(19)
(11) EP 2 430 299 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
01.05.2013 Bulletin 2013/18

(21) Application number: 10723160.7

(22) Date of filing: 06.05.2010
(51) International Patent Classification (IPC): 
F02D 41/26(2006.01)
F02D 41/00(2006.01)
(86) International application number:
PCT/FI2010/050366
(87) International publication number:
WO 2010/130872 (18.11.2010 Gazette 2010/46)

(54)

ENGINE FUEL SUPPLY CONTROL

BRENNSKRAFTSMASCHINE STEUERUNG

CONTROLE D'INJECTION CARBURANT POUR UN MOTEUR


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

(30) Priority: 13.05.2009 FI 20095536
13.05.2009 FI 20095535

(43) Date of publication of application:
21.03.2012 Bulletin 2012/12

(73) Proprietor: Wärtsilä Finland Oy
65380 Vaasa (FI)

(72) Inventors:
  • KAAS, Tom
    FI-65410 Solf (FI)
  • SAIKKONEN, Ari
    FI-65200 Vaasa (FI)

(74) Representative: Veräjänkorva, Janne et al
Berggren Oy Ab P.O. Box 16
00101 Helsinki
00101 Helsinki (FI)


(56) References cited: : 
EP-A1- 1 561 935
WO-A1-98/28530
US-A1- 2002 072 845
EP-A2- 0 135 680
US-A- 5 775 296
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Field of technology



    [0001] The invention relates to controlling of internal combustion engines. The invention particularly relates to distributed fuel control of internal combustion engines.

    Prior art



    [0002] For speed control of an engine a non-distributed fuel demand control is normally used. If using a global fuel demand control all cylinders take on approximately the same load because fuel demand is in practise proportional to the cylinder load.

    [0003] During certain conditions there is a need to handle the speed control of the engine in a distributed manner.

    [0004] US5775296A discloses a control method of fuel supply to internal combustion engine.

    Short description of invention



    [0005] The objective of the invention is to provide distributed engine control. The objective will be achieved as presented in the independent claims.

    List of figures



    [0006] In the following, the invention is described in more detail by reference to the enclosed drawings, where

    Figure 1 illustrates an example of a fuel supply control system according to the invention;

    Figure 2 illustrates a second example of a fuel supply control system according to the invention;

    Figure 3 illustrates a control unit for controlling fuel supply in example of figure 1;

    Figure 4 illustrates a third example of a fuel supply control system according to the invention;

    Figure 5 illustrates a control unit for controlling fuel supply in example of figure 4;

    Figure 6 is a flowchart illustrating one embodiment of a controlling method for controlling fuel supply in example of figure 5;

    Figure 7 is a flowchart illustrating second embodiment of a controlling method for controlling fuel supply in example of figure 5;

    Figure 8 illustrates a third example control unit for controlling fuel supply;

    Figure 9 is a flowchart illustrating a controlling method for controlling fuel supply in example of figure 8;

    Figures 10 - 12 illustrate a fourth example control unit for controlling fuel supply;

    Figure 13 illustrates a control unit for controlling fuel supply in example of figures 10 - 12; and

    Figure 14 is a flowchart illustrating a controlling method for controlling fuel supply in example of figure 13.


    Description of the drawings



    [0007] Figure 1 illustrates an example of a isochronous control of an internal combustion engine. Speed unit 4 provides position information wherefrom it is possible to determine the location of pistons of the engine allowing to control cylinder-wise fuel control and timing. In this example the position information is acquired from sensor 3 identifying the rotational position of a flywheel 1. Speed unit 4 process the data provided by the sensor 3 and provides speed measurement data 41 to be utilized in controlling fuel supply to cylinders of the engine.

    [0008] Engine is controlled by three control units 10. Each control unit 10 has a control module 100 controlling cylinder fuel injection valves (not disclosed). First control module controls fuel injenction valve of cylinder 1, denoted by reference number 11. Second control module controls fuel injenction valve of cylinder 2, denoted by reference number 12. Third control module controls fuel injenction valve of cylinder 3, denoted by reference number 13. It is clear, that number of cylinders may vary.

    [0009] The speed measurement data 41 from the speed unit 4 is provided to each control units 10. Here, the speed measurement data 41 is received in a speed data input 40 of the lefmost control unit 10 and is simultaneously received in the speed data input 40 of other control units 10.

    [0010] Control modules 100 are connected via communication line 6 arranged between control units 10. The communication line 6 is received with communication means 40 of the control unit 10. Communication protocol, for example CAN (Controller Area Network), allows devices to communicate with each other without any host device. It is noted that the communication protocol used for communication between the control modules can vary. Communication means 60 functions as interface between control modules 100 and the communication line 6.

    [0011] Figure 2 illustrates a second example of a fuel supply control system. This embodiment differs from example figure 1 in that the speed unit 4 is integrated into one of the control units 10. The speed measurement data 41 from the speed unit 4 is provided to all control units 10. Here, the speed measurement data 41 is received in a speed data input 40 of the lefmost control unit 10 and is shared to the speed data input 40 of the next control unit 10.

    [0012] Figure 3 illustrates a control unit 10 for controlling fuel supply in example of figure 1. The control module 100 of the control unit 10 is connected to communication line 6 via communication means 60. Speed data receiving means 40 receive engine speed measurement data 41 provided by speed unit 4. Controller 140 provides specific fuel supply control data 11 based on said cylinder specific speed reference data 132 and engine speed measurement data 41. Controller 140 may be configured as PID-controller (Proportional /Integral/Derivative).

    [0013] Fuel supply control data 11 controls fuel regulating unit, such as fuel injenction valve of cylinder.

    [0014] Communication means 60 are connected to communication bus 6 for providing connection between control modules 100. Due to the communication between the cylinder control modules the cylinder load for each cylinder can be communicated to all other cylinder specific fuel demand controllers and therefore it is possible to calculate the mean cylinder load.

    [0015] Each control module 100 is arranged to provide its reference data 62 to other control modules 100 by communication means 60. Control module 100 uses reference data 62 with highest value for determining fuel supply control data 11.

    [0016] Here, the communication means 60 are configured to select the reference data 62 with highest value or the reference data 62, wherein the control is selected to be fixed. Selected data is forwarded to a local speed reference generator 130. Reference data 62 to be used in control module 100 is selected here by communication means 60. This selection can aslo be selected by separate means as disclosed in figure 13 by reference number 620.

    [0017] Each control module 100 estimate its cylinder specific load data 61 based on cylinder specific fuel supply control data 11 with estimator 150. This cylinder specific load data 61 is delivered to other control modules via communication bus 6.

    [0018] Control modules 100 are configured to generate cylinder specific load data 61 indexed such that data can be indentified to certain control module 100. Indexed information can be generated/handled in communication means 60. This allows control modules to determine the status of the control system.

    [0019] Cylinder specific load data 61 of control modules 100 is calculated in calculation unit, referred here as calculator 110, which determines the average of load data 112 of control modules 100. Average of load data 112 is used in comparator 120 to determine load deviation value 122 of the control module 100 by comparing cylinder specific load data 61 of said control module 100 to average of load data 112 of control modules. Cylinder specific load data 61 is received here from comparator, but comparator may be connected to communication means 60 or to estimator 150 for acquiring such data.

    [0020] Comparator 120 can receive cylinder specific load data 61 of said control module 100 from estimator 150 or from communication bus 6, wherein cylinder specific load data 61 is provided indexed corresponding said control module 100. The error in load sharing can be calculated by comparing the mean cylinder load to the local estimated load. The load sharing error, i.e. load deviation is afterwards used to offset the global speed reference, here speed reference data 62.

    [0021] Local speed reference generator 130 generates cylinder specific speed reference data 132 by affecting speed reference data 62 with determined load deviation value 122.

    [0022] The load deviation value 122, i.e. load sharing error, is used to offset the global speed reference. For example, if the local estimated load is higher than the mean cylinder load the local speed reference is correspondingly decreased, and vice versa.

    [0023] When the load sharing is used, in steady state, the local estimated load is equal to the mean cylinder load, independent of the total engine load. This implies that the load sharing error is zero and the local speed reference is equal to the global speed reference.

    [0024] Figure 4 illustrates a third example of a fuel supply control system. This embodiment differs from example figure 1 in that several, in this example three, control modules are embodied in the control unit 10.

    [0025] First control module 100A controls fuel injenction valve of cylinder 1, denoted by reference number 11. Second control module 100B controls fuel injenction valve of cylinder 2, denoted by reference number 12. Third control module 100C controls fuel injenction valve of cylinder 3, denoted by reference number 13.

    [0026] The speed measurement data 41 from the speed unit 4 is provided to each control units 10. Here, the speed measurement data 41 is received in a speed data input 40 of the control units, here the lefmost control unit 10, and is forwarded to the speed data input 40 of the next control unit 10.

    [0027] Control modules are connected via communication line 6 arranged between control units 10. Data in communication line 6 is received with communication means 60 of the control unit 10. Communication means 60 functions as interface between control modules 100 and the communication line 6.

    [0028] Figure 5 illustrates a control unit for controlling fuel supply in example of figure 4. This embodiment differs from description of figure 3 in that several control modules, in this example three,control modules 100A, 100B, 100C, are embodied in the control unit 10.

    [0029] Control modules 100A, 100B, 100C of the control unit 10 are connected to communication line 6 via communication means 60. Communication means 60 functions as interface between control modules 100A - 100C and the communication line 6.

    [0030] Speed data receiving means 40 receive engine speed measurement data 41 provided by speed unit 4. Speed measurement data 41 is provided to each controller 140 of control modules 100A, 100B, 100C. Depending on system configuration this speed measurement data 41 can be received or retrieved into control modules 100A, 100B, 100C. Controller 140 provides specific fuel supply control data 11 based on said cylinder specific speed reference data 132 and engine speed measurement data 41.

    [0031] Figure 6 is a flowchart illustrating one embodiment of a controlling method for controlling fuel supply in example of figure 5.

    [0032] Engine speed measurement data 41 from speed data receiving means 40 is received in controller 140. Speed reference data 62 from communication means 60 is received in local speed reference generator 130.

    [0033] Estimator 150 estimates cylinder specific load data 61 from cylinder specific fuel supply control data 11. Communication means 60 provides this cylinder specific load data 61 to calculators 110 of control modules 100A- 100C via communication line 6

    [0034] Calculator 110 calculate the average of load data 112 of control modules 100A - 100C from cylinder specific load data 61. Average of load data 112 is used in comparator 120 to determine load deviation value 122 of the control module 100A by comparing cylinder specific load data 61(100A) of said control module to average of load data 112 of control modules.

    [0035] Local speed reference generator 130 generates cylinder specific speed reference data 132 by changing speed reference data 62 with determined load sharing deviation value 122.

    [0036] Controllers 140 of each control module controls fuel supply based on cylinder specific speed reference data 132 and engine speed measurement data 41.

    [0037] Figure 7 is a flowchart illustrating second embodiment of a controlling method for controlling fuel supply in example of figure 5. This embodiment is, for example, suitable to be used in fixed propeller control. This embodiment differs from method of figure 6 in that cylinder specific speed reference data 132 (100A) is delivered to local speed reference generator 130 of control modules 100A - 100N.

    [0038] Speed reference data 62 to be used in generating cylinder specific speed reference data 132 is selected from cylinder specific speed reference data 132 of control modules.

    [0039] Cylinder specific speed reference data 132 can also included with a data part for identifying controlling mode of said cylinder. This allows manual/analog controlling of one cylinder in such a way that other control modules can follow such selection. For example, other control modules starts to use cylinder specific speed reference data 132 which controlling mode is changed to analog. By delivering the control mode of cylinder to control modules, the system can be used in two isochronous-modes, fixed isochronous-mode or analog isochronous-mode. Fixed isochronous-mode can use predetermined rated speed. Analog isochronous-mode can be adjusted with separate control signal, for example with 4 - 20 mA signal, added by a user or external system. These modes can be prioritized fixed mode having a higher control priority. The method and control unit can use the highest value, taking this prioritization also into consideration, i.e value with fixed mode is selected even the analog mod values are higher.

    [0040] Figure 8 illustrates a third example of control unit for controlling fuel supply. The control modules 100A - 100C 10 differs from of figure 3 in that the cylinder specific fuel supply control data 11 is provided to local speed reference generator 130 via filtering means 160.

    [0041] In isochronous-mode the local speed reference generator 130 generates cylinder specific speed reference data 132 by affecting speed reference data 62 with load contol value 123 or with the load deviation value 122.

    [0042] In Droop-mode the local speed reference generator 130 generates cylinder specific speed reference data 132 by affecting speed reference data 62 with determined load control value 123.

    [0043] Load contol value 123 is generated from fuel supply control data 11 by filtering the fuel supply control data 11 with filtering means 160. Filtering means 160 may be low-pass filter means suitable for reducing the effect of fluctuation.

    [0044] When the load sharing in Droop-mode is used based on the current mean cylinder load the result will be that the local speed reference tends to decrease as the engine load is increased, if any corrertions are not executed, eg. Increase/decrease pulses provided by a user or external system.

    [0045] This embodiment provides option to control the engine in independent manner in case there is a failure in communication between control units 10.

    [0046] Identifying the communication between units can be executed in communication means 60 or in local speed reference generator 130. Local speed reference generator 130 can select input 122 or 123 with priority selection. For, example, the local speed reference generator 130 selects the use of the load control value 123 only if there is no other active inputs. By determining the state of communication, i.e between control units, the system can be used in two modes, isochronous-mode or droop-mode. A system operating in the isochronous mode maintains the engine at a constant speed without regard to engine load. A system operating in the droop mode controls engine speed as a function of engine load. It is noted that operations needed for different modes can be activated also only when needed. This has an advantage in that unnessessary calculations is not executed.

    [0047] Figure 9 is a flowchart illustrating a controlling method for controlling fuel supply in example of figure 8. Selective control method of fuel supply to internal combustion engine, wherein engine speed measurement data is received into two or more control units with control modules.

    [0048] The state of communication between control units 10 is determined by communacation means 60 and executes YES-path in case of first state of communication between control units.

    [0049] The method uses the estimatied cylinder specific load data from cylinder specific fuel supply control data 11. Cylinder specific load data is provided to control modules. Average of load data of control modules from cylinder specific load data is calculated and load deviation value 122 of said control module by comparing cylinder specific load data of said control module to the average of load data of control modules.

    [0050] Cylinder specific speed reference data 132 is generated by affecting speed reference data with determined load sharing deviation value 122. Fuel supply is controlled based on cylinder specific speed reference data 132.

    [0051] in case of second state of communication between control units, wherein communication is determined not be valid, the method executes NO-path. Load control value 123 of said control module from cylinder specific fuel supply control data 11 is determined.

    [0052] Cylinder specific speed reference data 132 is generated by deducting speed reference data with determined load control value 123 and the fuel supply is controlled based on cylinder specific speed reference data.

    [0053] Figures 10 - 12 illustrates a fourth example control unit for controlling fuel supply. This embodiment differs from previously descibed in that control units 10 are connected to main unit 5. Main unit 5 is connected to communication line 6 via communication means 60.

    [0054] Speed data receiving means 40 receive engine speed measurement data 41 provided by speed unit 4. Main controller 5 provides data for specific fuel supply control data based on specific speed reference data and engine speed measurement data 41. In this case, when in use, there is no need for isochronous control mode, because the cylinders are controlled in a traditional way by a main unit.

    [0055] This has an effect in that engine can be controlled in three different modes. The system of figure 8 may be controlled in a known manner by main unit 5, other two modes beiing available to be used in case of fault in main unit 5 or in case of fault in communication between units. However, this example provides more options for controlling the engine. Examples disclosed provides advatageous back-up for malfunctions in a main unit or in communications between units. When controlled by main unit 5, the control units 10 are so called slave-type, i.e. following commands from the main unit 5.

    [0056] Figure 11 illustrates such fault in communication between main unit 5 an control units 10. The system can still be controlled in two modes, one with communication between control units 10 and other without communication between them.

    [0057] Figure 12 illustrates a situation where controlling is to be utilized without any communication between control units 10.

    [0058] Figure 13 illustrates a control unit for controlling fuel supply in example of figures 10 - 12. The control modules 100A - 100C 10 differs from of figure 6 in that the main control data 63 from main unit is received in control modules 100A - 100C. With this arrangement the control modules 100A - 100C can also be controlled with known manner.

    [0059] Other difference is that figure 13 discloses separate reference data handler 620. Reference data handler 620 executes at least part of functionality, which is previously described to be executed in local speed reference generator 130. Data flow change can be arranged with a change in adressing data in communication means 60.

    [0060] Figure 14 is a flowchart illustrating a controlling method for controlling fuel supply in example of figure 13. This embodiment differs from description of figure 7 in that state of communication from main unit is also determined. By determining the state of communication system can be used in three modes, main unit-mode, isochronous-mode or droop-mode.

    [0061] It is noted that at least part of the functionality of control modules 100 is performed by a method implementing program integrated in control unit.


    Claims

    1. Control method of fuel supply to internal combustion engine, the method comprising:

    - receiving engine speed measurement data (41) and speed reference data (62) into two or more control units (10) with control modules (100);

    - estimating cylinder specific load data (61) from cylinder specific fuel supply control data (11);

    - providing cylinder specific load data (61) to control modules (100);

    - calculation of average of load data (112) of control modules (100) from cylinder specific load data (61);

    - determining load deviation value (122) of said control module (100) by comparing cylinder specific load data (61) of said control module (100) to the average of load data (112) of control modules (100);

    - generating cylinder specific speed reference data (132) by affecting speed reference data (62) with determined load sharing deviation value (122); and

    - controlling fuel supply based on cylinder specific speed reference data (132).


     
    2. A method according to claim 1, charaterized in that the method further comprising:

    - delivering cylinder specific speed reference data (132) to control modules (100); and

    - determining speed reference data (62) to be used in generating cylinder specific speed reference data (132) from cylinder specific speed reference data (132) of control modules.


     
    3. A method according to claim 2, charaterized in that the delivered cylinder specific speed reference data (132) further comprises a data part for identifying controlling state of said cylinder.
     
    4. A method according to any previous claim, charaterized in that the method comprises:

    - determining the state of communication between control units 10; and
    in case of first state of communication between control units 10, wherein communication is determined valid, the method

    - estimates cylinder specific load data (61) from cylinder specific fuel supply control data (11);

    - provides cylinder specific load data (61) to control modules (100);

    - calculates average of load data (112) of control modules (100) from cylinder specific load data (61);

    - determines load deviation value (122) of said control module (100) by comparing cylinder specific load data (61) of said control module (100) to the average of load data (112) of control modules (100);

    - generates cylinder specific speed reference data (132) by affecting speed reference data (62) with determined load sharing deviation value (122); and

    - controls fuel supply based on cylinder specific speed reference data (132); and
    in case of second state of communication between control units 10, wherein communication is determined not be valid, the method

    - determines load control value (123) of said control module (100) from cylinder specific fuel supply control data (11);

    - generates cylinder specific speed reference data (132) by deducting speed reference data (62) with determined load control value (123); and

    - controls fuel supply based on cylinder specific speed reference data (132);


     
    5. A control method according to claim 4, charaterized in that the method further comprise:

    - selecting controlling mode of the control module (100) based on determined state of communication between control units 10.


     
    6. A control method according to claim 4 or 5, charaterized in that the method further comprises:

    - providing cylinder specific speed reference data (132) to control modules (100).


     
    7. A control method according to claims 4 - 6, charaterized in that the method further comprises:

    - providing a data part identifying controlling state of said cylinder to control modules (100).


     
    8. Control unit of fuel supply to internal combustion engine, comprising: - speed data receiving means (40) for receiving engine speed measurement data (41);

    - communication means (60) connectable to communication bus (6) for providing connection between control units (10), and

    - control module (100) providing specific fuel supply control data (11), characterised in that control module (100) comprises,

    - estimator (150) to estimate cylinder specific load data (61) based on cylinder specific fuel supply control data (11);

    - calculator (110) arranged to determine average of load data (112) of control modules;

    - comparator (120) determining load deviation value (122) of said control module (100) by comparing cylinder specific load data (61) of said control module (100) to average of load data (112) of control modules;

    - local speed reference generator (130) arranged to generate cylinder specific speed reference data (132) by affecting speed reference data (62) with determined load deviation value (122); and

    - controller (140) arranged to provide specific fuel supply control data (11) to control fuel supply based on said cylinder specific speed reference data (132) and engine speed measurement data (41).


     
    9. A control unit according to claim 8, charaterized in that

    - control modules (100) are arranged to determine the state of communication between control units 10 for altering the controling of the fuel supply to internal combustion engine
    and in that

    - control modules (100) are configured to select controlling mode based on determined state of communication between control units 10.


     


    Ansprüche

    1. Regelverfahren für die Kraftstoffzufuhr zu einer Verbrennungskraftmaschine, wobei das Verfahren Folgendes umfasst:

    - das Empfangen von Motordrehzahl-Messdaten (41) und Drehzahl-Bezugsdaten (62) in zwei oder mehr Regeleinheiten (10) mit Regelmodulen (100);

    - das Abschätzen von zylinderspezifischen Lastdaten (61) aus zylinderspezifischen Kraftstoffzufuhr-Regeldaten (11);

    - das Bereitstellen der zylinderspezifischen Lastdaten (61) für die Regelmodule (100);

    - das Berechnen eines Durchschnitts der Lastdaten (112) der Regelmodule (100) aus den zylinderspezifischen Lastdaten (61);

    - das Bestimmen eines Lastabweichungswertes (122) des Regelmoduls (100) durch das Vergleichen der zylinderspezifischen Lastdaten (61) des Regelmoduls (100) mit dem Durchschnitt der Lastdaten (112) der Regelmodule (100);

    - das Erzeugen von zylinderspezifischen Drehzahl-Bezugsdaten (132) durch das Bearbeiten der Drehzahl-Bezugsdaten (62) mit dem bestimmten Lastverteilungsabweichungswert (122); und

    - das Regeln der Kraftstoffzufuhr auf der Grundlage der zylinderspezifischen Drehzahl-Bezugsdaten (132).


     
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Verfahren ferner Folgendes umfasst:

    - das Liefern der zylinderspezifischen Drehzahl-Bezugsdaten (132) an die Regelmodule (100); und

    - das Bestimmen der beim Erzeugen der zylinderspezifischen Drehzahl-Bezugsdaten (132) verwendeten Drehzahl-Bezugsdaten (62) aus den zylinderspezifischen Drehzahl-Bezugsdaten (132) der Regelmodule.


     
    3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die gelieferten zylinderspezifischen Drehzahl-Bezugsdaten (132) ferner einen Datenteil zum Identifizieren des Regelungszustandes des Zylinders umfassen.
     
    4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Verfahren Folgendes umfasst:

    - das Bestimmen eines Kommunikationszustandes zwischen den Regeleinheiten (10); und
    im Fall eines ersten Kommunikationszustandes zwischen den Regeleinheiten (10), wobei festgestellt wird, dass die Kommunikation gültig ist, das Verfahren

    - die zylinderspezifischen Lastdaten (61) aus zylinderspezifischen Kraftstoffzufuhr-Regeldaten (11) abschätzt;

    - die zylinderspezifischen Lastdaten (61) für die Regelmodule (100) bereitstellt;

    - einen Durchschnitt der Lastdaten (112) der Regelmodule (100) aus den zylinderspezifischen Lastdaten (61) berechnet;

    - einen Lastabweichungswert (122) des Regelmoduls (100) durch das Vergleichen der zylinderspezifischen Lastdaten (61) des Regelmoduls (100) mit dem Durchschnitt der Lastdaten (112) der Regelmodule (100) bestimmt;

    - die zylinderspezifischen Drehzahl-Bezugsdaten (132) durch das Bearbeiten der Drehzahl-Bezugsdaten (62) mit dem bestimmten Lastverteilungsabweichungswert (122) erzeugt; und

    - die Kraftstoffzufuhr auf der Grundlage der zylinderspezifischen Drehzahl-Bezugsdaten (132) regelt; und
    im Fall eines zweiten Kommunikationszustandes zwischen den Regeleinheiten (10), wobei festgestellt wird, dass die Kommunikation nicht gültig ist, das Verfahren

    - einen Lastregelwert (123) des Regelmoduls (100) aus zylinderspezifischen Kraftstoffzufuhr-Regeldaten (11) bestimmt;

    - die zylinderspezifischen Drehzahl-Bezugsdaten (132) durch das Abziehen der Drehzahl-Bezugsdaten (62) mit dem bestimmten Lastregelwert (123) erzeugt; und

    - die Kraftstoffzufuhr auf der Grundlage der zylinderspezifischen Drehzahl-Bezugsdaten (132) regelt.


     
    5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass das Verfahren ferner Folgendes umfasst:

    - das Auswählen des Regelungsmodus des Regelmoduls (100) auf der Grundlage des bestimmten Kommunikationszustandes zwischen den Regeleinheiten (10).


     
    6. Verfahren nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass das Verfahren ferner Folgendes umfasst:

    - das Bereitstellen von zylinderspezifischen Drehzahl-Bezugsdaten (132) für die Regelmodule (100).


     
    7. Verfahren nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass das Verfahren ferner Folgendes umfasst:

    - das Bereitstellen eines Datenteils, der den Regelungszustand des Zylinders identifiziert, für die Regelmodule (100).


     
    8. Regeleinheit für die Kraftstoffzufuhr zu einer Verbrennungskraftmaschine, die Folgendes umfasst:

    - Drehzahldaten-Empfangsmittel (40) zum Empfangen von Motordrehzahl-Messdaten (41);

    - Kommunikationsmittel (60), die mit einem Kommunikationsbus (6) verbunden werden können, um eine Verbindung zwischen Regeleinheiten (10) bereitzustellen, und

    - ein Regelmodul (100), das spezifische Kraftstoffzufuhr-Regeldaten (11) bereitstellt, dadurch gekennzeichnet, dass das Regelmodul (100) Folgendes umfasst:

    - einen Schätzer (150) zum Abschätzen von zylinderspezifischen Lastdaten (61) auf der Grundlage von zylinderspezifischen Kraftstoffzufuhr-Regeldaten (11);

    - einen Rechner (110), angeordnet zum Berechnen eines Durchschnitts der Lastdaten (112) der Regelmodule;

    - einen Vergleicher (120), der einen Lastabweichungswert (122) des Regelmoduls (100) durch das Vergleichen der zylinderspezifischen Lastdaten (61) des Regelmoduls (100) mit dem Durchschnitt der Lastdaten (112) der Regelmodule bestimmt;

    - einen örtlichen Drehzahl-Bezugsgenerator (130), angeordnet zum Erzeugen von zylinderspezifischen Drehzahl-Bezugsdaten (132) durch das Bearbeiten der Drehzahl-Bezugsdaten (62) mit dem bestimmten Lastverteilungsabweichungswert (122); und

    - einen Regler (140), angeordnet zum Bereitstellen von spezifischen Kraftstoffzufuhr-Regeldaten (11), um die Kraftstoffzufuhr auf der Grundlage der zylinderspezifischen Drehzahl-Bezugsdaten (132) und der Motordrehzahl-Messdaten (41) zu regeln.


     
    9. Regeleinheit nach Anspruch 8, dadurch gekennzeichnet, dass

    - die Regelmodule (100) dafür angeordnet sind, den Kommunikationszustand zwischen den Regeleinheiten (10) zu bestimmen, um die Regelung der Kraftstoffzufuhr zu der Verbrennungskraftmaschine zu verändern,
    und dadurch, dass

    - die Regelmodule (100) dafür konfiguriert sind, den Regelungsmodus auf der Grundlage des bestimmten Kommunikationszustandes zwischen den Regeleinheiten (10) auszuwählen.


     


    Revendications

    1. Procédé de contrôle d'alimentation en combustible vers un moteur à combustion interne, le procédé comprenant :

    - la réception de données de mesure de vitesse du moteur (41) et données de référence de vitesse (62) dans deux unités de contrôle ou plusieurs (10) avec des modules de contrôle (100) ;

    - l'estimation des données de charge spécifiques au cylindre (61) à partir des données de contrôle d'alimentation en combustible spécifiques au cylindre (11) ;

    - la transmission des données de charge spécifiques au cylindre (61) aux modules de contrôle (100) ;

    - le calcul de la moyenne des données de charge (112) des modules de contrôle (100) à partir des données de charge spécifiques au cylindre (61) ;

    - la détermination de la valeur de déviation de charge (122) dudit module de contrôle (100) en comparant les données de charge spécifiques au cylindre (61) dudit module de contrôle (100) à la moyenne des données de charge (112) des modules de contrôle (100) ;

    - la génération des données de référence de vitesse spécifiques au cylindre (132) en affectant des données de référence de vitesse (62) à la valeur de déviation partageant la valeur de charge déterminée (122) ; et

    - le contrôle de l'alimentation en combustible sur la base des données de référence de vitesse spécifiques au cylindre (132).


     
    2. Procédé selon la revendication 1, caractérisé en ce que le procédé comprend en outre :

    - la transmission de données de référence de vitesse spécifiques au cylindre (132) aux modules de contrôle (100) ; et

    - la détermination des données de référence de vitesse (62) à utiliser dans la génération des données de référence de vitesse spécifiques au cylindre (132) à partir des données de référence de vitesse spécifiques au cylindre (132) des modules de contrôle.


     
    3. Procédé selon la revendication 2, caractérisé en ce que les données de référence de vitesse spécifiques au cylindre (132) comprennent en outre une partie de données pour identifier l'état de contrôle dudit cylindre.
     
    4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le procédé comprend :

    - la détermination de l'état de communication entre les unités de contrôle (10) ; et
    dans le cas du premier état de communication entre les unités de contrôle (10), où la communication est déterminée comme valide, le procédé

    - estime les données de charge spécifiques au cylindre (61) à partir des données de contrôle d'alimentation en combustible spécifiques au cylindre (11) ;

    - transmet des données de charge spécifiques au cylindre (61) aux modules de contrôle (100) ;

    - calcule la moyenne des données de charge (112) des modules de contrôle (100) à partir des données de charge spécifiques au cylindre (61) ;

    - détermine la valeur de déviation de charge (122) dudit module de contrôle (100) en comparant les données de charge spécifiques au cylindre (61) dudit module de contrôle (100) à la moyenne des données de charge (112) des modules de contrôle (100) ;

    - génère des données de référence de vitesse spécifiques au cylindre (132) en affectant des données de référence de vitesse (62) à la valeur de déviation partageant la valeur de charge déterminée (122) ; et

    - contrôle l'alimentation en combustible sur la base des données de référence de vitesse spécifiques au cylindre (132) ; et
    dans le cas du second état de communication entre les unités de contrôle (10), où la communication est déterminée comme non valide, le procédé

    - détermine la valeur de contrôle de charge (123) dudit module de contrôle (100) à partir des données de contrôle d'alimentation en combustible spécifiques au cylindre (11) ;

    - génère des données de référence de vitesse spécifiques au cylindre (132) en déduisant des données de référence de vitesse (62) à la valeur de contrôle de charge déterminée (123) ; et

    - contrôle l'alimentation en combustible sur la base des données de référence de vitesse spécifiques au cylindre (132).


     
    5. Procédé de contrôle selon la revendication 4, caractérisé en ce que le procédé comprend en outre :

    - la sélection du mode de contrôle du module de contrôle (100) sur la base de l'état déterminé de communication entre les unités de contrôle (10).


     
    6. Procédé de contrôle selon la revendication 4 ou 5, caractérisé en ce que le procédé comprend en outre :

    - la transmission des données de référence de vitesse spécifiques au cylindre (132) aux modules de contrôle (100).


     
    7. Procédé de contrôle selon les revendications 4-6, caractérisé en ce que le procédé comprend en outre :

    - la transmission d'une partie des données identifiant l'état de contrôle dudit cylindre pour contrôler les modules (100).


     
    8. Procédé de contrôle d'alimentation en combustible vers un moteur à combustion interne, comprenant :

    - un moyen de réception des données de vitesse (40) pour recevoir des données de mesure de la vitesse du moteur (41) ;

    - un moyen de communication (60) pouvant être raccordé au bus de communication (6) pour fournir une connexion entre les unités de contrôle (10), et

    - un module de contrôle (100) fournissant des données de contrôle de l'alimentation en combustible (11), caractérisé en ce que le module de contrôle (100) comprend :

    - un estimateur (150) pour estimer des données de charge spécifiques au cylindre (61) sur la base des données de contrôle d'alimentation en combustible spécifiques au cylindre (11) ;

    - un calculateur (110) disposé de manière à déterminer la moyenne des données de charge (112) des modules de contrôle ;

    - un comparateur (120) déterminant la valeur de déviation de charge (122) dudit module de contrôle (100) en comparant les données de charge spécifiques au cylindre (61) dudit module de contrôle (100) à la moyenne des données de charge (112) des modules de contrôle ;

    - un générateur de référence de vitesse locale (130) disposé de manière à générer des données de référence de vitesse spécifiques au cylindre (132) en affectant des données de référence de vitesse (62) à la valeur de déviation de charge déterminée (122) ; et

    - un contrôleur (140) disposé pour fournir des données de contrôle d'alimentation en combustible spécifiques (11) pour contrôler l'alimentation en combustible sur la base desdites données de référence de vitesse spécifiques au cylindre (132) et données de mesure de vitesse du moteur (41) .


     
    9. Unité de commande selon la revendication 8, caractérisée en ce que

    - les modules de contrôle (100) sont disposés de manière à déterminer l'état de communication entre les unités de contrôle (10) pour modifier le contrôle de l'alimentation en combustible vers le moteur à combustion interne
    et en ce que

    - les modules de contrôle (100) sont configurés pour sélectionner le mode de contrôle sur la base de l'état déterminé de communication entre les unités de contrôle (10).


     




    Drawing















































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description