydibenzo-p-dioxin; 2,6-dihydroxythianthrene; 2,7-dihydroxyphenoxathin; 2,7-dihydroxy-9,1 0-dimethylphenazine; 3,6-dihydroxydibenzofuran; 3,6-dihydroxydibenzothiophene and 2,7-dihydroxycarbazole. Mixtures of dihydroxy- compounds may also be used.

    [0056] It is also possible to employ two or more different dihydroxy compounds or a copolymer of a dihydric phenol with a glycol or with a hydroxy-terminated or acid-terminated polyester or with a dibasic acid or hydroxy acid in the event a carbonate copolymer rather than a homopolymer is desired for use. Polyarylates and polyester-carbonate resins or their blends may also be employed. Branched polycarbonates as well as blends of linear polycarbonate and a branched polycarbonate may be employed. The branched polycarbonates may be prepared by adding a branching agent during polymerization.

    [0057] These branching agents are well known and may comprise polyfunctional organic compounds containing at least three functional groups, which may be hydroxyl, carboxyl, carboxylic anhydride, haloformyl, and mixtures thereof. Specific examples include trimellitic acid, trimellitic anhydride, trimellitic trichloride, tris-p-hydroxy phenyl ethane, isatin-bis-phenol, tris-phenol TC (1,3,5-tris((p-hydroxyphenyl)isopropyl)benzene), tris-phenol PA (4(4(1,1 -bis(p-hydroxyphenyl)-ethyl) alpha, alpha-dimethyl benzyl)phenol), 4-chloroformyl phthalic anhydride, trimesic acid, and benzophenone tetracarboxylic acid. The branching agents may be added at a level of 0.05-2.0 weight percent. Branching agents and procedures for making branched polycarbonates are described in U.S. Patent Nos. 3,635,895 and 4,001,184. Many types of polycarbonates end groups may be used in the polycarbonate composition.

    [0058] In one embodiment polycarbonates are based on bisphenol A compound with formula XIX, in which each of A3 and A4 is p-phenylene and Y2 is isopropylidene. The weight average molecular weight of the polycarbonate may be about 5,000 to about 100,000 daltons, or, more specifically about 10,000 to about 65,000 daltons, or, even more specifically, about 15,000 to about 35,000 daltons.

    [0059] The components of the composition can be present in the following amounts. Polysiloxane polycarbonate copolymer can be present in an amount of about 3 to about 15 wt % of the composition. Also within this range, the copolymer can be present in an amount less than or equal to about 60 wt %. The cycloaliphatic polyester can be present in the composition in an amount of about 33 to about 77 wt %. The polyester can be present in amounts greater than about 15 wt % and can be present in amounts less than about 50 wt %. The polycarbonate need not be present in the composition but, if it is present, should not exceed quantities of about 15 wt % of the composition. A quantity of greater than or about $ wt % of the composition can be employed. The polycarbonate when present is generally less than about 65 wtt %.

    [0060] Parts made from the compositions of this invention are translucent or transparent. Transparent is measured as >70% transmission using ASTM D1003. Translucency is an appearance state between complete opacity and complete transparency.

    [0061] The addition of the polysiloxane/polycarbonate block copolymer to the cycloaliphatic polyester blend brings about the following benefits: increased long term impact performance, better low temperature ductility, and certain specific chemical resistance.

    [0062] In a specific embodiment, it has been found that use of a polycarbonate having a weight average molecular weight (Mw) of less than about 19,000 Daltons (19 KiloDaltons, or KDa) and the block copolymer provides blends that have high flow at lower temperatures, without significantly adversely affecting the other desirable properties of the compositions, such as impact, ductility, transparency, and/or hydrolytic stability. The polycarbonates can also have an Mw of 15 to 19 KDa, specifically 17 to 18 KDa. The block copolymer can also have an Mw of 18 to 24 KDa.

    [0063] In one embodiment, use of a polycarbonate having an Mw of less than about 19 KDa and the block copolymer provides a composition that imparts equivalent transparency and impact resistance, an improvement in melt flow of about 60 to about 80%, as compared to the same composition containing polycarbonates having higher molecular weights instead of the polycarbonate having molecular weight less than 19 KDa, when measured at 265°C, using a 2.16 Kg weight in accordance with ISO 1133.

    [0064] Such compositions can also have equivalent impact properties such as Notched Izod ductility, Notched Izod impact strength at room temperature and at low temperature, as well as heat deflection temperatures, that are comparable to the same compositions with polycarbonates having higher molecular weights. This result is surprising, because replacement of high molecular weight polycarbonates with lower molecular weight polycarbonates often adversely affects impact properties:

    [0065] For example, when measured at 23°C in accordance with ASTM-D256, an article such as a molded bar comprising the compositions and having a thickness of 3.2 mm has a Notched Izod impact strength of about 800 to about 1600 J/m. In addition, or alternatively, an article such as a molded bar comprising the compositions and having a thickness of 3.2 mm can have a Notched Izod impact strength of about 100 to about 1000 J/m, measured in accordance with ASTM D-256 at 0°C.

    [0066] An article such as a molded sample comprising the compositions and having a thickness of 3.2 mm can have a heat deflection temperature of about 60 to about 90°C.

    [0067] Substitutions of the higher molecular weight polycarbonate with the lower molecular weight polycarbonate and the block copolymer also do not substantially adversely impact the light transmittance of the compositions. An article molded from the composition and having a thickness of 2.5 mm has a haze of less than or equal to 5% and/or a transparency of greater than or equal to 80%, each measured according to ASTM D1003-00.

    [0068] In this embodiment, the compositions comprise about 3 to about 15 wt % of polysiloxane/polycarbonate block copolymer, about 33 to about 77 wt % of cycloaliphatic polyester, and about 17 to about 65 wt % of the polycarbonate having an Mw of less than about 20 KDa. Alternatively, the compositions comprise about 3 to about 15 wt % of the polysiloxane/polycarbonate block copolymer, about 33 to about 77 wt % of the cycloaliphatic polyester, and about 17 to about 65 wt % of the polycarbonate having an Mw of less than about 19 KDa. In still another embodiment, the compositions comprise about 4 to about 7 wt % of the polysiloxane/polycarbonate block copolymer, about 38 to about 70 wt % of the cycloaliphatic polyester, and about 25 to about 55 wt % of the polycarbonate having an Mw of less than about 19 KDa.

    [0069] To prepare the resin composition, the components may be mixed by any known methods. Typically, there are two distinct mixing steps: a premixing step and a melt mixing ("melt blending") step. In the premixing step, the dry ingredients are mixed together. The premixing step is typically performed using a tumbler mixer or ribbon blender. However, if desired, the premix may be manufactured using a high shear mixer such as a Henschel mixer or similar high intensity device. The premixing step is typically followed by a melt mixing step in which the premix is melted and mixed again as a melt. Alternatively, the premixing step may be omitted, and raw materials may be added directly into the feed section of a melt mixing device, preferably via multiple feeding systems. In the melt mixing step, the ingredients are typically melt kneaded in a single screw or twin screw extruder, a Banbury mixer, a two roll mill, or similar device. The examples are extruded using a twin screw type extruder, where the mean residence time of the material is from about 20 s to about 30 s, and where the temperature of the different extruder zones is from about 230°C to about 290°C. The compositions may be shaped into a final article by various techniques known in the art such as injection molding, extrusion, injection blow molding, gas assist blow molding, or vacuum forming.

    [0070] The above-described compositions are especially useful in the manufacture of articles made using IMD, IML, two-shot processes, thin parts, or any combination comprising at least one of the foregoing processes. The impact properties of the compositions are similar to that of polycarbonate. The high flow at lower processing temperatures (e.g., about 250 to about 270°C) better protects ink patterns, labels, or parts.

    [0071] Use of the compositions with lower molecular weight polycarbonates are even more useful in some applications, because they can have high flow at even lower processing temperatures (e.g., as low as about 230°C), without a significant decrease in impact properties. These compostions accordingly provide a good balance among transparency, high flow, low processing temperature, and impact.

    [0072] The compositions are thus useful in the manufacture of components of hand-held electronic devices such as personal digital assistants and cellular telephones, in particular lens and combinations of lenses and covers. Other structural features that can be present include camera lens holes, curvatures, snap fixes, hollow-out areas, thin ribs or rings and other geometric structures.

    [0073] For the test samples below, the compositions are injection molded using a VanDorn 85 or a Fanuc S-2000i with melt temperature set at 250 to 310 C or 250-270°C, mold temperature set at 60°C, and cycle time from 30 to 35 s unless otherwise noted.

    [0074] The following tests were run on the examples.

    [0075] From the granulate, the melt volume rate (MVR) was measured according to ISO 1133 ( 300 C/1.2kg or 265°C/2.16 Kg, unless otherwise stated) in units of cm3/10 min.

    [0076] Optical properties (transmission) are measured according to ASTM D1003 with 3.2 mm or 2.5 mm thick plaques.

    [0077] Notched Izod impact strength (INI) is measured according to ASTM D256 with 3.2 mm thick Izod bars at various temperatures.

    [0078] Thermal aging performance: the Izod bars are heated at 90°C for 15 hours in any oven, then tested with INI at 23°C according to ASTM D256. The retention of INI after annealing is utilized to characterize the thermal aging performance of a material. Autoclave: the Izod bars are placed in any autoclave or steam sterilizer (e.g., Napco sterilizer) at 120°C for 3.3 and 6.7 hours, respectively, then tested with INI at 23°C according to ASTM D256. The retention of 1NI after autoclaving is utilized to characterize the autoclavability of a material.

    [0079] Chemical Resistance: Chemical resistance against various solvents is studied. A composition having 0.3% alkyl dimethyl benzyl ammonium chloride, 0.5-5% ethylene glycol, buffered to pH 11.6 in water is tested. The test is carried out according to ISO 4599. The following test conditions are used: Duration of the test: 48 hours; Test temperature: 23°C; Applied constant strain: 0.5%. The method of contact: immersion. After the test, the tensile test procedure according to the ASTM D638 standard is performed to determine the physical properties. The sample is considered compatible to the chemical (or resistant to the chemical) if the retention of tensile elongation at break is equal or above 80%; considered marginal if the elongation retention is between 65 and 79%; and considered incompatible if the elongation retention is below 64%.

    [0080] In the following examples, "PC" refers to a polycarbonate derived from bisphenol A. The polyorganosiloxane/polycarbonate copolymer is represented by "t-EXL" or "PC-siloxane copolymer" and contains 6 wt % siloxane units derived from a diol of formula (IV) wherein R2 is methyl, R3 is propylene, and R4 is methoxy.

    [0081] Below in Table 1 are reference examples 1-7 together with control examples without the polycarbonate polysiloxane block copolymer. C1, C2, and C3 are comparative examples.
    Table 1
      C1 C2 C3 1 2 3 4 5 6 7
    Formulations  
    PC, Mw = 36 KDa 74.2 0 49.9 28.1 0 54.2 0 19.1 34.5 12.4
    PC, Mw = 30 KDa 0.0 35 0 0.0 14.7 0.0 21.6 0 0 0
    PC, Mw = 22 KDa 0.0 38.0 24 0.0 27.4 0.0 21.6 0 17.0 5.9
    PCTG 25.0 26.3 0.0 15.0 15.0 20.0 26.3 42 0.0 0.0
    PCT 0.0 0.0 25 0.0 0.0 0.0 0.0 0 28.5 42.0
    t-EXL (6 wt % siloxane) 0.0 0.0 0.0 56.1 42.1 25.0 30.0 38.1 19.0 38.6
    Properties  
    MVR ISO at 265°C, 2.16 kg (cm3/10 min) 3.0 12 6.3 4.5 9.2 3.8 12 6.2 5.3 5.8
    % Transmission at 3.2 mm thickness 87 88 86 83 84 85 86 84 84 84
    INI at 23°C (J/m) 980 760 700 950 910 1000 1000 960 909 917
    INI at 0°C (J/m) 130 110 95 940 800 860 825 910 405 168
    INI at -30°C (J/m) 80 75 75 580 545 180 150 125 120 150
    INI retention after 15h annealing at 90°C 10% 10% 10% 95% 91% 87% 26% 16% 40% 60%
    INI retention after autoclave at 120°C for 3.3h 10% 10% NM 90% NM 94% NM N/A NM N/A
    INI retention after autoclave at 120°C for 6.7h 10% 10% NM 90% NM 85% NM N/A NM N/A
    Chemical resistance vs Formula 409* NM 0% 0% NM NM NM NM NM 100% 98%
    *% Retention in Tensile Elongation at Break after 2 days with 0.5% strain
    NM - Not measured
    N/A - Not applicable because heat deflection temperature at 66 psi is less than 120°C.


    [0082] The invention compositions having t-EXL provide excellent initial INI, which remain very high, particularly the compositions with PCTG, when INI is measured at substantially reduced temperatures of 0°C and -30°C. Additionally, after heating at 90°C for 15 hours, the INI is substantially retained, particularly with PCTG. The INI retention after autoclaving is also high in the tested invention compositions. With respect to solvent resistance against a specific basic material, the PCT containing compositions demonstrate very little deterioration, if any.

    [0083] The Examples in Table 2 illustrate the effect of varying the molecular weight of the polycarbonate in the polyester and copolycarbonate blend, and the importance of including the polyorganosiloxane/polycarbonate copolymer. Comparative Example C4 corresponds to Example 8 without the polysiloxane copolymer; Comparative Example C5 corresponds to Example 9 without the copolymer. Comparative example C6 contains polycarbonates having weight average molecular weights of 22 and 30 KDa. Example 10 corresponds to C6 in that it has a same percentage of polyester as C6, but lower molecular weight polycarbonate and 6% PC/siloxane block copolymer
    Table 2.
    Components   8 9 10 C4 C5 C6
    PC, Mw = 18 KDa   43.7 28.3 53.5 49.7 34.3 0
    PC, Mw = 22 KDa   0 0 0 0 0 49.5
    PC, Mw = 30 KDa   0 0 0 0 0 10.0
    PCCD 2000 poise   49.7 65.0 39.8 49.7 65.0 39.8
    PC-siloxane copolymer   6.0 6.0 6.0 0 0 0
    Properties Units            
    MVR ISO at 265°C, 2.16 kg cm3/10 min 28.3 31.5 28.8 28.9 28.9 17.4
    MVR ISO at 220°C, 2.16 kg cm3/10 min 5.7 2.9 5.5 4.8 4.3 3.1
    MVR ISO at 220°C, 5.00 kg cm3/10 min 13.7 13.5 13.5 13.4 13.4 7.5
    MVR ISO at 240°C, 2.16 kg cm3/10 min 12.6 13.4 12.6 12.9 13.3 7.1
    % Transmission at 2.5 mm thickness % 90.6 90.9 90.0 90.2 90.6 89.8
    %Haze at 2.5 mm thickness % 1.2 1.3 1.1 1.2 2.0 1.0
    INI at 0°C, 5 lbf/ft ductility % 40 80 0 0 0 0
    INI at 0°C, 5 lbf/ft Impact Strength J/m 462 982 130 101 117 107
    INI at 23°C, 5 lbf/ft Ductility % 80 100 100 100 100 100
    INI at 23°C, 5 lbf/ft Impact Strength J/m 915 1520 942 909 1380 905
    HDT at 0.45 MPa, 3.2 mm °C 91.7 NM NM NM NM NM
    HDT at 1.82 MPa, 3.2 mm °C 81.5 70.4 88.4 81.2 72.4 90.6
    NM = Not measured


    [0084] As can be seen from the data in Table 2, Examples 8, 9 and 10 had improved flow relative to Example C6: MVR at 265°C / 2.16 Kg / 240 s was improved by approximately 60% to 80%. At the same time, the impact properties were maintained or even improved. At 23°C, the Notch Izod Impact Strength (INI) of examples 8 ,9 and 10 were the same or higher than Example C6. At 0°C, examples 8 and 9 had even higher INI strength and maintained certain ductility (40% to 80%) while there is a total ductility loss in C6, and a much lower INI strength. Furthermore, the transparency (transmission and haze) of examples 8 , 9, and 10 are very close to that of C6. Use of lower molecular weight polycarbonate in the blends accordingly provides increased flow.

    [0085] A comparison of Examples 8 and 9 with C4 and C5, respectively, show that replacing polycarbonate with polyorganosiloxane/polycarbonate copolymer improved the low temperature impact property to an even greater extent, but also maintained the transparency of articles molded from the compositions. Comparing Example 8 with C4 and 9 with C5, the optical properties remained the same for the siloxane blends. Since transparency is important in applications such as cellular phone lens, it is desirable in these applications to maintain a lower percentage of polyorganosiloxane/polycarbonate copolymer (about 2 to about 20 wt %) in order to preserve a balance between attaining transparency and good impact properties.

    [0086] The data in Table 2 further illustrate the importance of the polyorganosiloxane/polycarbonate copolymer in achieving good impact properties. The only difference between Examples 8 and 9, and Comparative Examples 4 and 5, respectively, is that the polyorganosiloxane/polycarbonate copolymer in Examples 8 and 9 with polycarbonate. It can be seen that all of four of these examples have the same flow properties as reflected by MVR. However, the low temperature impact (INI ductility at 0°C) of Comparative Examples C4 and C5 is decreased in the absence of the copolymer compared to Examples 8 and 9. Furthermore, the impact property of example 10, which can be seen as obtained by replacing 90% higher molecular weight polycarbonate with low (<19K Da) molecular weight polycarbonate in C6 while in the presence of the copolymer, was retained similar at 23°C and 0°C as in C6, yet the melt flow property (MVR) was improved 65%, and the optical properties (transmission% and haze%) and HDT were retained similar.

    [0087] Comparison of the MVR shift, PC Mw shift, and PCCD Mw shift of the four blends in Table 3 shows that the blends containing the copolymer (Examples 8 and 9) have better hydrolytic stability than their counterparts without the copolymer (Comparative Examples 4 and 5). Due to experimental set-up difference, the weight average molecular weight (Mw) data in Table 3 were reported by polystyrene (PS) standard instead of Daltons (Da) as in the rest of the invention. The MVR was measured according to ISO 1133 (265°C/2.16 kg/240 seconds). All measurements were done on the granules with or without aging at 80°C /80 RH (relative humidity) for one to four weeks.

    [0088] MVR increase in granules after hydrolytic aging is a sign of less hydrolytic stability or more chemical degradation of the polymers and therefore is undesirable. The degradation is also shown as decreases of the molecular weight of PC and/or polyester (PCCD). Examples 8 and 9 showed better hydrolytic stability than the comparative examples without the PC/polysiloxane block copolymer, C4 and C5, respectively. For example, after 4 weeks aging at 80°C /80 RH, C4 had nearly 400% of MVR increase while 8 had less than 100% MVR increase, also C4 retained 63% and 75% of the original Mw of PC and PCCD respectively while 8 retained 85% and 92% of the original Mw of PC and PCCD respectively. The comparison in Table 3 is further illustrated in Figure 1, graphs A-E.
    Table 3.
      MVR (cm3/10 min)*
    Weeks 8 C4   9 C5
    0 28.4 30.8   34.8 29.2
    1 31.7 36.0   36.4 41.5
    2 35.5 45.2   52.6 85.9
    3 43.0 73.3   91.4 193.7
    4 54.4 149.2   146.8 434.1
    MVR increase after 4 weeks aging at 80°C/80% RH 92% 384%   322% 1387%
      PC Mw**
    Weeks 8 C4   9 C5
    1 35752 34211   34357 31813
    2 34071 30183   31186 24968
    3 31593 27120   24327 18615
    4 30266 21614   21058 15596
    PC Mw retention after 4 weeks aging at 80°C/80% RH 85% 63%   61% 49%
      PCCD Mw**
    Weeks 8 C4   9 C5
    1 90431 86000   84306 84224
    2 83291 80851   81590 69795
    3 83175 78152   72344 58149
    4 83507 64477   63092 52996
    PCCD Mw retention after 4 weeks aging at 80°C/80% RH 92% 75%   75% 63%
    * MVR value of >200 cm3/10 min tend to have large variances. All MVR values were averaged from at least two test results.
    **By Polystyrene standard according to GE method.


    [0089] All references are incorporated herein by reference. The endpoints of all ranges directed to the same component or property are inclusive of the endpoint and independently combinable. Compounds are described using standard nomenclature. For example, any position not substituted by any indicated group is understood to have its valency filled by a bond as indicated, or a hydrogen atom. A dash ("-") that is not between two letters or symbols is used to indicate a point of attachment for a substituent. For example, -CHO is attached through carbon of the carbonyl group.


    Claims

    1. A composition comprising, based on the total weight of polymer components in the composition,

    3 to 15 wt.% of a polysiloxane polycarbonate block copolymer comprising repeating structural units of formula (I)

    wherein at least 60 percent of the total number of R1 groups are aromatic organic radicals and the balance thereof are aliphatic, alicyclic, or aromatic radicals, and
    repeating structural units of formula (IV)

    wherein R2 is independently at each occurrence a monovalent organic radical having 1 to 13 carbon atoms, R3 is a divalent aliphatic radical having 1 to 8 carbon atoms or an aromatic radical having 6 to 8 carbon atoms, R4 is independently at each occurrence a hydrogen, halogen, alkoxy having 1 to 8 carbon atoms, alkyl having 1 to 8 carbon atoms, or aryl having 6 to 13 carbon atoms, and n is an integer less than or equal to 1000;

    33 to 77 wt.% of a cycloaliphatic polyester having repeating units of formula (VI)

    wherein R7 and R8 are independently at each occurrence a divalent aromatic, aliphatic or cycloaliphatic group having 2 to 20 carbon atoms, with the provision that at least one of R7and R8 is a cycloaliphatic group-containing radical; and

    17 to 65 wt.% of a polycarbonate that is different from the polycarbonate block copolymer, having a weight average molecular weight of less than 20,000 Daltons, and that comprises repeating structural units of formula (XVIII)

    wherein at least 60 percent of the total number of R9 groups are aromatic organic radicals and the balance thereof are aliphatic, alicyclic, or aromatic radicals; and further
    wherein the composition has a melt volume rate of 20 to 40 cm3/10 minutes, measured in accordance with ISO 1133 at 265°C and 2.16 kg, and
    wherein a molded sample having a thickness of 3.2 mm has a Notched Izod impact strength of 800 to 1600 J/m, measured in accordance with ASTM D-256 at 23°C.


     
    2. The composition of claim 1, comprising 4 to 7 wt.% of the block copolymer, 38 to 70 wt.% of the cycloaliphatic polyester, and 25 to 55 wt.% of the polycarbonate.
     
    3. The composition of claim 1, wherein a molded sample having a thickness of 3.2 mm has a Notched Izod impact strength of 100 to 1000 J/m, measured in accordance with ASTM D-256 at 0°C.
     
    4. The composition of claim 1, wherein the composition retains at least 10 % more molecular weight after aging for 28 days at 80°C, 80% relative humidity, as compared to a composition without the polysiloxane polycarbonate block copolymer, and preferably the polycarbonate of the composition retains at least 15 % more of its molecular weight after aging for 28 days at 80°C, 80% relative humidity, as compared to a composition without the polysiloxane polycarbonate block copolymer, or preferably the polyester of the composition retains at least 10 % more of its molecular weight after aging for 28 days at 80°C, 80% relative humidity, as compared to a composition without the polysiloxane polycarbonate block copolymer.
     
    5. The composition of claim 1, wherein an article molded from the composition and having a thickness of 2.5 mm has a haze of less than or equal to 5%, measured according to ASTM D1003-00, or has a transparency of greater or equal to 80%, measured according to ASTM D 1003-00, or wherein a molded sample having a thickness of 3.2 mm has a deflection temperature of 60 to 90°C.
     
    6. The composition of claim 1, wherein at least 60 wt.% of the R1 groups are radicals of the formula (XIX)

            -A3-Y2-A4-     (XIX)

    wherein each of A3 and A4 is a monocyclic divalent aryl radical and Y2 is -0-, -S-, -S(O)-, -S(O)2-, -C(O)-, methylene, cyclohexylmethylene, 2-[2.2.1]-bicycloheptylidene, ethylidene, isopropylidene, neopentylidene, cyclohexylidene, cyclopentadecylidene, cyclododecylidene, adamantylidene, or a combination comprising at least one of the foregoing groups, and further wherein R2 is independently at each occurrence a monovalent organic radical having 1 to 4 carbon atoms, R3 is a divalent aliphatic radical having 3 to 8 carbon atoms, and n is an integer of 10 to 100, preferably each of A3 and A4 is phenylene and Y2 is isopropylidene, and R2 is methyl, R3 is a divalent aliphatic radical having 3 to 8 carbon atoms, and n is an integer of 40 to 60.
     
    7. The composition of claim 1, wherein both R7 and R8 comprise cycloaliphatic radicals, and preferably are cycloalkyl-containing radicals independently selected from the following formulae (VII) to (XVI)










     
    8. The composition of claim 1, wherein R8 is derived from 1,4-cyclohexyl dicarboxylic acid with greater than 70 mole % thereof in the form of the trans isomer and R7 is derived from 1,4-cyclohexyl dimethanol with greater than 70 mole % thereof in the form of the trans isomer.
     
    9. The composition of claim 1, wherein R9 comprises at least 60 wt.% of units of the formula (XX)

    wherein R10 and R11 independently at each occurrence are a halogen atom or a monovalent hydrocarbon group; p and q are each independently integers from 0 to 4; and X represents one of the groups of formula (XXI) or (XXII)

    wherein R12 and R13 independently at each occurrence are a hydrogen atom or a monovalent linear or cyclic hydrocarbon group having 1 to 8 carbon atoms and R14 is a divalent hydrocarbon group having 1 to 8 carbon atoms, preferably X is isopropylidene and p and q is each zero.
     
    10. A method of manufacture of the composition of claim 1, comprising melt blending the components of the composition of claim 1.
     
    11. A method for forming an article, comprising injection molding, extrusion, injection blow molding, gas assist blow molding, or vacuum forming of the composition of claim 1 to form an article.
     
    12. An article comprising the composition of claim 1, wherein the article is an extruded or injection molded article, preferably a component of a hand-held electronic device like a cellular telephone, or wherein the article is preferably in the form of a lens for a cellular telephone.
     
    13. The composition of claim 1 comprising, based on the total weight of the polymer components in the composition,

    3 to 15 wt.% of a polysiloxane polycarbonate block copolymer comprising repeating structural units of formula (I)

    wherein at least 60 percent of the total number of R1 groups are aromatic organic radicals and the balance thereof are aliphatic, alicyclic, or aromatic radicals, and
    repeating structural units of formula (IV)

    wherein R2 is independently at each occurrence a monovalent organic radical having 1 to 13 carbon atoms, R3 is a divalent aliphatic radical having 1 to 8 carbon atoms or an aromatic radical having 6 to 8 carbon atoms, R4 is independently at each occurrence a hydrogen, halogen, alkoxy having 1 to 8 carbon atoms, alkyl having 1 to 8 carbon atoms, or aryl having 6 to 13 carbon atoms, and n is an integer less than or equal to 1000;

    33 to 77 wt.% of a cycloaliphatic polyester having repeating units of formula (VI)

    wherein R7 and R8 are independently at each occurrence a cycloaliphatic group-containing radical having from 5 to 20 carbon atoms; and

    17 to 65 wt.% of a polycarbonate that is different from the polycarbonate block copolymer, having a weight average molecular weight of less than 20,000 Daltons, and that comprises repeating structural units of formula (XVIII)

    wherein at least 60 percent of the R9 groups are derived from a bisphenol of formula (XX)

    wherein R10 and R11 independently at each occurrence are a halogen or a monovalent hydrocarbon group, p and q are each independently integers from 0 to 4, and X represents one of the groups of formula (XXI) or (XXII)

    wherein R12 and R13 independently at each occurrence are a hydrogen or a monovalent linear or cyclic hydrocarbon group having 1 to 8 carbon atoms and R14 is a divalent hydrocarbon group having 1 to 8 carbon atoms; and further wherein
    the composition has a melt volume rate of 24 to 35 cm3/10 minutes, measured in accordance with ISO 1133 at 265°C and 2.16 kg, and
    wherein a molded sample having a thickness of 3.2 mm has a Notched Izod impact strength of 800 to 1600 J/m, measured in accordance with ASTM D-256 at 23°C.


     
    14. The composition of claim 1 comprising, based on the total weight of the polymer components in the composition,

    4 to 7 wt.% of a polysiloxane polycarbonate block copolymer comprising
    repeating structural units of formula (I)

    wherein at least 60 wt.% of the R1 groups are derived from bisphenol A;
    repeating structural units of formula (IV)

    wherein R2 is independently at each occurrence a methyl, trifluoropropyl, or phenyl, R3 is propylene, and n is an integer of 10 to 100;

    38 to 70 wt.% of poly(1,4-cyclohexane-dimethanol-1,4-dicarboxylate); and

    25 to 55 wt.% of a polycarbonate that is different from the polycarbonate block copolymer, having a weight average molecular weight of less than 19,000 Daltons, and that comprises repeating structural units of formula (XVIII)

    wherein at least 60 percent of the total number of R9 groups are derived from a bisphenol A; and further wherein
    the composition has a melt volume rate of 24 to 35 cm3/10 minutes, measured in accordance with ISO 1133 at 265°C and 2.16 kg, and
    wherein a molded sample having a thickness of 3.2 mm has a Notched Izod impact strength of 800 to 1600 J/m, measured in accordance with ASTM D-256 at 23°C.


     


    Ansprüche

    1. Zusammensetzung, umfassend, auf der Grundlage des Gesamtgewichts von Polymerkomponenten in der Zusammensetzung,

    3 bis 15 Gew.-% eines Polysiloxan-Polycarbonat-Blockcopolymers, umfassend strukturelle Wiederholungseinheiten der folgenden Formel (I):

    wobei mindestens 60 % der Gesamtanzahl von R1-Gruppen aromatische organische Reste sind und der Rest davon aliphatische, alicyclische oder aromatische Reste sind, und
    strukturelle Wiederholungseinheiten der folgenden Formel (IV)

    wobei R2 unabhängig bei jedem Auftreten ein einwertiger organischer Rest mit 1 bis 13 Kohlenstoffatomen ist, R3 ein zweiwertiger organischer Rest mit 1 bis 8 Kohlenstoffatomen oder ein aromatischer Rest mit 6 bis 8 Kohlenstoffatomen ist, R4 unabhängig bei jedem Auftreten ein Wasserstoff, Halogen, Alkoxy mit 1 bis 8 Kohlenstoffatomen, Alkyl mit 1 bis 8 Kohlenstoffatomen, oder Aryl mit 6 bis 13 Kohlenstoffatomen ist, und n eine ganze Zahl von weniger als oder gleich 1000 ist;

    33 bis 77 Gew.-% eines cycloaliphatischen Polyesters mit Wiederholungseinheiten der Formel (VI)

    wobei R7 und R8 unabhängig bei jedem Auftreten eine zweiwertige aromatische, aliphatische oder cycloaliphatische Gruppe mit 2 bis 20 Kohlenstoffatomen sind, mit der Maßgabe, dass mindestens eines von R7 und R8 ein eine cycloaliphatische Gruppe-enthaltender Rest ist; und

    17 bis 65 Gew.-% eines Polycarbonats, das von dem Polycarbonat-Blockcopolymer verschieden ist, mit einer gewichtsmittleren Molmasse von weniger als 20.000 Dalton, und welches strukturelle Wiederholungseinheiten der Formel (XVIII) umfasst

    wobei mindestens 60 % der Gesamtanzahl von R9-Gruppen aromatische organische Reste sind und der Rest davon aliphatische, alicyclische oder aromatische Reste sind, und weiterhin
    wobei die Zusammensetzung eine Schmelzvolumenrate von 20 bis 40 cm3/10 min aufweist, gemessen gemäß ISO 1133 bei 265 °C und 2,16 kg, und
    wobei eine pressgeformte Probe mit einer Dicke von 3,2 mm eine Kerbschlagzähigkeit von 800 bis 1600 J/m aufweist, gemessen gemäß ASTM D-256 bei 23 °C.


     
    2. Zusammensetzung nach Anspruch 1, umfassend 4 bis 7 Gew.-% des Blockcopolymers, 38 bis 70 Gew.-% des cycloaliphatischen Polyesters, und 25 bis 55 Gew.-% des Polycarbonats.
     
    3. Zusammensetzung nach Anspruch 1, wobei eine pressgeformte Probe mit einer Dicke von 3,2 mm eine Kerbschlagzähigkeit von 100 bis 1000 J/m aufweist, gemessen gemäß ASTM D-256 bei 0 °C.
     
    4. Zusammensetzung nach Anspruch 1, wobei die Zusammensetzung mindestens 10 % mehr Molekulargewicht nach dem Altern für 28 Tage bei 80 °C, 80 % relativer Feuchtigkeit beibehält, im Vergleich zu einer Zusammensetzung ohne das Polysiloxan-Polycarbonat-Blockcopolymer, und vorzugsweise das Polycarbonat der Zusammensetzung mindestens 15 % mehr von seinem Molekulargewicht nach dem Altern für 28 Tage bei 80 °C, 80 % relativer Feuchtigkeit beibehält, im Vergleich zu einer Zusammensetzung ohne das Polysiloxan-Polycarbonat-Blockcopolymer, oder vorzugsweise der Polyester der Zusammensetzung mindestens 10 % mehr von seinem Molekulargewicht nach dem Altern für 28 Tage bei 80 °C, 80 % relativer Feuchtigkeit beibehält, im Vergleich zu einer Zusammensetzung ohne das Polysiloxan-Polycarbonat-Blockcopolymer.
     
    5. Zusammensetzung nach Anspruch 1, wobei ein geformter Gegenstand aus der Zusammensetzung und mit einer Dicke von 2,5 mm eine Trübung von weniger als oder gleich 5 % aufweist, gemessen gemäß ASTM D-1003-00, oder wobei eine pressgeformte Probe mit einer Dicke von 3,2 mm eine Wärmeformbeständigkeit von 60 bis 90 °C aufweist.
     
    6. Zusammensetzung nach Anspruch 1, wobei mindestens 60 Gew.-% der R1-Gruppen Reste der Formel (XIX) sind

            -A3-Y2-A4-     (XIX)

    wobei A3 und A4 jeweils einen monocyclischen zweiwertigen Arylrest darstellen, und Y2 -O-, -S-, -S(O)2-, C(O)-, Methylen, Cyclohexylmethylen,
    2-[2.2.1]-Bicycloheptyliden, Ethyliden, Isopropyliden, Neopentyliden, Cyclohexyliden, Cyclopentadecyliden, Cycldodecyliden, Adamantyliden, oder eine mindestens eine der vorgehenden Gruppen umfassende Kombination ist, und weiterhin wobei R2 unabhängig bei jedem Auftreten ein einwertiger organischer Rest mit 1 bis 4 Kohlenstoffatomen ist, R3 ein zweiwertiger aliphatischer Rest mit 3 bis 8 Kohlenstoffatomen ist, und n eine ganze Zahl von 10 bis 100 ist, A3 und A4 vorzugsweise jeweils Phenylen sind und Y2 Isopropyliden ist, und R2 Methyl ist, R3 ein zweiwertiger aliphatischer Rest mit 3 bis 8 Kohlenstoffatomen ist, und n eine ganze Zahl von 40 bis 60 ist.
     
    7. Zusammensetzung nach Anspruch 1, wobei sowohl R7 als auch R8 cycloaliphatische Reste umfassen, und vorzugsweise Cycloalkylenthaltende Reste sind, die unabhängig aus den folgenden Formeln (VII) bis (XVI) ausgewählt sind










     
    8. Zusammensetzung nach Anspruch 1, wobei sich R8 von 1,4-Cyclohexyldicarbozylsäure ableitet, wobei mehr als 70 Mol-% davon in der Form des trans-Isomers vorliegen, und R7 sich von 1,4-Cyclohexyldimethanol ableitet, wobei mehr als 70 % davon in der Form des trans-Isomers vorliegen.
     
    9. Zusammensetzung nach Anspruch 1, wobei R9 mindestens 60 Gew.-% von Einheiten der Formel (XX) umfasst

    wobei R10 und R11 unabhängig bei jedem Auftreten ein Halogenatom oder eine einwertige Kohlenwasserstoffgruppe sind; q und p jeweils unabhängig ganze Zahlen von 0 bis 4 sind; und X eine der Gruppen der Formeln (XXI) oder (XXII) darstellt

    wobei R12 und R13 unabhängig bei jedem Auftreten ein Wasserstoffatom oder eine einwertige lineare oder cyclische Kohlenwasserstoffgruppe mit 1 bis 8 Kohlenstoffatomen sind und R14 eine zweiwertige Kohlenwasserstoffgruppe mit 1 bis 8 Kohlenstoffatomen ist, vorzugsweise X Isopropyliden ist und p und q jeweils Null sind.
     
    10. Verfahren zur Herstellung der Zusammensetzung nach Anspruch 1, umfassend das Schmelzvermischen der Komponenten der Zusammensetzung nach Anspruch 1.
     
    11. Verfahren zum Herstellen eines Gegenstandes, umfassend Spritzguss, Extrusion, Injektionsguss, gasunterstütztes Blasformen, oder Vakuumformen der Zusammensetzung nach Anspruch 1, um einen Gegenstand herzustellen.
     
    12. Gegenstand, umfassend die Zusammensetzung nach Anspruch 1, wobei der Gegenstand ein extrudierter oder spritzgegossener Gegenstand, vorzugsweise eine Komponente von einer elektronischen Handvorrichtung, wie ein Handy ist, oder wobei der Gegenstand vorzugsweise in der Form von einer Linse für ein Handy vorliegt.
     
    13. Zusammensetzung nach Anspruch 1, umfassend, bezogen auf das Gesamtgewicht der Polymerkomponenten in der Zusammensetzung,

    3 bis 15 Gew.-% eines Polysiloxan-Polycarbonat-Blockcopolymers, umfassend
    strukturelle Wiederholungseinheiten der Formel (I)

    wobei mindestens 60 Gew.-% der Gesamtanzahl der R1-Gruppen aromatische organische Rest sind und der Rest davon aliphatische, alicyclische oder aromatische Reste sind, und
    strukturelle Wiederholungseinheiten der Formel (IV)

    wobei R2 unabhängig bei jedem Auftreten ein einwertiger organischer Rest mit 1 bis 13 Kohlenstoffatomen ist, R3 ein zweiwertiger aliphatischer Rest mit 1 bis 8 Kohlenstoffatomen oder ein aromatischer Rest mit 6 bis 8 Kohlenstoffatomen ist, R4 unabhängig bei jedem Auftreten ein Wasserstoff, Halogen, Alkoxy mit 1 bis 8 Kohlenstoffatomen, Alkyl mit 1 bis 8 Kohlenstoffatomen, oder Aryl mit 6 bis 13 Kohlenstoffatomen ist, und n eine ganze Zahl von weniger als oder gleich 1000 ist;

    33 bis 77 Gew.-% eines cycloaliphatischen Polyesters mit Wiederholungseinheiten der Formel (VI)

    wobei R7 und R8 unabhängig bei jedem Auftreten ein eine cycloaliphatische Gruppe enthaltender Rest mit 5 bis 20 Kohlenstoffatomen sind; und

    17 bis 65 Gew.-% eines Polycarbonats, das von dem Polycarbonat-Blockcopolymer verschieden ist, mit einer gewichtsmittleren Molmasse von weniger als 20.000 Dalton, und welches strukturelle Wiederholungseinheiten der Formel (XVIII) umfasst

    wobei sich mindestens 60 % der R9-Gruppen von einem Bisphenol der Formel (XX) ableiten

    wobei R10 und R11 unabhängig bei jedem Auftreten ein Halogen oder eine einwertige Kohlenwasserstoffgruppe sind, p und q jeweils unabhängig ganze Zahlen von 0 bis 4 sind, und X eine der Gruppen der Formeln (XXI) oder (XXII) darstellen

    wobei R12 und R13 unabhängig bei jedem Auftreten Wasserstoff oder eine einwertige lineare oder cyclische Kohlenwasserstoffgruppe mit 1 bis 8 Kohlenstoffatomen sind und R14 eine zweiwertige Kohlenwasserstoffgruppe mit 1 bis 8 Kohlenstoffatomen ist; und weiterhin wobei
    die Zusammensetzung eine Schmelzvolumenrate von 24 bis 35m3/10 min aufweist, gemessen gemäß ISO 1133 bei 265 °C und 2,16 kg, und wobei eine pressgeformte Probe mit einer Dicke von 3,2 mm eine Kerbschlagzähigkeit von 800 bis 1600 J/m aufweist, gemessen gemäß ASTM D-256 bei 23 °C.


     
    14. Zusammensetzung nach Anspruch 1, umfassend, bezogen auf das Gesamtgewicht der Polymerkomponenten in der Zusammensetzung,

    4 bis 7 Gew.-% eines Polysiloxan-Polycarbonat-Blockcopolymers, umfassend
    strukturelle Wiederholungseinheiten der folgenden Formel (I):

    wobei sich mindestens 60 % der R1-Gruppen von Bisphenol A ableiten;
    strukturelle Wiederholungseinheiten der Formel (IV)

    wobei R2 unabhängig bei jedem Auftreten ein Methyl, Trifluorpropyl oder Phenyl ist, R3 Propylen ist, und n eine ganze Zahl von 10 bis 100 ist;

    38 bis 70 Gew.-% Poly(1,4-cyclohexan-dimethanol-1,4-dicarboxylat); und

    25 bis 55 Gew.-% eines Polycarbonats, das von dem Polycarbonat-Blockcopolymer verschieden ist, mit einer gewichtsmittleren Molmasse von weniger als 19.000 Dalton, und welches strukturelle Wiederholungseinheiten der Formel (XVIII) umfasst

    wobei sich mindestens 60 % der Gesamtanzahl der R9-Gruppen von einem Bisphenol A ableiten; und weiterhin
    die Zusammensetzung eine Schmelzvolumenrate von 24 bis 35m3/10 min aufweist, gemessen gemäß ISO 1133 bei 265 °C und 2,16 kg, und
    wobei eine pressgeformte Probe mit einer Dicke von 3,2 mm Kerbschlagzähigkeit von 800 bis 1600 J/m aufweist, gemessen gemäß ASTM D-256 bei 23 °C.


     


    Revendications

    1. Composition comprenant, basé sur le poids total des composants polymères dans la composition,

    3 à 15 % en poids d'un copolymère à bloc polysiloxane-polycarbonate comprenant des unités structurelles récurrentes de la formule (I)

    dans laquelle au moins 60% du nombre total de groupes R1 sont des radicaux organiques aromatiques et le reste de ceux-ci est aliphatique, alicyclique, ou des radicaux aromatiques, et
    des unités structurelles récurrentes de la formule (IV)

    dans lesquelles R2 est, indépendamment en chaque occurrence, un radical organique monovalent ayant 1 à 13 atomes de carbone, R3 est un radical aliphatique divalent ayant 1 à 8 atomes de carbone ou un radical aromatique ayant 6 à 8 atomes de carbone, R4 est, indépendamment en chaque occurrence, un hydrogène, halogène, alkoxy ayant 1 à 8 atomes de carbone, alkyle ayant 1 à 8 atomes de carbone ou aryle ayant 6 à 13 atomes de carbone, et n est un nombre entier inférieur ou égal à 1000 ;

    33 à 77 % en poids d'un polyester cycloaliphatique ayant des unités structurelles récurrentes de la formule (VI)

    dans laquelle R7 et R8 sont, indépendamment en chaque occurrence, un groupe aromatique, aliphatique ou cycloaliphatique divalent ayant 2 à 20 atomes de carbone, sous condition qu'au moins l'un parmi R7 et R8 soit un radical contenant un groupe cycloaliphatique ; et

    17 à 65 % en poids d'un polycarbonate qui est différent du copolymère à bloc polycarbonate, ayant une masse moléculaire moyenne en poids de moins de 20 000 daltons, et qui comprend des unités structurelles récurrentes de la formule (XVIII)

    dans laquelle au moins 60 % du nombre total de groupes R9 sont des radicaux organiques aromatiques et le reste de-ceux-ci est aliphatique, alicyclique, ou des radicaux aromatiques, et en outre
    dans laquelle la composition a une courbe de débit-volume de fonte de 20 à 40 cm3/10 minutes, mesurée conformément à ISO 1133 à 265°C et 2,16 kg, et
    dans laquelle un échantillon moulé ayant une épaisseur de 3,2 mm possède une résistance au choc Izod entaillé à 800 à 1600 J/m, mesurée conformément à ASTM D-256 à 23°C.


     
    2. Composition selon la revendication 1, comprenant 4 à 7 % en poids d'un copolymère à bloc, 38 à 70 % en poids d'un polyester cycloaliphatique, et 25 à 55% en poids du polycarbonate.
     
    3. Composition selon la revendication 1, dans laquelle un échantillon moulé ayant une épaisseur de 3,2 mm possède une résistance au choc Izod entaillé à 100 à 1000 J/m, mesurée conformément à ASTM D-256 à 0°C.
     
    4. Composition selon la revendication 1, dans laquelle la composition conserve au moins un 10% en plus de poids moléculaire après avoir vieilli pendant 28 jours à 80°C de température, 80% d'humidité relative, par rapport à une composition sans le copolymère à bloc de polysiloxane/polycarbonate, et en préférence le polycarbonate de la composition conserve au moins 15% en plus de son poids moléculaire après avoir vieilli pendant 28 jours à 80°C de température, 80% d'humidité relative, par rapport à une composition sans le copolymère à bloc de polysiloxane/polycarbonate, ou de préférence le polyester de la composition conserve au moins 10% en plus de son poids moléculaire après avoir vieilli pendant 28 jours à 80°C de température, 80% d'humidité relative, par rapport à une composition sans le copolymère à bloc de polysiloxane/polycarbonate.
     
    5. Composition selon la revendication 1, dans laquelle un article moulé à partir de la composition et ayant une épaisseur de 2,5 mm a une opacité inférieure ou égale à 5%, mesurée conformément à ASTM D-1003-00, ou a une transparence supérieure ou égale à 80%, mesurée conformément à ASTM D-1003-00, ou dans laquelle un échantillon moulé ayant une épaisseur de 3,2 mm a une température de déformation de 60 à 90°C.
     
    6. Composition selon la revendication 1, dans laquelle au moins un 60% en poids des groupes R1 sont des radicaux avec la formule (XIX)

            -A3-Y2-A4-     (XIX)

    dans laquelle chacun des A3 et A4 est un radical aryle divalent monocyclique et Y2 est -O-, -S-, -S(O)-,-S(O)2-, -C(O)-, méthylène, cyclohexyle méthylène,
    2-[2.2.1]-bicycloheptylidène, éthylidène, isopropylidène, neopentylidène, cyclohexylidène, cyclopentadecylidène, cyclododecylidène, adamantylidène, ou une combinaison comprenant au moins l'un des groupes précédents, et en outre dans laquelle R2 est, indépendamment en chaque occurrence, un radical organique monovalent ayant 1 à 4 atomes de carbone, R3 est un radical aliphatique divalent ayant 3 à 8 atomes de carbone, et n est un nombre entier compris entre 10 et 100, de préférence chacun parmi A3 et A4 est phénylène et Y2 est isopropylidène, et R2 est méthyle, R3 est un radical aliphatique divalent ayant 3 à 8 atomes de carbone, et n est un nombre entier compris entre 40 et 60.
     
    7. Composition selon la revendication 1, dans laquelle tant R7 et R8 comprennent des radicaux cycloaliphatiques, et de préférence sont des radicaux contenant du cycloalkyle sélectionnés indépendamment à partir des formules suivantes (VII) à (XVI)










     
    8. Composition selon la revendication 1, dans laquelle R8 est dérivé de l'acide cyclohexyle-1,4-dicarboxylique avec plus de 70 % en moles de celle-ci en forme d'isomère trans et R7 est dérive de cyclohexyle-1,4-diméthanol avec plus de 70 % en moles de ceux-ci en forme d'isomère trans.
     
    9. Composition selon la revendication 1, dans laquelle R9 inclut au moins un 60% en poids des unités de la formule (XX)

    dans laquelle R10 et R11 sont, indépendamment en chaque occurrence, un atome d'halogène ou un groupe hydrocarburé monovalent ; p et q chacun sont des nombres entiers indépendants l'un de l'autre de 0 à 4 ; et X représente l'un des groupes de la formule (XXI) ou (XXII)

    dans laquelle R12 et R13 sont, indépendamment en chaque occurrence, un atome d'hydrogène ou un groupe hydrocarbure linéaire monovalent ou cyclique ayant 1 à 8 atomes de carbone et R14 est un groupe hydrocarbure divalent ayant 1 à 8 atomes de carbone; de préférence X est isopropylidène et p et q sont chacun égaux à zéro.
     
    10. Méthode de fabrication de la composition selon la revendication 1, comprenant l'étape consistant à mélanger en coulée les composants de la composition selon la revendication 1.
     
    11. Méthode pour le moulage d'un article, comprenant le moulage par injection, l'extrusion, le moulage par injection-soufflage, le moulage par soufflage assisté par gaz, ou le moulage sous vide de la composition selon la revendication 1 pour mouler un article.
     
    12. Un article comprenant la composition selon la revendication 1, dans laquelle l'article est un article moulé par extrusion ou par injection, de préférence un composant d'un dispositif électronique portatif tel qu'un téléphone cellulaire, ou dans laquelle l'article de préférence possède la forme d'une lentille pour le téléphone cellulaire.
     
    13. Composition selon la revendication 1, comprenant, basée sur le poids total des composants polymère dans la composition,

    3 à 15 % en poids d'un copolymère à bloc de polysiloxane-polycarbonate comprenant des unités structurelles récurrentes de la formule (I)

    dans laquelle au moins un 60% du nombre total de groupes R1 sont des radicaux organiques aromatiques et le reste de ceux-ci est aliphatique, alicyclique, ou des radicaux aromatiques, et
    des unités structurelles récurrentes de la formule (IV)

    dans lesquelles R2 est, indépendamment en chaque occurrence, un radical organique monovalent ayant 1 à 13 atomes de carbone, R3 est un radical aliphatique divalent ayant 1 à 8 atomes de carbone ou un radical aromatique ayant 6 à 8 atomes de carbone, R4 est, indépendamment en chaque occurrence, un hydrogène, halogène, alkoxy ayant 1 à 8 atomes de carbone, alkyle ayant 1 à 8 atomes de carbone ou aryle ayant 6 à 13 atomes de carbone, et n est un nombre entier inférieur ou égal à 1000 ;

    33 à 77 % en poids d'un polyester cycloaliphatique ayant des unités structurelles récurrentes de la formule (VI)

    dans laquelle R7 et R8 sont, indépendamment en chaque occurrence, un radical contenant un groupe cycloaliphatique ayant de 5 à 20 atomes de carbone, et

    17 à 65 % en poids d'un polycarbonate qui est différent du copolymère à bloc de polycarbonate, ayant une masse moléculaire moyenne en poids inférieure à 20 000 Daltons, est qui comprend des unités structurelles récurrentes de la formule (XVIII)

    dans laquelle au moins un 60 % du nombre total de groupes R9 sont dérivés d'un bisphénol de la formule (XX)

    dans laquelle R10 et R11 sont, indépendamment en chaque occurrence, halogène ou un groupe hydrocarburé monovalent ; p et q chacun sont des nombres entiers indépendants l'un de l'autre allant de 0 à 4 ; et X représente l'un des groupes de la formule (XXI) ou (XXII)

    dans laquelle R12 et R13 sont, indépendamment en chaque occurrence, hydrogène ou un groupe hydrocarbure monovalent linéaire ou cyclique ayant 1 à 8 atomes de carbone et R14 est un groupe hydrocarbure divalent ayant 1 à 8 atomes de carbone ; et en outre dans laquelle
    la composition a une courbe de débit-volume de fonte de 24 à 35 cm3/10 minutes, mesurée conformément à ISO 1133 à 265°C et 2,16 kg, et
    dans laquelle un échantillon moulé avec une épaisseur de 3,2 mm possède une résistance au choc Izod entaillé à 800 à 1600 J/m, mesurée conformément à ASTM D-256 à 23°C.


     
    14. Composition selon la revendication 1 comprenant, basée sur le poids total des composants polymères dans la composition,

    4 à 7 % en poids d'un copolymère à bloc polysiloxane/polycarbonate, comprenant des unités structurelles récurrentes de la formule (I)

    dans laquelle au moins 60% en poids des groupes R1 sont dérivés du bisphénol A ;
    des unités structurelles récurrentes de la formule (IV)

    dans laquelle R2 est, indépendamment en chaque occurrence, un méthyle, trifluoropropyle, ou phényle, R3 est propylène, et n est un nombre entier compris entre 10 et 100 ;

    38 à 70 % en poids de poly(1,4-cyclohexane-diméthanol-1,4-dicarboxylate) ; et

    25 à 55% en poids d'un polycarbonate qui est différent du copolymère à bloc de polycarbonate, ayant une masse moléculaire moyenne en poids inférieure à 19 000 Daltons, et qui comprend des unités structurelles récurrentes de la formule (XVIII)

    dans laquelle au moins 60 % du nombre total de groupes R9 sont dérivés du bisphénol A ; et en outre dans laquelle
    la composition a une courbe de débit-volume de fonte de 24 à 35 cm3/10 minutes, mesurée conformément à ISO 1133 à 265°C et 2,16 kg, et
    dans laquelle un échantillon moulé ayant une épaisseur de 3,2 mm, une résistance au choc Izod entaillé à 800 à 1600 J/m, mesurée conformément à ASTM D-256 à 23°C.


     




    Drawing








    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description