(19)
(11) EP 2 237 958 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
03.10.2012 Bulletin 2012/40

(21) Application number: 08700342.2

(22) Date of filing: 16.01.2008
(51) International Patent Classification (IPC): 
B41J 2/17(2006.01)
B41J 2/175(2006.01)
(86) International application number:
PCT/AU2008/000044
(87) International publication number:
WO 2009/089566 (23.07.2009 Gazette 2009/30)

(54)

LOW INSERTION FORCE FLUID COUPLING

STRÖMUNGSKUPPLUNG MIT GERINGER EINFÜHRUNGSKRAFT

RACCORD DE FLUIDE À FAIBLE FORCE D'INSERTION


(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

(43) Date of publication of application:
13.10.2010 Bulletin 2010/41

(73) Proprietor: Silverbrook Research Pty. Ltd
Balmain, New South Wales 2041 (AU)

(72) Inventors:
  • HIBBARD, Christopher
    Balmain, NSW 2041 (AU)
  • MACKEY, Paul Ian
    Balmain, NSW 2041 (AU)
  • DYER, Geoffrey Philip
    Balmain, NSW 2041 (AU)
  • TSUBONO, Makomo
    Balmain, NSW 2041 (AU)
  • BERTOK, Attilla
    Balmain, NSW 2041 (AU)

(74) Representative: Keane, Paul Fachtna et al
Hanna, Moore & Curley 13 Lower Lad Lane
2 Dublin
2 Dublin (IE)


(56) References cited: : 
EP-A1- 1 164 025
EP-A2- 1 053 876
US-A1- 2002 196 312
US-A1- 2003 090 540
US-B1- 6 217 164
EP-A1- 1 520 711
US-A1- 2002 163 566
US-A1- 2003 020 040
US-A1- 2003 197 765
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF THE INVENTION



    [0001] The present invention relates to fluidic couplings and in particular, ink couplings within inkjet printers.

    BACKGROUND OF THE INVENTION



    [0002] The Applicant has developed a wide range of printers that employ pagewidth printheads instead of traditional reciprocating printhead designs. Pagewidth designs increase print speeds as the printhead does not traverse back and forth across the page to deposit a line of an image. The pagewidth printhead simply deposits the ink on the media as it moves past at high speeds. Such printheads have made it possible to perform full colour 1600dpi printing at speeds in the vicinity of 60 pages per minute, speeds previously unattainable with conventional inkjet printers.

    [0003] The high print speeds require a large ink supply flow rate. Not only are the flow rates higher but distributing the ink along the entire length of a pagewidth printhead is more complex than feeding ink to a relatively small reciprocating printhead.

    [0004] Some of the Applicant's printers provide the printhead as a user removable cartridge. This recognizes that individual ink ejection nozzles may fail over time and eventually there are enough dead nozzles to cause artifacts in the printed image. Allowing the user to replace the printhead maintains the print quality without requiring the entire printer to be replaced. It also permits the user to substitute a different printhead for different print jobs. A draft quality printhead can be installed for some low resolution documents printed at high speed, and subsequently removed and replaced with the original high resolution printhead.

    [0005] A number of the Applicant's printhead cartridges do not have an inbuilt ink supply for the printhead. These printhead cartridges need to be fluidically coupled to the ink supply upon installation. The supply flowrate to the page width printhead is too high for needle valves because of the narrow internal diameter. This requires the coupling conduits to be relatively large and therefore the engagement force required during installation is relatively high. The fluid seal is provided by a resilient element that is deformed during engagement. With larger conduits, the resilient element is larger and so to is the force required to deform it. Furthermore, full color printheads will have 3, 4 or even 5 separate couplings (CMY, CMYK, CMYKK or CMYK,IR) which only multiplies the additional coupling force necessary. Modem market expectations are that the installation and removal of cartridges and other consumables are simple and physically easy. It is also structurally undesirable to subject the cartridge to large forces. Flexing or bowing of the cartridge body can stress the electronics or nozzle structures.

    [0006] EP 1520 711 discloses a fluid coupling with two conduits.

    SUMMARY OF THE INVENTION



    [0007] Accordingly, the present invention provides a fluid coupling according to claim 1.

    [0008] The invention uses an engagement mechanism to deform the annular seal instead of the force of one conduit being pushed into the other. The exertion needed to establish the sealed fluid coupling can be reduced or removed by incorporating mechanical advantage or power assistance into the engagement mechanism. Also there is no force acting on the first conduit so it is not subjected to structural stresses.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0009] Preferred embodiments of the invention will now be described by way of example only, with reference to the accompanying drawings, in which:

    Figure 1 is a schematic section view of a fluid coupling with the first and second conduits disengaged;

    Figure 2 is a schematic section view of a fluid coupling with the first and second conduits engaged;

    Figures 3 and 4 are diagrammatic sketches of the fluid coupling being used to connect a printhead cartridge and an inkjet printer;

    Figure 5 is a section view of the fluid coupling being used to connect a printhead cartridge and a print engine;

    Figure 6 is a perspective view of the print engine with the printhead cartridge;

    Figure 7 is a perspective of the printhead cartridge;

    Figure 8 shows the printhead cartridge of Fig. 7 with the protective cover removed and,

    Figure 9 is a partially exploded perspective of the cartridge without the protective cover.

    Figure 10 is a section view of the print engine and printhead cartridge through the fluid coupling.


    DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS



    [0010] The invention will be described with specific reference to a fluid coupling between an inkjet print engine and its corresponding printhead cartridge. However, the ordinary worker will appreciate that the invention is equally applicable to other arrangements requiring a detachable fluid collection.

    [0011] In Figure 1, the fluid coupling 10 is shown with the first conduit 12 disengaged from the second conduit 14. The first conduit 12 leads to the pagewidth printhead of the removable printhead cartridge (described below). The second conduit 14 is connected to the ink supply (not shown) and sized such that it can telescopically engage the first conduit 12 with a sliding fit. The ink is retained by the shut off valve 30 biased against valve seat 34 by the resilient struts 32. The second conduit 14 defines a seal seat 35 for the annular seal 16. The annular seal 16 is retained in the seal seat 35 by the compression member 18. In the disengaged position shown in Figure 1, the annular seal 16 is not compressed by the compression member 18 such that the inner surface 36 of the seal remains flat. When flat, the inner surface 36 does not to interfere with the sliding fit between the first and second conduits (12 and 14).

    [0012] An input arm 20 is hinged to compression member 18. A compression lever 22 is fixed at an angle to the input arm 20. The input arm 20 and the compression lever 22 are part of a lever system described in greater detail below with reference to Figures 3 and 4. The lever system is an engagement mechanism that the user actuates to advance the second conduit 14 and compression member 18 onto the first conduit 12. As the input arm 20 rotates, it pushes on the hinge 24 which in turn moves the compression member 18 together with the second conduit 14.

    [0013] As best shown in Figure 2, the compression member 18 and the second conduit 14 advances until the input ann 20 is parallel to the direction of travel. Continued rotation of the input arm 20 brings the compression lever 22 into contact with the rear 26 of the second conduit 14. The compression lever 22 is carefully dimensioned to keep the second conduit 14 stationary relative to the first conduit 12 as the input arm 20 retracts the compression member 18 by pulling on the hinge 24. The compression member 18 compresses the annular seal 16 to force the flat inner surface 36 to bulge and form a fluid tight seal against the outside of the first conduit 12.

    [0014] Figure 2 also shows the first conduit 12 engaging the shut off valve 30 to open fluid communication between the ink supply and the printhead. The resilient struts 32 buckle with little resistance upon engagement with the end of the first conduit 12. Apertures 28 allow ink to flow around the valve member 30 and into the first conduit 12.

    [0015] When the fluid coupling disengages, the input ann 20 is rotated in the opposite direction to simultaneously decompress the annular seal 16 and retract the second conduit 14 from the first conduit 12. This coupling is configured establish a sealed fluid connection with the first conduit subjected to little or no insertion force. In light of this, the structure that the supports the first conduit is not overly flexed or bowed. This protects any components that are not robust enough to withstand structural deformation.

    [0016] In Figures 3 and 4, the fluid coupling 10 is used to provide a detachable connection between the cartridge 38 and the printer 42. Referring to Figure 3, the cartridge 38 is seated in the printer 42 such that the first conduits 12 face the compression member 18 (which covers the second conduits). The latch 40 is lifted to allow the cartridge to be installed. An actuator arm 56 is fixed relative to the latch 40 and rotates therewith about the hinge 50. The distal end of the actuator arm 56 is hinged to the input arm 20. When the latch is raised for cartridge installation or removal, the input arm 20 is likewise raised, which retracts the compression member 18 away from the first conduit 12. With the input arm in the raised and retracted position, the compression lever 22 is disengaged from the back of the second conduit (see 14 and 26 of Fig 2). As discussed above, the annular seal is not compressed in the disengaged position so as not to interfere with the sliding fit with the first conduit.

    [0017] Referring to Figure 4, the fluid coupling 10 is engaged by simply lowering the latch 40 onto the cartridge 38 until the complementary snap-lock formations 46 and 48 engage. Actuator arm 56 rotates the input arm 20 and advances the compression member 18 towards the first conduit 12. The first conduit 12 telescopically engages the second conduit with a loose sliding fit until the actuator arm 56 and the input arm 20 are parallel to the direction of travel. When the second conduit is at its maximum engagement with the first conduit, the shut off valve is opened and the cartridge 38 is in fluid communication with ink tank 44 via the flexible tubing 52.

    [0018] When the compression member is at its point of maximum travel towards the cartridge, the compression lever 22 engages the second conduit (not shown). The compression lever 22 is dimensioned to hold the second conduit stationary relative to the first conduit as the input arm 20 continues to rotate and draw the compression member 18 back to compress the seal and establish the fluid seal (see Fig. 2).

    [0019] Figure 5 shows a printhead cartridge 38 installed in a print engine 3. The print engine 3 is the mechanical heart of a printer which can have many different external casing shapes, ink tank locations and capacities, as well as different media feed and collection trays. The printhead cartridge 38 is inserted and removed by the user lifting and lowering the latch 40. The print engine 3 forms an electrical connection with contacts on the printhead cartridge 38 and fluid couplings 10 are formed at the inlet and outlet manifolds, 148 and 150 respectively.

    [0020] Figure 6 shows the print engine 3 with the printhead cartridge removed to reveal the apertures 120 in each of the compression members 18. Each aperture 120 receives one of the spouts 12 on the inlet and outlet manifolds (see Fig. 9). The spouts correspond to the first conduits 12 of the schematic representations of Figures 1-4. As discussed above, the ink tanks, media feed and collection trays have an arbitrary position and configuration depending on the design of the printer's outer casing.

    [0021] Figure 7 is a perspective of the complete printhead cartridge 38. The printhead cartridge 38 has a top molding 144 and a removable protective cover 142. The top molding 144 has a central web for structural stiffness and to provide grip textured surfaces 158 for manipulating the cartridge during insertion and removal. The base portion of the protective cover 142 protects the printhead ICs (not shown) and line of contacts (not shown) prior to installation in the printer. Caps 156 are integrally formed with the base portion to cover the inlet and outlet spouts (see 12 of Fig. 9).

    [0022] Figure 8 shows the cartridge 38 with its protective cover 142 removed to expose the printhead ICs (see Fig. 10) on the bottom surface and the line of contacts 133 on the side surface. The protective cover is discarded to the recycling waste or fitted to the printhead cartridge being replaced to contain leakage from residual ink. Figure 9 is a partially exploded perspective of the cartridge 38 without the protective cover. The top cover 144 has been removed reveal the inlet manifold 148 and the outlet manifold 150. The inlet and outlet shrouds 146 and 147 have been removed to expose the five inlet and outlet spouts 12. The inlet and outlet manifolds 148 and 150 feed ink to their respective connectors 60 which lead to the molded liquid crystal polymer (LCP) channels 4 that supply the printhead ICs 31 (see Fig. 10). A detailed description of the fluid flows through the cartridge 38, and the printhead assembly within it, is provided by co-pending US Patent Application (Our Docket RRE013US), the disclosure of which is incorporated herein by cross reference.

    [0023] Figure 10 is a section view through a fluid coupling 10 of the print engine 3 with the cartridge 38 installed. The components corresponding to the elements of the schematic representations of Figures 1-4 have been identified using the same reference numerals. For context, the paper path 5 is shown extending through the print engine 3 and past the printhead ICs 31.

    [0024] The coupling is shown forming a sealed fluid connection between one of the spouts 12 and the one of the second conduits 14. It will be appreciated that the coupling at the inlet and outlet manifolds are identical with the exception that the ink flows from the second conduit 14 to the spout 12 at the inlet manifold and in the opposing direction at the outlet manifold. For the purposes of this description, the coupling will be described at the inlet manifold. Accordingly, flexible tubing 52 feeds ink from an ink tank (not shown) to the second conduit 14. The shut off valve 30 in the second conduit 14 is being held open by the end of the spout 12. The ink flows into the spout 12 and down to the LCP channel molding 4 where it is distributed to the printhead ICs 31.

    [0025] The coupling 10 is actuated by the actuator arm 56 hinged to the print engine chassis 42 at shaft 50. As discussed above the latch 40 (not shown in Fig. 10) also extends from the shaft 50 for fixed rotation with the actuator arm 56. The actuator arm 56 rotates the input arm 20 to push the compression member 18, and in turn the second conduit 14 into telescopic engagement with the spout 12. Upon further rotation, the compression lever 22 engages the rear 26 of the second conduit 14. The input arm 20 draws back on the hinge connection 24 which in turn pulls on the central rod 58 extending to the middle of the compression member 18. The resilient seal 16 is compressed and bulges to form a fluid tight seal against the outer surface of the spout 12. It will be appreciated that the compression member 18 compresses all the annular seals 16 for each of the input spouts 12 simultaneously. Using a central rod 58 attached to the middle of the compression member 18 ensures that the compressive force on each annular seal is uniform. Furthermore, as the latch 40 is the longest lever of the lever system, the force that the user needs to apply is conveniently weak.

    [0026] When the printhead cartridge 38 is to be replaced, the latch (not shown) is lifted off the cartridge to automatically rotate the actuator arm 56 upwards, thereby lifting and retracting the input arm 20. The annular seal 16 is released when the compression lever 22 swings out of engagement with the surface 26. The second conduits and the corresponding spouts 12 now have a loose sliding fit and slide easily away from each other. With the compression member 18 and the spouts 12 completely disengaged, the user simply lifts the cartridge 38 out of the print engine 3.

    [0027] The above embodiments are illustrative and not restrictive or limiting on the scope of the invention. The skilled worker will readily recognize many variations and modifications which do not depart from the scope of the invention as claimed.


    Claims

    1. A fluid coupling (10) comprising:

    a first conduit (12);

    a second conduit (14) for slidingly telescopically receiving the first conduit, the second conduit comprising:

    a circumferential seal seat (35);

    a compression member (18) axially movable relative to the seal seat;

    a resilient annular seal (16) sandwiched between the seal seat and the compression member, the annular seal being axially compressible by the compression member against the seal seat;

    a circumferential valve seat (34);

    a shut-off valve (30) for engagement with an end of the first conduit;

    resilient struts (32) for biasing the shut-off valve against the valve seat, said resilient struts being configured for buckling and opening the valve; and

    an engagement mechanism (20,22) for slidingly moving the second conduit between a disengaged position and an engaged position in which the first conduit is telescopically received in the second conduit,

    wherein the engagement mechanism is further configured to move the compression member towards the seal seat so as to axially compress the annular seal and thereby bulge the annular seal against an exterior surface of the first conduit.
     
    2. A fluid coupling according to claim 1 wherein the engagement mechanism is manually actuatable via a lever system.
     
    3. A fluid coupling according to claim 2 wherein the first conduit is part of a cartridge and the second conduit is part of a device that uses the cartridge during operation.
     
    4. A fluid coupling according to claim 1 wherein the annular seal is a ring of resilient material.
     
    5. A fluid coupling according to claim 4 wherein the ring of resilient material has a radial cross sectional shape with at least one straight side when uncompressed.
     
    6. A fluid coupling according to claim 3 wherein the cartridge has a plurality of first conduits and the device has a corresponding plurality of second conduits, and wherein the lever system is configured for simultaneously engaging and disengaging the plurality of first and second conduits.
     
    7. A fluid coupling according to claim 6 wherein the second conduits are arranged in a circle and the lever system is connected to the centre of the circle.
     
    8. A fluid coupling according to claim 7 wherein the device is a print engine for an inkjet printer and the cartridge has an inkjet printhead.
     


    Ansprüche

    1. Flüssigkeitskupplung (10), die Folgendes umfasst:

    eine erste Leitung (12);

    eine zweite Leitung (14) zum gleitenden teleskopischen Aufnehmen der ersten Leitung, wobei die zweite Leitung Folgendes umfasst:

    einen umlaufenden Dichtungssitz (35);

    ein Kompressionselement (18), das in Bezug auf den Dichtungssitz axial beweglich ist;

    eine elastische Ringdichtung (16), die zwischen dem Dichtungssitz und dem Kompressionselement eingeschoben ist, wobei die Ringdichtung durch das Kompressionselement axial gegen den Dichtungssitz komprimierbar ist;

    einen umlaufenden Ventilsitz (34);

    ein Absperrventil (30) zum Einrücken mit einem Ende der ersten Leitung;

    elastische Streben (32) zum Vorspannen des Absperrventils gegen den Ventilsitz, wobei die elastischen Streben zum Krümmen und Öffnen des Ventils konfiguriert sind; und

    einen Einrückmechanismus (20, 22) zum gleitenden Bewegen der zweiten Leitung zwischen einer ausgerückten Position und einer eingerückten Position, in der die erste Leitung teleskopisch in der zweiten Leitung aufgenommen wird,

    wobei der Einrückmechanismus weiterhin dazu konfiguriert ist, das Kompressionselement in Richtung des Dichtungssitzes zu bewegen, um die Ringdichtung axial zu komprimieren und dadurch die Ringdichtung gegen eine Außenfläche der ersten Leitung zu wölben.
     
    2. Flüssigkeitskupplung nach Anspruch 1, wobei der Einrückmechanismus mittels eines Hebelsystems von Hand betätigt werden kann.
     
    3. Flüssigkeitskupplung nach Anspruch 2, wobei die erste Leitung Teil einer Patrone ist und die zweite Leitung Teil einer Vorrichtung ist, die die Patrone im Betrieb verwendet.
     
    4. Flüssigkeitskupplung nach Anspruch 1, wobei die Ringdichtung ein Ring aus elastischem Material ist.
     
    5. Flüssigkeitskupplung nach Anspruch 4, wobei der Ring aus elastischem Material eine radiale Querschnittsform mit mindestens einer geraden Seite aufweist, wenn er nicht komprimiert ist.
     
    6. Flüssigkeitskupplung nach Anspruch 3, wobei die Patrone eine Vielzahl von ersten Leitungen aufweist und die Vorrichtung eine entsprechende Vielzahl von zweiten Leitungen aufweist und wobei das Hebelsystem zum gleichzeitigen Einrücken und Ausrücken der Vielzahl von ersten und zweiten Leitungen konfiguriert ist.
     
    7. Flüssigkeitskupplung nach Anspruch 6, wobei die zweiten Leitungen in einem Kreis angeordnet sind und das Hebelsystem mit der Mitte des Kreises verbunden ist.
     
    8. Flüssigkeitskupplung nach Anspruch 7, wobei die Vorrichtung ein Druckwerk für einen Tintenstrahldrucker ist und die Patrone einen Tintenstrahldruckkopf aufweist.
     


    Revendications

    1. Raccord de fluide (10) comprenant :

    - un premier conduit (12) ;

    - un second conduit (14) destiné à recevoir de manière coulissante et télescopique le premier conduit, le second conduit comprenant :

    - un siège circonférentiel de joint (35) ;

    - un élément de compression (18) déplaçable axialement par rapport au siège de joint ;

    - un joint annulaire élastique (16) pris en sandwich entre le siège de joint et l'élément de compression, le joint annulaire étant compressible axialement par l'élément de compression contre le siège de joint ;

    - un siège de soupape circonférentiel (34) ;

    - une soupape de fermeture (30) pour un engagement avec une extrémité du premier conduit ;

    - des entretoises élastiques (32) destinées à solliciter la soupape de fermeture contre le siège de soupape, lesdites entretoises élastiques étant configurées pour se déformer et ouvrir la soupape ; et

    - un mécanisme d'engagement (20, 22) destiné à déplacer de manière coulissante le second conduit entre une position désengagée et une position engagée dans laquelle le premier conduit est reçu de manière télescopique dans le second conduit,

    le mécanisme d'engagement étant en outre configuré pour déplacer l'élément de compression en direction du siège de joint de façon à comprimer axialement le joint annulaire et faire ainsi se bomber le joint annulaire contre une surface extérieure du premier conduit.
     
    2. Raccord de fluide selon la revendication 1, dans lequel le mécanisme d'engagement est actionnable manuellement par l'intermédiaire d'un système de levier.
     
    3. Raccord de fluide selon la revendication 2, dans lequel le premier conduit fait partie d'une cartouche et le second conduit fait partie d'un dispositif qui utilise la cartouche durant le fonctionnement.
     
    4. Raccord de fluide selon la revendication 1, dans lequel le joint annulaire est un anneau de matière élastique.
     
    5. Raccord de fluide selon la revendication 4, dans lequel l'anneau de matière élastique a une forme en section transversale radiale ayant au moins un côté rectiligne lorsqu'il n'est pas comprimé.
     
    6. Raccord de fluide selon la revendication 3, dans lequel la cartouche a une pluralité de premiers conduits et le dispositif a une pluralité correspondante de seconds conduits, et dans lequel le système de levier est configuré pour engager et désengager simultanément les différents premiers et seconds conduits.
     
    7. Raccord de fluide selon la revendication 6, dans lequel les seconds conduits sont agencés en un cercle et le système de levier est relié au centre du cercle.
     
    8. Raccord de fluide selon la revendication 7, dans lequel le dispositif est un moteur d'impression pour une imprimante à jet d'encre et la cartouche a une tête d'impression à jet d'encre.
     




    Drawing
































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description