(19)
(11) EP 2 587 484 A1

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
01.05.2013 Bulletin 2013/18

(21) Application number: 11187140.6

(22) Date of filing: 28.10.2011
(51) International Patent Classification (IPC): 
G11C 5/14(2006.01)
H03F 3/00(2006.01)
H01L 23/00(2006.01)
(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA ME

(71) Applicant: GN ReSound A/S
2750 Ballerup (DK)

(72) Inventors:
  • Jensen, Dan Christian Raun
    DK-2900 Hellerup (DK)
  • Pedersen, Palle Hegne
    DK-4200 Slagelse (DK)

(74) Representative: Zacco Denmark A/S 
Hans Bekkevolds Allé 7
2900 Hellerup
2900 Hellerup (DK)

   


(54) Integrated circuit with configurable output cell


(57) The present disclosure relates to an integrated circuit for a hearing device, wherein the integrated circuit comprises a ground rail, a first power rail adapted to carry a first voltage (V1), and a second power rail adapted to carry a second voltage (\/2), the integrated circuit comprising a number of pads for connecting the integrated circuit to other components, the number of pads including at least one output pad including a first output pad, wherein the integrated circuit comprises at least one output cell including a first output cell having a ground pin connected to the ground rail, a first power supply pin connected to the first power rail, a second power supply pin connected to the second power rail, a data pin, at least one voltage select pin and an output pin wired to the first output pad. The first output cell is adapted to operate according to a first mode wherein the voltage on the first output pin has a first amplitude, and according to a second mode wherein the voltage on the first output pin has a second amplitude larger than the first amplitude depending on a control signal applied to the at least one voltage select pin.




Description

TECHNICAL FIELD



[0001] The present invention relates to an integrated circuit (IC) with a configurable output cell, in particular to an IC for a hearing device or adapted for a hearing device.

BACKGROUND



[0002] Integrated circuits (ICs) or chips with embedded digital signal processors are widely used in the hearing aid industry to provide a compact and small hearing aid. The ICs used in hearing aids are small and the number of Input/Output ports or pads is limited. Typically, ICs are designed to interface specific components of the hearing aid.

SUMMARY



[0003] There is a need for increasing the design flexibility when designing and constructing hearing aids to be able to use different components or be able to use the same component in a number of different hearing device models. Further, there is a need for providing ICs with low power consumption due to the limited power supply capacity of a hearing device.

[0004] Accordingly, an integrated circuit (IC) for a hearing device is provided, wherein the integrated circuit comprises a ground rail, a first power rail adapted to carry a first voltage, and a second power rail adapted to carry a second voltage, the integrated circuit comprising a number of pads for connecting the integrated circuit to other components, the number of pads including at least one output pad including a first output pad. The integrated circuit comprises at least one output cell including a first output cell having a ground pin connected to the ground rail, a first power supply pin connected to the first power rail, a second power supply pin connected to the second power rail, a data pin, at least one voltage select pin and an output pin wired to the first output pad. The first output cell is adapted to operate according to a first mode wherein the voltage on the first output pin has a first amplitude, and according to a second mode wherein the voltage on the first output pin has a second amplitude larger than the first amplitude depending on a control signal applied to the at least one voltage select pin.

[0005] Also disclosed is a method for manufacture of an integrated circuit. The method comprises providing at least one output cell having an output pin and at least two drive transistors each having a first terminal connected to a respective first and a second power supply pin of the output cell, a second terminal, a third terminal connected to the output pin and a fourth terminal, wherein the fourth terminal of the two drive transistors are wired such that the voltage difference between the third and fourth terminal of the respective drive transistors is less than the diode threshold voltage between the third and fourth terminal. The method may comprise wiring the fourth terminals to the power supply pin adapted to carry the largest supply voltage, e.g. the second power supply pin.

[0006] It is an advantage of the present invention that the voltage amplitude of the first output pad may be easily adjusted by adjusting a register setting during configuration or even during use, thereby increasing the design flexibility for hearing aid constructors without increasing the number of pads on the IC, and at the same time maintaining a low power consumption by avoiding undesired current paths in the IC.

BRIEF DESCRIPTION OF THE DRAWINGS



[0007] The above and other features and advantages of the present invention will become readily apparent to those skilled in the art by the following detailed description of exemplary embodiments thereof with reference to the attached drawings, in which:

Fig. 1 schematically illustrates a hearing device,

Fig. 2 schematically illustrates an exemplary integrated circuit, and

Fig. 3 schematically illustrates an exemplary output cell.


DETAILED DESCRIPTION



[0008] The figures are schematic and simplified for clarity, and they merely show details which are essential to the understanding of the invention, while other details have been left out. Throughout, the same reference numerals are used for identical or corresponding parts.

[0009] The at least one output cell, e.g. the first output cell, may be configured to form a part of or be embedded in an input/output (lO) cell if bidirectional communication is desired.

[0010] The integrated circuit optionally comprises a processing core e.g. for digital signal processing of digital audio signal in order to compensate for hearing impairment of a user. The processing core is connected to a number of communication cells or peripheral units for communication with other units or components, e.g. an AD converter unit, user interface, memory unit and/or radio unit of a hearing device. Accordingly, the IC comprises at least one communication cell, including at least a first communication cell embedding one or more output cells as described herein. The IC may comprise a second and/or a third communication cell.

[0011] A communication cell may be adapted to communicate according to one or more standard protocols. Exemplary protocols may include but are not limited to Serial Peripheral Interface Bus (SPI), Inter-Integrated Circuit (IIC or I2C) with master and/or slave, Integrated Interchip Sound (IIS, I2S), and protocols for wireless communication, etc.

[0012] A communication cell or unit may comprise one or more output cells, e.g. a first output cell and/or a second output cell, depending on the functionality of the communication cell. A communication cell may comprise one or more input cells. A communication cell may comprise one or more input/output (lO) cells, i.e. cells that are adapted for bidirectional communication.

[0013] The integrated circuit comprises a number of pads for connecting the IC or communication cells of the IC to other components such as memory units, radio units, user interfaces, power supplies such as a battery or others. The number of pads includes a first pad for connection to ground or other reference voltage, a second pad for connection to a power supply, such as a battery, and a number of communication pads including a first communication pad adapted for operating as an output pad for connecting the IC to other components.

[0014] The first power rail may be adapted to carry a first voltage V1, such as Vbattery, and the second power rail may be adapted to carry a second voltage V2. The second voltage V2 may be larger than the first voltage V1. In one or more embodiments, V2 = 2*Vbattery.

[0015] An output cell, e.g. a first output cell and/or a second output cell, may comprise a first transistor, a second transistor and a third transistor, where each transistor has a first terminal, a second terminal, a third terminal, and a fourth terminal.

[0016] The first transistor may be an N-MOS transistor where the first terminal is the source, the second terminal is the gate, the third terminal is the drain and the fourth terminal is the body. The first transistor may be configured to pull the voltage on the output pin towards ground or other reference voltage applied to the ground rail. Accordingly, the first transistor may be denoted a ground transistor.

[0017] The second, third and/or a fourth transistor may be P-MOS transistors where the first terminal is the source, the second terminal is the gate, the third terminal is the drain and the fourth terminal is the body. The second, third and/or a fourth transistor may be configured to pull or drive the voltage on the output pin towards the voltage applied to the respective power supply pins via power rails available in the IC. Accordingly, the second, third and/or fourth transistors may be denoted drive transistors. The IC may comprise a plurality of drive transistors, each connected between the output pin and a respective power supply pin. The fourth terminal of at least two drive transistors may be connected to a common terminal with a voltage level equal to or larger than the voltage level on the third terminals of the at least two drive transistors.

[0018] In one or more output cells, the first terminal of the first transistor may be wired to the ground pin and the third terminal of the first transistor may be wired to the output pin. The fourth terminal of the first transistor may be wired to the first terminal.

[0019] The second terminal of the first transistor may be wired to the data pin or connected to the ouput of a first level shifter adapting a data signal on the data pin to correct signal amplitudes.

[0020] In one or more output cells, the first terminal of the second transistor may be wired to the first power supply pin and the third terminal of the second transistor may be wired to the output pin.

[0021] In one or more output cells, the first terminal of the third transistor may be wired to the second power supply pin and the third terminal of the third transistor may be wired to the output pin.

[0022] In one or more output cells, the fourth terminals of the drive transistors may be wired such that a voltage difference Vdif = Vthird terminal - Vfourth terminal between the third terminals and the fourth terminals of the respective drive transistors is less than the diode threshold voltage Vthres for the parasitic diode between the third and fourth terminal. The voltage difference Vdif may be less than 0.4 V. For one or more drive transistors, the voltage difference Vdif may be less than 0.4 V, such as less than 0.3 V, less than 0.2 V. In one or more embodiments, the voltage difference Vdif may be less than or equal to 0 V. In an embodiment, where the fourth terminals are wired to the largest power supply voltage, it is ensured that Vdif is less than or equal to 0V irrespective of the mode of operation.

[0023] In one or more output cells, e.g. the first output cell, the fourth terminal of the second transistor and the fourth terminal of the third transistor may be wired to the power supply pin carrying the largest voltage. The fourth terminal of the second transistor and the fourth terminal of the third transistor may be wired to a common terminal. The first terminal of the third transistor may be the common terminal. Thereby undesired leakage currents may be avoided when the output cells operate in the mode with the smallest voltage amplitude on the output pin.

[0024] The second terminals of the second transistor and the third transistor may be connected to the output of a logical circuit of the first output cell for selecting between a first mode (second transistor active) and a second mode (third transistor active) of operation.

[0025] One or more output cells of the integrated circuit may thus be adapted to be able to operate in a first mode wherein the voltage signal on the output pin switches between VGND* and V1*, and in a second mode wherein the voltage signal on the output pin switches between VGND* and V2*, depending on a control signal applied to the at least one voltage select pin.

[0026] The integrated circuit may comprise a third power rail adapted to carry a third voltage V3, and the first output cell may comprises a fourth transistor connected between the output pin and a third power supply pin connected to the third power rail.

[0027] The fourth transistor has a first terminal, a second terminal, a third terminal and a fourth terminal. The fourth terminal may be wired to the common terminal. The first output cell may be adapted to operate according to a third mode wherein the voltage on the first output pin has a third amplitude depending on a control signal applied to the at least one voltage select pin. The first terminal of the fourth transistor may be wired to the third power supply pin, and the third terminal of the fourth transistor may be wired to the output pin. The second terminal of the fourth transistor may be wired to a logical circuit to enable activation of the fourth transistor in a third mode of operation, wherein the voltage signal on the output pin switches between VGND* and V3*, depending on a control signal applied to the at least one voltage select pin.

[0028] One or more output cells of the integrated circuit may comprise a logical circuit having input connected to the at least one voltage select pin and the data pin, and output connected to the second terminals of the drive transistors (second, third and fourth transistor if present) for selecting between the modes by selectively activating the second, third and fourth transistor.

[0029] The integrated circuit may comprise at least one level shifter including a first level shifter between the data pin and the second terminals of the first, second and third transistor for adapting a data signal to correct signal amplitudes. The first level shifter may be arranged between the data pin and the logical circuit and/or between the logical circuit and the second terminals of the drive transistors.

[0030] The at least one level shifter may include a second level shifter between the at least one voltage select pin and the logical circuit for adapting a voltage select signal to correct signal amplitudes for the logical circuit.

[0031] The integrated circuit may comprise a core connected to the first output cell, wherein the core is adapted to perform signal processing for a hearing device.

[0032] Fig. 1 shows a hearing device 2. The hearing device 2 comprises an audio input interface 4 for receiving audio signal(s) in electronic and/or acoustic form. The audio input interface 4 may comprise one or more microphones, e.g. a first microphone and/or a second microphone, and/or a telecoil. The audio input interface 4 may comprise an audio connector or audio input boot for coupling external audiosources to the hearing device 2. The audio input interface 4 is connected to an AD converter unit 6 which is connected to a signal processing unit or integrated circuit 8. The AD converter unit 6 converts or transforms audio signals from the audio input interface 4 and send the digital audio signal(s) to the signal processing unit 8 for processing, e.g. in order to compensate for hearing loss or other hearing impairment. The signal processing unit 8 may send control signals to the AD converter unit 6 to configure and control operation of the AD converter unit 6. The signal processing unit 8 may be connected to a user interface 10 in order to allow a user, a computer or another hearing device to communicate with the hearing device, e.g. during configuration and/or during use of the hearing aid. The user interface 10 may comprise a push button and/or a connector for a data cable in order to couple the hearing device to e.g. a computer during configuration or another hearing device. The hearing device 2 may comprise a memory unit 12 connected to the signal processing unit 8 for storing data or hearing aid parameters, and the hearing device 2 may optionally comprise a radio unit 14 connected to the signal processing unit 8 and adapted for receiving and/or transmitting radio signals, e.g. in order to enable the hearing device 2 to communicate wirelessly with another device, such as a hearing device and/or a wireless interface. The AD converter unit 6 may be embedded in the signal processing unit or integrated circuit 8. The hearing device 2 may comprise a receiver or loudspeaker 16 connected to the signal processing unit 8 for emitting audio signals to a user.

[0033] Fig. 2 shows an exemplary signal processing unit or integrated circuit 8 according to the present invention. The integrated circuit 8 comprises a processing core 18 e.g. for digital signal processing of digital audio signals from an AD converter 6. The processing core 18 is connected to a number of communication cells or peripheral units for communication with other units of the hearing device, e.g. the AD converter unit 6, user interface 10, memory unit 12 and/or radio unit 14.

[0034] The integrated circuit 8 comprises a number of communication cells 20, 28, 30, 32, 34, 36, 38 forming interfaces to the processing core 18. A communication cell may be configured to implement different communication protocols depending on the unit to be connected thereto. A first and/or second output cell or IO cell may be implemented in each or one or more of the communication cells 20, 28, 30, 32, 34, 36, 38. Further, the integrated circuit may comprise a clock management cell 22 optionally comprising one or more output cells or lO cells as described herein.

[0035] Fig. 3 illustrates an exemplary output cell according to the invention, e.g. a first and/or a second output cell which for example may be implemented in one or more of the communication cells of the integrated circuit in Fig. 2. The output cell 106 has a ground pin 108 connected to a ground rail 50 of the integrated circuit, a first power supply pin 110 connected to a first power rail 52 of the integrated circuit adapted to carry a first voltage V1, a second power supply pin 112 connected to a second power rail 54 of the integrated circuit adapted to carry a second voltage V2, a data pin 114, at least one voltage select pin 116 and an output pin 118 wired to the first output pad 104. The output cell 106 further comprises a core power supply pin 120 connected to the core power rail 56. The first output pad 104 may be embedded in the output cell 106 as illustrated or be arranged outside the output cell in the integrated circuit.

[0036] The output cell 106, i.e. the first output cell, is adapted to operate according to a first mode wherein the voltage on the output pin 118 has a first amplitude V1*, and according to a second mode wherein the voltage on the first output pin has a second amplitude V2*, larger than the first amplitude depending on a control signal applied to the at least one voltage select pin 116. The output cell 106 comprises a first transistor 122, a second transistor 124 and a third transistor 126 having respective first terminals 128A, 128B, 128C, second terminals 130A, 130B, 130C, third terminals 132A, 132B, 132C, and fourth terminals 134A, 134B, 134C. A logical circuit 136 is arranged between the at least one voltage select pin 116 and the second terminals 130B and 130C to selectively activate the second transistor and the third transistor depending on desired mode of operation. The output cell comprises a first level shifter 138 coupled between the data pin 114 and the second terminals 130B and 130C to adjust data signal level. Further, a second level shifter 140 is coupled between the at least one voltage select pin 116 and the second terminals 130B and 130C to adjust voltage select signal level. The level shifters 138, 140 are connected to the second power power supply pin 112 and the core power supply pin 120. The at least one voltage select pin 116 may comprise a first voltage select pin and a second voltage select pin in order to select between more than two different operating modes of the output cell. Each transistor has an intrinsic parasitic diode between the third terminal and the fourth terminal which is also illustrated in Fig. 3. The coupling of fourth terminals eliminate or reduce parasitic currents between fourth and third terminals of the drive transistors.

LIST OF REFERENCES



[0037] 
2
hearing device
4
audio input interface
6
analog-digital (AD) converter unit
8
signal processing unit
10
user interface
12
memory unit
14
radio unit
16
loudspeaker/receiver
18
core
20
communication cell (Master interface)
22
clock management unit
24
audio input/output
26
H-bridge
28
communication cell (Wireless controller)
30
communication cell (IIC Master)
32
communication cell (IIS interface)
34
communication cell (SPI Master)
36
communication cell (Com interface)
38
communication cell (IIC slave)
50
ground rail
52
first power rail
54
second power rail
56
core power rail
104
first output pad
106
output cell
108
ground pin
110
first power supply pin
112
second power supply pin
114
data pin
116
voltage select pin(s)
118
output pin or output node
120
core power supply pin
122
first transistor
124
second transistor
126
third transistor
128A, 128B, 128C
first terminal
130A, 130B, 130C
second terminal
132A, 132B, 132C
third terminal
134A, 134B, 134C
fourth terminal
136
logical circuit
138
first level shifter
140
second level shifter



Claims

1. An integrated circuit for a hearing device, wherein the integrated circuit comprises a ground rail, a first power rail adapted to carry a first voltage (V1), and a second power rail adapted to carry a second voltage (V2), the integrated circuit comprising a number of pads for connecting the integrated circuit to other components, the number of pads including at least one output pad including a first output pad, wherein the integrated circuit comprises at least one output cell including a first output cell having a ground pin connected to the ground rail, a first power supply pin connected to the first power rail, a second power supply pin connected to the second power rail, a data pin, at least one voltage select pin and an output pin wired to the first output pad, wherein the first output cell is adapted to operate according to a first mode wherein the voltage on the first output pin has a first amplitude, and according to a second mode wherein the voltage on the first output pin has a second amplitude larger than the first amplitude depending on a control signal applied to the at least one voltage select pin.
 
2. An integrated circuit according to claim 1, wherein the first output cell comprises at least three transistors including a first transistor, a second transistor, and a third transistor, each transistor having a first terminal, a second terminal, a third terminal and a fourth terminal.
 
3. An integrated circuit according to claim 2, wherein the fourth terminal of the second transistor and the fourth terminal of the third transistor is wired to the power supply pin carrying the largest voltage.
 
4. An integrated circuit according to any of claims 2-3, wherein the fourth terminal of the second transistor and the fourth terminal of the third transistor are wired to a common terminal.
 
5. An integrated circuit according to claim 4, wherein the first terminal of the third transistor is wired to the second power supply pin and wherein the first terminal of the third transistor is the common terminal.
 
6. An integrated circuit according to any of claims 2-5, wherein the first terminal of the second transistor is wired to the first power supply pin.
 
7. An integrated circuit according to any of claims 2-6, wherein the first terminal of the first transistor is wired to the ground pin, the second terminal of the first transistor is connected to the data pin, optionally via a level shifter, the third terminal is wired to the output pin, and the fourth terminal is wired to the first terminal.
 
8. An integrated circuit according to any of claims 2-7, wherein the third terminal of the second transistor and the third transistor are wired to the output pin.
 
9. An integrated circuit according to any of the claims 2-8, wherein the integrated circuit comprises a third power rail adapted to carry a third voltage (V3), and wherein the first output cell comprises a fourth transistor connected between the output pin and a third power supply pin, the third power supply pin being connected to the third power rail.
 
10. An integrated circuit according to claim 9, wherein the fourth transistor has a first terminal, a second terminal, a third terminal and a fourth terminal, wherein the fourth terminal is wired to the common terminal, and wherein the first output cell is adapted to operate according to a third mode wherein the voltage on the first output pin has a third amplitude depending on a control signal applied to the at least one voltage select pin.
 
11. An integrated circuit according to claim 10, wherein the first terminal of the fourth transistor is wired to the third power supply pin and the third terminal of the fourth transistor is wired to the output pin.
 
12. An integrated circuit according to any of the claims 2-11, wherein the first output cell comprises a logical circuit having input connected to the at least one voltage select pin and the data pin, and output connected to the second terminals of the second, third and fourth transistor if present, for selecting between the modes by selectively activating the second, third and fourth transistor, respectively.
 
13. An integrated circuit according to any of the preceding claims, wherein the integrated circuit comprises a core connected to the first output cell, wherein the core is adapted to perform signal processing for a hearing device.
 
14. A hearing device comprising an integrated circuit according to any of the preceding claims.
 
15. A method for manufacture of an integrated circuit, comprising

- providing at least one output cell having an output pin and at least two drive transistors each having a first terminal connected to a respective first and a second power supply pin of the output cell, a second terminal, a third terminal connected to the output pin and a fourth terminal, wherein the fourth terminal of the two drive transistors are wired such that the voltage difference between the third and fourth terminal of the respective drive transistors is less than the diode threshold voltage between the third and fourth terminal.


 




Drawing










Search report









Search report