(19)
(11) EP 2 024 052 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
03.04.2013 Bulletin 2013/14

(21) Application number: 07861307.2

(22) Date of filing: 09.05.2007
(51) International Patent Classification (IPC): 
B01D 45/08(2006.01)
(86) International application number:
PCT/US2007/011181
(87) International publication number:
WO 2008/045138 (17.04.2008 Gazette 2008/16)

(54)

GAS-LIQUID SEPARATOR UTILIZING TURNING VANES TO CAPTURE LIQUID DROPLETS AND REDIRECT GAS FLOW AROUND A BEND

GAS-FLÜSSIG-TRENNER UNTER VERWENDUNG VON REGELKLAPPEN ZUM AUFFANGEN DER FLÜSSIGKEITSTRÖPFCHEN UND ZUM UMLEITEN DES GASFLUSSES UM EINE KURVE

SÉPARATEUR GAZ/LIQUIDE UTILISANT DES AUBES DIRECTRICES POUR CAPTURER DES GOUTTELETTES DE LIQUIDE ET REDIRIGER LE FLUX GAZEUX SUR UN COUDE


(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

(30) Priority: 19.05.2006 US 437297

(43) Date of publication of application:
18.02.2009 Bulletin 2009/08

(73) Proprietor: Grupo Petrotemex, S.A. de C.V.
66265 San Pedro Garza Garcia, Nuevo Leon (MX)

(72) Inventor:
  • SCHERRER, Paul, Keith
    Johnson City, TN 37604-3762 (US)

(74) Representative: Tostmann, Holger Carl et al
Wallinger Ricker Schlotter Tostmann Patent- und Rechtsanwälte Zweibrückenstrasse 5-7
80331 München
80331 München (DE)


(56) References cited: : 
EP-A1- 0 096 916
CH-A5- 621 490
DE-C- 696 401
US-A- 3 254 475
WO-A2-2006/138114
DE-C- 543 466
US-A- 2 474 695
US-B2- 7 004 998
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF THE INVENTION


    1. Field of the Invention



    [0001] The present invention is directed to separation of liquid droplets from gas-liquid streams in chemical processes.

    2. Background Art



    [0002] Many chemical processes require take-off of a gas phase from chemical processing equipment such as chemical reactors. In some cases, the nature of the various reactants, products, and by-products facilitate removal of a gas phase substantially free of liquid. However, in other processes, considerable quantities of liquid droplets may be associated with the gas phase, and in the case where the liquid droplets can later solidify, whether due strictly to a phase change or to subsequent reaction, lines and valves may be plugged and require disassembly and cleaning or replacement. Furthermore, in many cases, the liquid droplets may constitute a loss of valuable reactants, intermediate products, or end products. For example, during preparation of polyethylene terephthalate polymers, polymer and oligomer particles may carry over with ethylene glycol and water as the latter are removed from the reactor in a vapor phase.

    [0003] Many types of devices for liquid removal from gas streams are known, including cyclone separators, chill plates, filters, and the like. Packed columns efficiently remove liquid droplets, for example. However, many of these methods, for instance chill plates, are energy intensive, and others such as packed columns exhibit a severe pressure drop as well as being prone to plugging. In-line filters also suffer from these drawbacks.

    [0004] Inertial separators or traps make use of the fact that a flowing gas can easily make turns that droplets with large inertia cannot. The droplets that cannot turn with the gas stream because of their inertia strike or impact a target or collecting surface onto which they are deposited. A simple pipe elbow is an example of such a separator. However, such separators are generally efficient only for droplets of materials with large inertia. Since the inertia of the droplets is measured by its mass, the size and density of the droplets is important in determining the removal efficiency.

    [0005] In U.S. Patent No. 5,181,943, liquid removal is effectuated by providing a large number of plate-type baffles across the path of a liquid-gas stream, the baffles being substantially parallel but downward sloping, and alternately extending from opposite sides of the separation device, are positioned transverse to the initial direction of flow. This device creates a high surface area serpentine path, and must be quite large if pressure drop is to be low. Since in many cases the separator must be maintained at a specific operating temperature and thus requires considerable external insulation, such devices are relatively capital intensive.

    [0006] U.S. Patent No. 5,510,017 discloses a gas-liquid separator involving two sets of concentric, radially arranged vanes, which cause a swirling flow of liquid-containing gas directed therethrough. The centrifugal forces generated cause liquid droplets to impinge upon the walls of the pipe section containing the separator, from which they are removed as bulk liquid by a series of drains. This device is of rather complex construction, and is believed to be useable only when configured for horizontal flow due to the placement of liquid-trapping baffles and drains. Moreover, conversion of linear flow to a swirling flow necessarily requires energy, which is manifested as a pressure drop.

    [0007] WO 2006/138114 relates to a gas liquid separation enhancer that can be placed within a conduit attached to a polymerization reactor. The gas-liquid separation enhancer separates liquid, and in particular liquid droplets from a gas stream. The separation enhancer includes a central return channel and a plurality of longitudinally extending vanes. The longitudinally extending vanes are positioned to direct a portion of any liquid contacting the vanes int the central return channel.

    [0008] US 7 004 998 discloses a gas liquid separator that comprises an elbow into which is inserted a fishbone shaped impingement device comprising downward sloping vanes. The vanes are attached to a central spine within the elbow. The vanes may have an opening along the length thereof, and a bottom lip to channel accumulated liquid to one or more collection points, preferably the elbow internal wall.

    [0009] DE 696 401 discloses a process for removing dust from gases using bent sections of exhaust ducts.

    [0010] CH 621 490 relates t a high velocity water separation device.

    [0011] EP 096 916 relates to a high velocity water separation device.

    [0012] EP 0 197 060 discloses a gas liquid separator useful in gas desulfurizing, which employs a plurality of groups of obliquely mounted large surface area slats which are sprayed with a rinsing liquid to carry away droplets impinging upon the slats. Use of a rinsing liquid is undesirable in many applications.

    [0013] U.S. Patent No. 7,004,998 (the '998 patent) discloses a gas-liquid separator that is referred to as a fishbone separator because the construction of it involves a central spine from which emanates a plurality of vanes for collecting liquid droplets. The fishbone construction described in the '998 patent is limited in that it is placed in the upstream (inlet) region of an elbow where the centerline of the elbow inlet is substantially vertical. This limitation is significant in that the conduit system carrying the gas exiting polymerization reactors tend to be large and inflexible offering only a limited number of available conduit positions for placing the gas-liquid separator. In some conduit layouts the upstream (inlet) region of an elbow may not be accessible, or an elbow as such may not be present in the conduit system.

    [0014] U.S. Patent Application Serial No. 11/155,756 (the '756 application) discloses a liquid separator adapted to be inserted into a conduit. The gas-liquid separation enhancer of the '756 application includes downward sloping vanes and an optionally return channel. The vanes of the '756 application are arranged in a simple fishbone pattern. The vanes may have an opening along the length of the vanes, and a bottom lip to channel accumulated liquid to the conduit wall or to sloped return channels. The '756 application utilizes sloped return channel/channels to return the captured droplets to the vessel from which the gas stream originated. With a central return channel, the vanes can be attached directly to the channel with the resulting assembly having a fishbone shape. The '756 application also discloses vanes that can be attached to a central plate or spine with the resulting spine-vanes assembly again having a simple fishbone shape. With all separation devices, an important goal is to reduce the amount of carryover with the least amount of pressure drop possible.

    [0015] Accordingly, there is a need for a gas-liquid separator with improved collection efficiency and lower pressure drop that returns the captured liquid to the vessel from which the liquid originated.

    SUMMARY OF THE INVENTION



    [0016] The present invention solves one or more problems of the prior art by providing in one embodiment, a gas liquid separation enhancer according to claim 1 or claim 2 that can be placed within a conduit attached to a polymerization reactor. The gas-liquid separation enhancer of the present embodiment is advantageously used to separate a liquid from a flowing gas stream having gas and liquid droplets by directing the gas stream into and through the gas-liquid separation enhancer. The separation enhancer includes a bent conduit section that redirects stream from a first average direction to a second average direction. The separation enhancer of this embodiment further comprises a plurality of longitudinally extending turning vanes distributed within the bent conduit section. At least a portion of the vanes have a bend that redirects a portion of the flowing gas stream from an initial direction substantially parallel to a first average direction to a final direction substantially parallel to a second average direction. Moreover, each of the vanes has a first end and a second end. The vanes are positioned in the bent conduit section to direct a portion of any liquid contacting the vanes to either the first end or the second end when the gas-liquid separation enhancer is incorporated into an outlet conduit from which stream exits. The present embodiment includes variations with claim 1 and without claim 2 a central spine about which the vanes are distributed.

    [0017] In another embodiment, an outlet conduit having two or more gas-liquid separation enhancers is described. The outlet conduit of this embodiment includes the gas-liquid separation enhancer having turning vanes set forth above and one or more additional separation enhancers upstream or downstream (from the enhancer having turning vanes) in the outlet conduit. The one or more additional separation enhancers may include turning vanes or non-turning vanes or combinations thereof.

    [0018] In still another embodiment, a method of separating liquid droplets from a flowing stream having liquid droplets entrained in a gas is described. The method of this embodiment comprises directing the flowing stream through the gas-liquid separation enhancers of the present invention as set forth above. The flowing stream contacts the turning vanes. A portion of the liquid droplets are impinged upon a surface of the vanes and are thereby collected. The collected liquid is then directed back into a vessel or reactor from which they originally emanated.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0019] 

    FIGURE 1 is a schematic illustration of a reactor with a gas takeoff incorporating the gas-liquid separation enhancer of the invention;

    FIGURE 2 is a cross-sectional view of a conduit section incorporating an embodiment of the gas-liquid separation enhancer of the present invention;

    FIGURE 3A is a cross-sectional view of a turning vane used in an embodiment of the gas-liquid separation enhancer of the invention;

    FIGURE 3B is a perspective view of a turning vane used in an embodiment of the gas-liquid separation enhancer of the invention;

    FIGURE 4 is a perspective view of an embodiment of separation enhancer with a central spine;

    FIGURE 5 is a perspective view of the distribution of vanes about a central spine in the separation enhancer of Figure 4;

    FIGURE 6A is a perspective view of a vane assembly that is usable in variations of the gas-liquid separation enhancer of the present invention;

    FIGURE 6B is a side view of a cutout useable in the vane assembly of Figure 6A;

    FIGURE 7 is a schematic illustration showing a perspective view of a separation enhancer with a peripheral return channel;

    FIGURE 8A is a schematic illustration showing a perspective view of an embodiment of a separation enhancer without a central spine;

    FIGURE 8B is a schematic illustration showing a perspective view of another embodiment of separation enhancer without a central spine;

    FIGURE 9 is a schematic illustration showing a reactor incorporating two gas-liquid separation enhancers with a turning vane enhancer upstream of a separation enhancer having non-turning vanes;

    FIGURE 10 is a schematic illustration showing additional detail of the separation enhancers of Figure 9;

    FIGURE 11 provides the removal efficiency of liquid droplets having a diameter from 5 to 40 micron by various separation enhancer configurations; and

    FIGURE 12 provides a schematic illustration of an embodiment of the present invention incorporating two or more gas-liquid separation enhancers into a gas takeoff conduit.


    DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S)



    [0020] Reference will now be made in detail to presently preferred compositions or embodiments and methods.

    [0021] With reference to Figures 1, 2, 3A, and 3B, schematic illustrations of an embodiment of the gas-liquid separation enhancer of the present invention are provided. Figure 1 is a schematic illustration of a reactor with a gas takeoff incorporating the gas-liquid separation enhancer of the invention. Figure 2 is a cross-sectional view of a conduit section incorporating the gas-liquid separation enhancer. Figure 3A is a cross-sectional view of a turning vane used in an embodiment of the gas-liquid separation enhancer of the invention. Figure 3B is a perspective view of a turning vane used in an embodiment of the gas-liquid separation enhancer of the invention. The gas-liquid separation enhancer of the present embodiment is advantageously used to separate a liquid from a flowing gas stream having gas and liquid droplets by directing the gas stream into and through the gas-liquid separation enhancer. Separation enhancer 10 includes bent conduit section 12 that redirects stream 14 from first average direction d1 to second average direction d2. Bent conduit 12 is defined by peripheral conduit wall 20. Examples of configurations that can be used for bent conduit section 12 include standard tee, standard elbows, and mitered bends. Separation enhancer 10 further comprises a plurality of longitudinally extending vanes 22 distributed within bent conduit section 12. One or more of vanes 22 have bend 24 that redirects a portion 26 of stream 14 from initial direction d3 substantially parallel to first average direction d1 to final direction d4 substantially parallel to second average direction d2. Vanes are positioned to provide a surface to contact the stream having gas and liquid droplets. Moreover, each of vanes 22 is positioned to provide substantially maximal contact with the stream having gas and liquid droplets. One or more of vanes 22 have first end 30 and second end 32. At least one of vanes 22 are positioned to direct a portion of any liquid contacting the vanes to either first end 30 or second end 32 when the gas-liquid separation enhancer 10 is incorporated in outlet conduit (i.e., gas takeoff) 40 from which stream 14 exits. In a variation, stream 14 emerges from reactor 42. In other variations, reactor 42 is a vessel. In a specific variation, reactor 42 is a polymerization reactor.

    [0022] With reference to Figures 3A and 3B, one or more vanes 22 include first section 50 and second section 52. First section 50 and second section 52 are configured to define at least a portion of bend 54 such that portion 56 of the stream incident upon the first section is redirected along the second section. Bend 54 defines a curvature defined by a first radius of curvature. In a variation, bent conduit 12 includes a bend defining a second radius of curvature such that the first radius of curvature is from about 0.2 to about 1.3 times the second radius of curvature. In a refinement of the present invention, vanes 22 include lips 60, 62 which provide a conduit for transporting captured liquid towards first end 30 or second end 32 depending on the orientation of vanes 22.

    [0023] With reference to Figures 1, 4 and 5, an embodiment of the present invention in which a distribution of vanes with a central spine that is usable in a liquid-gas separation enhancer is schematically illustrated. Figure 4 is a perspective view of a separation enhancer with a central spine positioned in a rectangular or square bent conduit. A wall is removed from Figure 4 to reveal the internal distribution of vanes. Figure 5 is a perspective view of the distribution of vanes around a central spine. Separation enhancer 70 includes bent conduit 72, which is of a rectangular or square cross-section. It should be appreciated that bent conduits of virtually any cross-section are usable, including but not limited to, substantially round or elliptical cross-sections. In the present variations, vanes 22 are distributed about and on both sides of central spine 76 in a fishbone pattern. Because the vanes 22 redirect (i.e. turn) the gas flow, the separation enhancers of the present invention are sometimes referred to as "turning vane fishbone enhancers" while the prior art enhancers of U.S. Patent No. 7,004,998 and U.S. Patent Application Serial No. 11/155,756 are referred to as "simple fishbone enhancers." In a variation of the present embodiment, central spine includes one or more liquid collecting lips or channels 80, 82. In one refinement of this variation, one or more of vanes 22 are positioned to direct a portion of any liquid contacting the vanes to first end 30 and into channels 80, 82. Channels 80, 82 are at an angle with respect to a horizontal plane so that captured liquid moves toward end 90 and draining back into reactor 42. Specifically, liquid that enters channels 80, 82 is directed in a downward direction under the force of gravity and into reactor 42 when the separation enhancer is incorporated into outlet conduit 40.

    [0024] With reference to Figures 6A and 6B, another variation of a separation enhancer with a central spine is schematically illustrated. Figure 6A provides a perspective view of a vane assembly that is usable in variations of the gas-liquid separation enhancer of the present invention. In this variation, vanes 22 are arranged about central spine 100. Central spine 100 includes internal channel 102 into which liquid captured by vanes 22 enters. Vanes 22 are angled such that liquid flows downward from second end 32 towards first end 30 and into internal channel 102. In a refinement, vanes 22 are attached to walls 104, 106 of central spine 100. Moreover, central spine 100 has cutouts 110 that allow liquid to pass from vanes 22 into internal channel 102. Figure 6B shows detail of cutout 110.

    [0025] With reference to Figure 7, a schematic illustration showing a perspective view of a separation enhancer with a peripheral return channel is provided. In separation enhancer 120, vanes 22 are positioned to direct a portion of any liquid contacting the vanes toward second end 32 away from first end 30 and central spine 122. In a refinement of this variation, separation enhancer 120 includes peripheral return channel 124 that directs liquid in a downward direction. In a variation of the invention, peripheral return channel 124 is positioned in front of second end 32 of each vane of the plurality of vanes 22, and adjacent to an inner wall of the conduit in which separation enhancer is placed.

    [0026] With reference to Figure 8A, an embodiment of the present invention in which a distribution of vanes without a central spine usable in a separation enhancer is schematically illustrated. Figure 8A provides a schematic illustration showing a perspective view of the separation enhancer of this embodiment. A wall is removed in Figure 8A to reveal the interior distribution of vanes. Separation enhancer 130 includes bent conduit 132, which is of a rectangular or square cross-section. It should be appreciated that bent conduits of virtually any cross-section are usable, including but not limited to, substantially round or elliptical cross-sections. In the present variations, vanes 22 are distributed about and on both sides of central space 134. In a variation, one or more of vanes 22 are positioned to direct a portion of any liquid contacting the vanes away from second end 32 towards first end 30 through space 134 and downward into reactor 42. In another variation, one or more of vanes 22 are positioned to direct a portion of any liquid contacting the vanes away from first end 30 towards second end 32 at which point the liquid falls downward into reactor 42. In a refinement of this latter variation, separation enhancer 130 includes a peripheral return channel as set forth above in connection with the description of Figure 7.

    [0027] With reference to Figure 8B, another embodiment of the present invention in which a distribution of vanes without a central spine usable in a separation enhancer is schematically illustrated. Figure 8B provides a schematic illustration showing a perspective view of the separation enhancer of this embodiment. A wall removed in Figure 8B reveals the interior distribution of vanes. Separation enhancer 140 includes bent conduit 142, which is of a rectangular or square cross-section. It should be appreciated that bent conduits of virtually any cross-section are usable, including but not limited to, substantially round or elliptical cross-sections. In the present variations, vanes 22 are attached to wall 144. In a variation, one or more of vanes 22 are positioned to direct a portion of any liquid contacting the vanes away from first end 30 towards second end 32 and towards wall 144. In another variation, one or more of vanes 22 are positioned to direct a portion of any liquid contacting the vanes away from second end 32 towards first end 30 at which point the liquid falls downward into reactor 42. In this variation, the vanes slope downward from second end 32 to first end 30 (not shown). In a refinement of this latter variation, separation enhancer 130 includes a peripheral return channel as set forth above in connection with the description of Figure 7.

    [0028] With reference to Figures 9 and 10, an embodiment of the present invention incorporating two or more gas-liquid separation enhancers into an exit conduit of a reactor is provided. Figure 9 is a schematic illustration of an example of a polymerization reactor incorporating the enhancers of this embodiment with a turning vane enhancer upstream of a separation enhancer having non-turning vanes. Reactor 150 includes separation enhancer 10 as set forth above. Separation enhancer 10 includes bent conduit section 12 that redirects stream 14 from first average direction d1 to second average direction d2. Separation enhancer 10 further comprises a plurality of longitudinally extending vanes 22 distributed within bent conduit section 12 as set forth above. The details of which as set forth above in connection with the description of Figures 1 through 8. Also positioned in conduit 12 is a second separation enhancer 158. Advantageously, the design of useful separation enhancer 158 is provided in U.S. Patent Application Serial No. 11/155,756. Moreover, the gas-liquid separators of U.S. Patent No. 7,004,998 can also be used in tandem with the separation enhancers. The details of each of these references is hereby incorporated by reference in their entirety. Figure 10 provides a schematic illustration of the positioning of vanes within the two separation enhancers. Separation enhancer 10 includes vanes 22 as set forth above. Separation enhancer 158 includes a plurality of vanes 160, which collect liquid via surfaces 162. Collected liquid accumulates in collecting lips or channels 164 and is directed into central channel 166.

    [0029] Figure 11 plots the removal efficiency of liquid droplets having a diameter from 5 to 40 micron by various separation enhancers. The utilization of a gas-liquid separation enhancer of the present invention in tandem with a separation enhancer with non-turning vanes is found to have an even higher removal efficiency.

    [0030] With reference to Figure 12, an embodiment of the present invention incorporating two or more gas-liquid separation enhancers into an exit conduit of a reactor is provided. Reactor 170 includes separation enhancer 10 as set forth above. Separation enhancer 10 includes bent conduit section 12 that redirects stream 14 from first average direction d1 to second average direction d2. Separation enhancer 10 further comprises a plurality of longitudinally extending vanes 22 distributed within bent conduit section 12 as set forth above. The details of which are set forth above in connection with the description of Figures 1 through 8. Also positioned in conduit 12 is a second separation enhancer 172 located upstream of separation enhancer 10. Separation enhancer 172 includes non-turning vanes as set forth in U.S. Patent Application Serial No. 11/155,756.

    [0031] In addition to the embodiments described above, the separation enhancer may be fitted or connected to any vessel suitable for polymerizing reactants to make polymers or finish polymers in which a gas and liquid is evolved from a liquid reaction mixture or melt. Suitable vessels onto which the separation enhancer may be fitted or connected include those used to make polyethylene, poly(vinylchloride), polyisobutylene, polyamides including polycaprolactams, polyesters, polystyrene, polyisoprene, polycarbonates, polyoxyalkylene polyols, polyimides, polysulfides, polyphenylenes, polysulfones, polyolefins, polymethylbenzenes, acetal polymers, acrylic polymers, acrylonitrile polymers, fluoropolymers, ionomeric polymers, polyketones, liquid crystal polymers, polyenes, polyurethanes, and the like, and the copolymers thereof, and especially polycarbonates and polyesters (e.g., PET and the copolymers thereof) and the copolymers thereof. Also included are any other processes which make compounds instead of polymers such as acetyls, alcohols, fine chemicals, and pharma chemicals. The separation enhancer is useful to fit or connect to any reaction vessel in which gases are generated having different boiling points, one of the gases condensable or condensing on a surface without the application of applied heat energy to cool the gas.

    [0032] While embodiments of the invention have been illustrated and described, it is not intended that these embodiments illustrate and describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention.


    Claims

    1. A gas-liquid separation enhancer (10) for separating liquid from a stream (14) having gas and liquid droplets, the separation enhancer comprising:

    a bent conduit section (12) that redirects the stream (14) from a first average direction to a second average direction, the bent conduit (12) being defined by a peripheral conduit wall (20); and

    a plurality of longitudinally extending vanes distributed within the bent conduit, one or more of the vanes (22) having a first section (50) and a second section (52), the first section (50) and second section (52) configured to define at least a portion of the bend such that a portion of the stream (14) incident upon the first section is redirected along the second section, wherein said bend redirects a portion of the stream from an initial direction substantially parallel to the first average direction to a final direction substantially parallel to the second average direction, the one or more vanes (22) having a first end (30) and a second end (32) wherein the vanes (22) are positioned to direct a portion of any liquid contacting the vanes to either the first end (30) or the second end (32), and the gas-liquid separation enhancer (10) is incorporated in an outlet conduit from which the stream exits, wherein the separation enhancer further comprises a central spine, wherein said central spine includes one or more channels (80, 82),

    characterized in that liquid entering the one or more channels (80, 82) is directed in a downward direction under the force of gravity and flows back into the vessel (42) from which the liquid originated when the separation enhancer is incorporated in the outlet conduit (40).


     
    2. A gas-liquid separation enhancer (10) for separating liquid from a stream (14) having gas and liquid droplets, the separation enhancer comprising:

    a bent conduit section (12) that redirects the stream (14) from a first average direction to a second average direction, the bent conduit (12) being defined by a peripheral conduit wall (20); and

    a plurality of longitudinally extending vanes distributed within the bent conduit, one or more of the vanes (22) having a first section (50) and a second section (52), the first section (50) and second section (52) configured to define at least a portion of the bend such that a portion of the stream (14) incident upon the first section is redirected along the second section, wherein said bend redirects a portion of the stream from an initial direction substantially parallel to the first average direction to a final direction substantially parallel to the second average direction, the one or more vanes (22) having a first end (30) and a second end (32) wherein the vanes (22) are positioned to direct a portion of any liquid contacting the vanes to either the first end (30) or the second end (32), and the gas-liquid separation enhancer (10) is incorporated in an outlet conduit from which the stream exits,

    characterized in that one or more vanes (22) are positioned to direct a portion of any liquid contacting the vanes away from second end (32) towards first end (30) through space (134) and downward into reactor (42) or characterized in that one or more vanes (22) are positioned to direct a portion of any liquid contacting the vanes away from first end (30) towards second end (32) at which point the liquid falls downward into reactor (42), wherein said separation enhancer preferably includes a peripheral return channel.


     
    3. The separation enhancer of claim 1 or claim 2 wherein the bend has a curvature defined by a first radius of curvature.
     
    4. The separation enhancer of claim 3 wherein the bent conduit includes a bend defining a second radius of curvature such that the first radius of curvature is from about 0.2 to about 1.3 times the second radius of curvature.
     
    5. The separation enhancer of claim 1 wherein the one or more channels are at an angle with respect to a horizontal plane.
     
    6. The separation enhancer of claim 1 wherein one or more vanes are positioned to direct a portion of any liquid contacting the vanes to the second end away from the central spine.
     
    7. The separation enhancer of claim 6 further comprising a peripheral return channel, the peripheral return channel directing liquid in a downward direction.
     
    8. The separation enhancer of claim 7 wherein the peripheral return channel is positioned in front of the second end of each vane of the plurality of vanes and adjacent to an inner wall of the conduit.
     
    9. The separation enhancer of claim 7 wherein the peripheral return channel is positioned behind the second end of each vane of the plurality of vanes and adjacent to an inner wall of the conduit.
     
    10. The separation enhancer of claim 1 or claim 2 wherein one or more vanes are positioned to direct a portion of any liquid contacting the one or more vanes to the second end and the peripheral conduit wall.
     
    11. The separation enhancer of claim 10 further comprising a peripheral return channel, the peripheral return channel directing liquid in a downward direction and into the polymerization reactor when the separation enhancer is incorporated in the outlet conduit.
     
    12. The separation enhancer of claim 1 or claim 2 wherein each vane is positioned to provide a surface to contact the stream having gas and liquid droplets.
     
    13. The separation enhancer of claim 12 wherein each vane is positioned to provide substantially maximal contact with the stream having gas and liquid droplets.
     
    14. The separation enhancer of claim 1 or claim 2 wherein each vane (22) has one or more fluid collecting lips (60, 62).
     
    15. A process for the separation of droplets of liquid from a flowing gas stream, comprising directing the gas stream into the separation enhancer of claim 1 or claim 2.
     


    Ansprüche

    1. Gas/Flüssigkeit-Trennverstärker (10) zum Abtrennen von Flüssigkeit aus einem Strom (14), welcher Gas und Flüssigkeitstropfen aufweist, wobei der Trennverstärker umfasst:

    einen abgeknickten Kanalabschnitt (12), der den Strom (14) aus einer ersten Durchschnittsrichtung in eine zweite Durchschnittsrichtung umleitet, wobei der abgeknickte Kanal (12) durch eine periphere Kanalwandung (20) definiert wird; und

    eine Vielzahl sich der Länge nach erstreckende Trennwände, die innerhalb des abgeknickten Kanals verteilt sind, wobei eine oder mehrere der Trennwände (22) einen ersten Abschnitt (50) und einen zweiten Abschnitt (52) aufweisen, wobei der erste Abschnitt (50) und der zweite Abschnitt (52) so ausgestaltet sind, dass sie mindestens einen Teil des Knicks definieren, derart, dass ein Teil des Stroms (14), welcher in den ersten Abschnitt einfließt, entlang des zweiten Abschnitts umgeleitet wird, wobei besagter Knick einen Teil des Stroms von einer anfänglichen Richtung, welche im Wesentlichen parallel zur ersten Durchschnittsrichtung verläuft, in eine Endrichtung umleitet, welche im Wesentlichen parallel zu der zweiten Durchschnittsrichtung verläuft, wobei die eine oder die mehreren Trennwände (22) ein erstes Ende (30) und ein zweites Ende (32) aufweisen, wobei die Trennwände (22) so positioniert sind, dass sie einen Teil irgendeiner Flüssigkeit, welche die Trennwände kontaktiert, entweder zum ersten Ende (30) oder zum zweiten Ende (32) leiten, und der Gas/Flüssigkeit-Trennverstärker (10) in einen Auslasskanal eingebettet ist, aus welchem der Strom austritt, wobei der Trennverstärker weiter ein zentrales Rückgrat aufweist, wobei besagtes zentrales Rückgrat ein oder mehrere Kanäle (80, 82) beinhaltet,

    dadurch gekennzeichnet, dass Flüssigkeit, welche einen oder mehrere der Kanäle (80, 82) betritt, unter der Kraft der Gravitation in eine nach unten gerichtete Richtung gerichtet wird und zurück in den Kessel (42) zurückfließt, aus dem die Flüssigkeit stammt, wenn der Trennverstärker in den Auslasskanal (40) eingebettet wird.


     
    2. Gas/Flüssigkeit-Trennverstärker (10) zum Abtrennen von Flüssigkeit aus einem Strom (14), welcher Gas und Flüssigkeitstropfen aufweist, wobei der Trennverstärker umfasst:

    einen abgeknickten Kanalabschnitt (12), der den Strom (14) aus einer ersten Durchschnittsrichtung in eine zweite Durchschnittsrichtung umleitet, wobei der abgeknickte Kanal (12) durch eine periphere Kanalwandung (20) definiert wird; und

    eine Vielzahl sich der Länge nach erstreckende Trennwände, die innerhalb des abgeknickten Kanals verteilt sind, wobei eine oder mehrere der Trennwände (22) einen ersten Abschnitt (50) und einen zweiten Abschnitt (52) aufweisen, wobei der erste Abschnitt (50) und der zweite Abschnitt (52) so ausgestaltet sind, dass sie mindestens einen Teil des Knicks definieren, derart, dass ein Teil des Stroms (14), welcher in den ersten Abschnitt einfließt, entlang des zweiten Abschnitts umgeleitet wird, wobei besagter Knick einen Teil des Stroms aus einer anfänglichen Richtung, welche im Wesentlichen parallel zur ersten Durchschnittsrichtung verläuft, in eine Endrichtung umleitet, welche im Wesentlichen parallel zur zweiten Durchschnittsrichtung verläuft, wobei die eine oder die mehreren Trennwände (22) ein erstes Ende (30) und ein zweites Ende (32) aufweisen, wobei die Trennwände (22) so positioniert sind, dass sie einen Teil irgendeiner Flüssigkeit, welche die Trennwände kontaktiert, entweder zum ersten Ende (30) oder zum zweiten Ende (32) leiten, und der Gas/Flüssigkeit-Trennverstärker (10) in einen Auslasskanal eingebettet ist, aus welchem der Strom austritt,

    dadurch gekennzeichnet, dass eine oder mehrere der Trennwände (22) so positioniert sind, dass sie einen Teil irgendeiner Flüssigkeit, welche die Trennwände kontaktiert, weg vom zweiten Ende (32) hin zum ersten Ende (30) durch die Aussparung (134) und nach unten in den Reaktor (42) leiten, oder dadurch gekennzeichnet, dass eine oder mehrere der Trennwände (22) so positioniert sind, dass sie einen Teil irgendeiner Flüssigkeit, welche die Trennwände kontaktiert, weg vom ersten Ende (30) hin zum zweiten Ende (32) leiten, an welchem Punkt die Flüssigkeit nach unten in den Reaktor (42) fällt, wobei besagter Trennverstärker vorzugsweise einen peripheren Rückführkanal enthält.


     
    3. Trennverstärker nach Anspruch 1 oder 2, wobei der Knick eine Krümmung aufweist, die durch einen ersten Radius der Krümmung definiert ist.
     
    4. Trennverstärker nach Anspruch 3, wobei der abgeknickte Kanal einen Knick enthält, welcher einen zweiten Radius der Krümmung definiert, derart, dass der erste Radius der Krümmung ungefähr 0,2 bis ungefähr 1,3 mal so groß wie der zweite Radius der Krümmung ist.
     
    5. Trennverstärker nach Anspruch 1, wobei der eine oder die mehreren Kanäle in einem Winkel bezüglich einer horizontalen Ebene stehen.
     
    6. Trennverstärker nach Anspruch 1, wobei eine oder mehrere der Trennwände so positioniert sind, dass sie einen Teil irgendeiner Flüssigkeit, welche die Trennwände kontaktiert, hin zum zweiten Ende und weg vom zentralen Rückgrat leiten.
     
    7. Trennverstärker nach Anspruch 6, weiter umfassend einen peripheren Rückführkanal, wobei der periphere Rückführkanal Flüssigkeit in eine nach unten gerichtete Richtung leitet.
     
    8. Trennverstärker nach Anspruch 7, wobei der periphere Rückführkanal vor dem zweiten Ende einer jeden Trennwand der Vielzahl der Trennwände positioniert ist und benachbart zu einer inneren Wandung des Kanals.
     
    9. Trennverstärker nach Anspruch 7, wobei der periphere Rückführkanal hinter dem zweiten Ende einer jeden Trennwand der Vielzahl der Trennwände positioniert ist und benachbart zu einer inneren Wand des Kanals.
     
    10. Trennverstärker nach Anspruch 1 oder 2, wobei eine oder mehrere Trennwände so positioniert sind, dass sie einen Teil irgendeiner Flüssigkeit, welche die eine oder mehrere Trennwände kontaktiert, hin zum zweiten Ende und der peripheren Kanalwand leitet.
     
    11. Trennverstärker nach Anspruch 10, weiter umfassend einen peripheren Rückführkanal, wobei der periphere Rückführkanal Flüssigkeit in eine nach unten gerichtete Richtung leitet und in den Polymerisationsreaktor, wenn der Trennverstärker im Auslasskanal eingebettet ist.
     
    12. Trennverstärker nach Anspruch 1 oder 2, wobei jede Trennwand so positioniert ist, dass sie eine Oberfläche zum Kontaktieren des Stroms zur Verfügung stellt, welcher Gas und Flüssigkeitstropfen aufweist.
     
    13. Trennverstärker nach Anspruch 12, wobei jede Trennwand so positioniert ist, dass sie im Wesentlichen einen maximalen Kontakt mit dem Strom zur Verfügung stellt, welcher Gas und Flüssigkeitstropfen aufweist.
     
    14. Trennverstärker nach Anspruch 1 oder 2, wobei jede Trennwand (22) eine oder mehrere Sammelkanten (60, 62) für Fluid aufweist.
     
    15. Verfahren zum Abtrennen von Tropfen einer Flüssigkeit aus einem fließenden Gasstrom, umfassend das Leiten des Gasstroms in den Trennverstärker nach Anspruch 1 oder Anspruch 2.
     


    Revendications

    1. Dispositif d'amélioration d'une séparation gaz/liquide (10) destiné à séparer un liquide d'un flux (14) contenant des gouttelettes de gaz et de liquide, ledit dispositif comprenant :

    une section de conduit courbé (12) qui redirige ledit flux (14) depuis une première direction moyenne vers une seconde direction moyenne, ledit conduit courbé (12) étant défini par une paroi de conduit périphérique (20) ; et

    une pluralité d'aubes s'étendant longitudinalement réparties dans ledit conduit courbé, une ou plusieurs desdites aubes (22) ayant une première section (50) et une seconde section (52), ladite première section (50) et ladite seconde section (52) étant configurées pour définir au moins une partie de ladite courbure afin qu'une partie dudit flux (14) incidente sur ladite première section soit redirigée le long de ladite seconde section, ladite courbure redirigeant une partie dudit flux depuis une direction initiale sensiblement parallèle à ladite première direction moyenne vers une direction finale sensiblement parallèle à ladite seconde direction moyenne, la ou lesdites aube(s) (22) ayant une première extrémité (30) et une seconde extrémité (32), lesdites aubes (22) étant positionnées afin de diriger une partie d'un liquide touchant lesdites aubes vers ladite première extrémité (30) ou ladite seconde extrémité (32), ledit dispositif d'amélioration de séparation gaz/liquide (10) étant intégré à un conduit d'évacuation duquel sort ledit flux, ledit dispositif comprenant en outre une colonne centrale, ladite colonne centrale comprenant un ou plusieurs canal/canaux (80, 82),

    caractérisé en ce que le liquide qui pénètre dans le(s)dit(s) canal/canaux (80, 82) est dirigé vers le bas sous l'effet de la force de gravité et revient dans le réservoir (42) d'où il provenait lorsque ledit dispositif d'amélioration de séparation est intégré audit conduit d'évacuation (40).


     
    2. Dispositif d'amélioration d'une séparation gaz/liquide (10) destiné à séparer un liquide d'un flux (14) ayant des gouttelettes de gaz et de liquide, ledit dispositif comprenant :

    une section de conduit courbé (12) qui redirige ledit flux (14) d'une première direction moyenne vers une seconde direction moyenne, ledit conduit courbé (12) étant défini par une paroi de conduit périphérique (20) ; et

    une pluralité d'aubes s'étendant longitudinalement et réparties dans ledit conduit courbé, une ou plusieurs desdites aubes (22) ayant une première section (50) et une seconde section (52), ladite première section (50) et ladite seconde section (52) étant configurées pour définir au moins une partie de ladite courbure afin qu'une partie dudit flux (14) incidente sur ladite première section soit redirigée le long de ladite seconde section, ladite courbure redirigeant une partie dudit flux d'une direction initiale sensiblement parallèle à ladite première direction moyenne vers une direction finale sensiblement parallèle à ladite seconde direction moyenne, ladite ou lesdites aubes (22) ayant une première extrémité (30) et une seconde extrémité (32), lesdites aubes (22) étant positionnées afin de diriger une partie d'un liquide touchant lesdites aubes vers ladite première extrémité (30) ou ladite seconde extrémité (32), et ledit dispositif d'amélioration de séparation gaz/liquide (10) étant intégré à un conduit d'évacuation duquel sort ledit flux,

    caractérisé en ce qu'une ou plusieurs aube(s) (22) est/sont positionnée(s) afin de diriger une partie d'un liquide touchant lesdites aubes de ladite seconde extrémité (32) vers ladite première extrémité (30) par le biais d'un espace (134), et, vers le bas, dans le réacteur (42), ou caractérisé en ce qu'une ou plusieurs aube(s) (22) est/sont positionnée(s) afin de diriger une partie d'un liquide touchant lesdites aubes de ladite première extrémité (30) vers ladite seconde extrémité (32), où ledit liquide tombe vers dans ledit réacteur (42), ledit dispositif d'amélioration de séparation comprenant de préférence un canal de retour périphérique.


     
    3. Dispositif d'amélioration de séparation selon la revendication 1 ou 2, dans lequel ladite courbure est définie par un premier rayon de courbure.
     
    4. Dispositif d'amélioration de séparation selon la revendication 3, dans lequel ledit conduit courbé comprend une courbure qui définit un second rayon de courbure afin que ledit premier rayon de courbure soit d'environ 0,2 à environ 1,3 fois supérieur audit second rayon de courbure.
     
    5. Dispositif d'amélioration de séparation selon la revendication 1, dans lequel le(s)dit(s) canal/canaux se trouve(nt) à un certain angle par rapport à un plan horizontal.
     
    6. Dispositif d'amélioration de séparation selon la revendication 1, dans lequel une ou plusieurs aube(s) est/sont positionnée(s) afin de diriger une partie d'un liquide touchant lesdites aubes vers ladite seconde extrémité, à l'écart de ladite colonne centrale.
     
    7. Dispositif d'amélioration de séparation selon la revendication 6, qui comprend en outre un canal de retour périphérique, ledit canal de retour périphérique dirigeant le liquide vers le bas.
     
    8. Dispositif d'amélioration de séparation selon la revendication 7, dans lequel ledit canal de retour périphérique est positionné en face de ladite seconde extrémité de chaque aube de ladite pluralité d'aubes, et de manière adjacente à une paroi intérieure dudit conduit.
     
    9. Dispositif d'amélioration de séparation selon la revendication 7, dans lequel ledit canal de retour périphérique est positionné derrière ladite seconde extrémité de chaque aube de ladite pluralité d'aubes, et de manière adjacente à une paroi intérieure dudit conduit.
     
    10. Dispositif d'amélioration de séparation selon la revendication 1 ou 2, dans lequel une ou plusieurs aube(s) est/sont positionnée(s) afin de diriger une partie d'un liquide touchant ladite ou lesdites aubes vers ladite seconde extrémité et ladite paroi de conduit périphérique.
     
    11. Dispositif d'amélioration de séparation selon la revendication 10, qui comprend en outre un canal de retour périphérique, ledit canal de retour périphérique redirigeant le liquide vers le bas et dans le réacteur de polymérisation lorsque ledit dispositif d'amélioration de séparation est intégré dans ledit conduit d'évacuation.
     
    12. Dispositif d'amélioration de séparation selon la revendication 1 ou 2, dans lequel chaque aube est positionnée afin d'offrir une surface de contact avec ledit flux contenant des gouttelettes de gaze et de liquide.
     
    13. Dispositif d'amélioration de séparation selon la revendication 12, dans lequel chaque aube est positionnée afin d'offrir un contact sensiblement maximal avec ledit flux contenant des gouttelettes de gaz et de liquide.
     
    14. Dispositif d'amélioration de séparation selon la revendication 1 ou 2, dans lequel chaque aube (22) possède une ou plusieurs lèvre(s) de collecte de fluide (60, 62).
     
    15. Procédé de séparation de gouttelettes de liquide d'un flux de gaz circulant, qui comprend l'orientation dudit flux de gaz vers ledit dispositif d'amélioration de séparation selon la revendication 1 ou 2.
     




    Drawing















































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description