(19)
(11) EP 2 492 217 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
20.11.2013 Bulletin 2013/47

(21) Application number: 11401030.9

(22) Date of filing: 22.02.2011
(51) International Patent Classification (IPC): 
B65D 88/24(2006.01)
B65D 90/32(2006.01)
B65D 88/14(2006.01)

(54)

Entirely textile-based, lightweight, and blast resistant cargo container system and manufacturing method thereof

Vollständig textilbasiertes, leichtgewichtiges und explosionsbeständiges Frachtcontainersystem und Herstellungsverfahren dafür

Système de conteneurs de chargement résistant contre le souffle, léger et entièrement à base de textile et son procédé de fabrication


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43) Date of publication of application:
29.08.2012 Bulletin 2012/35

(73) Proprietor: Sächsisches Textilforschungsinstitut e.V.
09125 Chemnitz (DE)

(72) Inventors:
  • Zangani, Donato
    16156 Genova (IT)
  • Bozzolo, Alessandro
    16145 Genova (IT)
  • Ambrosetti, Samuele
    16125 Genova (IT)
  • Illing-Günther, Heike
    09212 Limbach-Oberfrohna (DE)
  • Franitza, Petra
    09126 Chemnitz (DE)
  • Tyas, Andrew
    Walkley Sheffield S6 3RQ (GB)
  • Warren, James Arthur
    Rotherham S61 2DJ (GB)
  • Bardaro, Danilo
    72023 Mesagne (IT)
  • Dotoli, Rosario Pio
    73100 Lecce (IT)
  • Schneider, Michael
    61194 Niddatal (DE)
  • Carmel, Alex
    2318 AX Leiden (NL)
  • Caronti, Fabio
    07026 Olbia (OT) (IT)
  • Gustafsson, Tord
    975 94 Luleå (SE)
  • Toftegaard, Helmuth
    4000 Roskilde (DK)
  • Lilholt, Hans
    4000 Roskilde (DK)

(74) Representative: Steiniger, Carmen 
Kanzlei Dr. Steiniger Ricarda-Huch-Straße 4
09116 Chemnitz
09116 Chemnitz (DE)


(56) References cited: : 
EP-A1- 1 061 009
FR-A1- 2 607 241
US-A1- 2004 112 907
WO-A1-98/12496
US-A- 4 892 210
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The rise in worldwide terrorism has required measures to be taken to harden aircrafts against catastrophic in-flight failure due to concealed explosives. Commercial aviation can be protected from the threat of explosives by:
    1. 1. preventing explosives from reaching the aircraft and;
    2. 2. mitigating the effects of an explosive inside the cargo area
    which protects the aircraft from any possible onboard explosions. The risk that a small quantity of an explosive, below the threshold of the detection instruments, could get undetected should be considered, and the introduction of countermeasures to reduce the effects of on-board explosions should be applied.
    Hardened containers (HULD) have been developed for the latter scope, which can reduce the effects of on-board explosions. However, these are not widely used, because they are heavy and more costly than standard luggage containers and are only applicable to a particular type of (wide-body) aircraft. These fundamental limitations called for new measures and the issue of containing explosions aboard narrow-body aircraft must be resolved.

    [0002] The development of such blast resistant containers is documented by the patent applications and granted patents, listed below in chronological order:

    US 5 267 665, "Hardened luggage container", filed in 1991

    US 5 312 182, "Hardened Aircraft Unit Load Device", filed in 1991

    US 5 645 184, "Aircraft cargo container", filed in UK 1994

    US 5 654 053, "High-energy-absorbing enclosure for internal explosion containment", filed in 1997

    US 6 237 793 B1, "Explosion resistant aircraft cargo container", filed in 1998

    US 6 435 363 B2, "Explosion resistant aircraft cargo container", filed in 2001

    US 2004 0123 783 A1, "Airtight blast resistant cargo container", filed in 2002

    US 2005 0188 825 A1, "Explosive effect mitigated containers", filed in 2004

    US 2006 0065 656 A1, "Lightweight blast resistant container", filed in 2004



    [0003] Several hardened luggage container design concepts have been developed by private industry for wide body aircrafts. The design techniques consist of both blast containment and blast management concepts. A blast containment design aims at completely suppress the effect of the explosion within the container. The container is considered an independent element within the cargo bay environment, and sufficient venting is allowed only to meet the minimum International Air Transport Association (IATA) venting requirements. A blast management design concept considers the container as part of a system with the aircraft cargo bay. Thus, one type of blast management design may allow a controlled amount of the explosive products to mix with the cargo bay air, thereby reducing the loads (and damage potential) to any one component; a second blast management container may in fact be designed to fail and in so doing the container structure would absorb most of the blast energy, making the residual blast effects upon the cargo negligible.
    One example of the first approach is the one disclosed in patent WO 2000/021861 "Explosion Resistant Aircraft Cargo Container", by Century Aero Products International, where the primary construction uses a tough polycarbonate panel clamped to aluminium extrusion framework with side panels connected together by interlocking joints. The joint design would allow for spherical expansion of the structure in a blast, thereby increasing its tolerance to the pressures generated.

    [0004] JAYCOR has proposed a design, disclosed by patent number US5312182 "Hardened Aircraft Unit Load Device" aimed at maintain the structural integrity and seal the container from air flow during the explosion. The design is made by rigid composite panels fabricated with high-strength fibres such as SPECTRA and using composite processing technologies such as RTM or pre-impregnated process.
    In this case the rigid design does not allow the use of this kind of system in narrow body airplanes. Moreover, the use of high-strength composites results in high costs which could not be compatible with market constraints.

    [0005] One example of blast management concepts is the hybrid material container design by Royal Ordnance described in US5645184 "Aircraft Cargo Container" that employs hybrid materials. The container panels consist of several different materials joined at the corners. Certain portions of the container are designed to fail early to alleviate the quasi static pressure (QSP), with the joints being identified as the weak point of the system.

    [0006] Another example of the second concept is the hardened luggage container design by SRI International (Patent number US 5267665 "Hardened Luggage Container"). The SRI design takes advantage of the entire cargo bay of the aircraft. The container sides which are adjacent to other containers are designed to fail under the blast pressures generated by the explosive event. This allows the high pressure gases to flow out of the initial container and into other containers along the same row. Furthermore, the design slowly vents the explosive products into the cargo bay, increasing the pressure in this area at a reduced rate, and thereby extending the duration over which the pressure impulse acts upon the aircraft fuselage.

    [0007] The access doors to the container are generic hinged doors or removable doors. A rupture port is included acting as preferred failure mode under explosive pressure.

    [0008] The document WO 98/12496 describes blast resistant and blast directing container assemblies for receiving explosive articles and preventing or minimizing damage in the event of an explosion. The container shall exemplarily be used as an emergency container in aircrafts. The container assembly can be stored in a disassembled kit form when empty. The kit comprises folded bands of a blast resistant material, a canister of blast mitigating material, such as an aqueous foam, a telescoping pole and belts for holding kit together while stored. The blast resistant material of the bands comprises high strength fibers. The blast mitigating material can absorb heat energy from a blast.

    [0009] Each of the bands will be unfolded and erected in such a way that it is assembled into a cube. Since the second band is slightly larger than the first inner band and the third band is slightly larger than the second band, the cubes can be placed in each other. In the inner cube formed by the first inner band the luggage will be placed. Then, the volume around the luggage in the inner cube is filled with the blast mitigating material via the canister. Thereafter, the inner cube is nested in the second cube formed from the second band, and the second cube is nested within the third cube formed from the third band. Furthermore, an optional net can be used for holding the suspect luggage out of contact with the sides of the second and third bands. In addition, optional handles can be provided through which the telescoping pole can be placed for carrying the assembly. The handles can be taped in place after assembly of the container assembly.

    [0010] The document US 2004/0112907 A1 discloses a container for air cargo applications. The container has two side walls, a rear wall, a top wall, a base and a forward end with an opening serving as an access to the interior of the container. The walls are sandwiched panels constructed of inner and outer Fiber Reinforced Thermoplastic (FRTP) skins and a low-density core of thermoplastic material in between. The base is comprised of a plate, such as an aluminum plate, which is framed with edge rails, such as aluminum extrusions. The forward end of the container is framed by framing members, such as aluminum angles.

    [0011] In the document EP 1 061 009 A1 a collapsible cargo container for air transport is suggested. The base of that container comprises a frame structure having a front frame element with a loading opening, a rear frame element, an inner and an outer side frame element and a roof frame element. The base, the side and the roof form a stable, self-supporting structure when assembled. The frame elements are hinged along their edges, allowing them to be folded into a flat structure where two sets of frame elements lie side-by-side.

    [0012] The document US 4,892,201 depicts a container cargo net for use with a shipping container. The cargo net serves for preventing shifting of the container wherein the net is interconnected to fixed anchors on an inner surface of a vehicle in which the container is positioned.

    [0013] The document FR 2 607 241 A1 relates to a device allowing people to be protected against the blast of explosive devices or materials. The device is in the form of a hinged panel comprising: a cover formed by two layers of a coated textile material which are solidly attached over their entire periphery as well as at regular intervals, so as to form between them parallel pockets connected together by flexible zones. Inside the pockets there is a succession of a layer of a heat-reflecting material, a plurality of layers of aramid fabric and blocks of foam extending over the entire height of the panel inside the pockets.

    [0014] Any explosive event involves a rapid release of energy, generating a high local pressure disturbance which propagates in the surrounding medium away from the site of the explosion. In the case of high explosive detonation, the explosion also results in the rapid (effectively instantaneous) conversion of a solid or liquid explosive into gaseous products which, under ambient pressure, would occupy a far greater volume than the parent material and therefore significantly add to the local pressure disturbance. This leads to an instantaneous and very short duration shock loading of close structures, followed by a longer term quasi-static pressure loading of the structure if no venting is allowed.

    [0015] An intense shock load is generated in the first few milliseconds after a blast; the shock load is extremely localised and has a short duration, transferring its energy to structures neighbouring the charge. In the subsequent milliseconds, gas expansion occurs, generating a pressure wave expanding in a substantially spherical shape. The passage of the pressure wave through the initially undisturbed air will both compress the air and impart a velocity to the air particles in a direction radially away from the detonation point. If a pressure sensor is placed in the path of the blast wave, a transient pressure pulse as the one shown in figure will be measured.

    [0016] Following detonation, shock wave travelling through reaches the sensor position at time of commencement; the pressure grows very quickly (effectively instantaneously) to an over-pressure maximum value. It then decreases exponentially back to ambient pressure.

    [0017] Contemporaneously, fragments of luggage fly at high speed, as projectiles, towards surrounding structures. The shockwave passage has duration of the order of some milliseconds and the peak pressure generated is of the order of hundreds of kPa.

    [0018] If the explosion happens inside a closed container, a second effect adds to the shock load: peak tails from multiple reflections of the pressure wave against container walls sum up, giving a non-null net pressure named Quasi Static Pressure (QSP), which can last for several seconds. Maximum pressure associated with QSP is significantly lower than shock load pressure, however, due to its long duration; QSP gives a significant contribution to damage.
    The textile multilayer container is designed to resist overpressure generated by gas expansion, while composite elements are dimensioned to resist shock holing.

    [0019] Generally it appears that the concepts, where it is allowed to vent out the pressure generated by the explosion in the cargo bay, cannot in a realistic way fully guarantee the safety of the aircraft structures and of the fuselage. Moreover, they are not applicable to narrow body aircrafts, where the dimensions of the cargo bays are significantly smaller than those of large body aircrafts, with a lower margin to absorb the overpressure. The hardening concepts, proposing a full blast containment, appears more reliable, even if at cost of higher weights and costs in reason of the use of high-strength composite materials and reinforcing ballistic fibres.

    [0020] Therefore, the concept of the presented invention is based on full containment of the quasi static pressure, generated by the blast by deformation of the flexible composite layers making the container. Local reinforcement to withstand shock loading at floor and critical interfaces is achieved using rigid composite materials. The access is allowed by an innovative use of zip system which is designed to withstand the quasi static pressure generated by the blast and which is gas-tight. The zip system also provides an easy opening and closing of the container during loading and unloading operations at the airport. In case non-hazardous goods bigger than the container itself have to be loaded inside the cargo bay of the plane, the container itself is designed to be foldable allowing to be easily removed and stored.

    DESCRIPTION in general - BRIEF DESCRIPTION OF THE INVENTION



    [0021] The concept is based on the development of flexible textile-based luggage containers able to resist a small to medium explosion by controlled expansion and containment of the shock waves whilst, at the same time, preventing hard luggage fragment projectiles (shrapnel) from striking the main structure of the aircraft at high speed. A multi-layered "soft" structure is required to absorb the large dynamic loads of the explosion and the large deformation related to the gas expansion. A multilayer textile structure made of ballistic yarns is used as an internal high-strength layer, coupled with an external "foldable" layer which deforms in a controlled way during the explosion similar to airbags in cars.

    [0022] The reinforcement composite panels are used for the floor and/or back wall. Such panels are characterized by a structure which is designed to withstand the shock holing forces generated by the blast event and to distribute such impulse onto the internal surface of the textile container over a larger area. The composite panels are designed to cover entirely the floor of the internal surface of the textile container and the lateral walls, where required, to provide additional protection to rear critical structures. The composite lateral elements are designed to be foldable to allow the entire container to be quickly unfolded and removed.

    [0023] Fundamental is the entirely textile-based, lightweight, blast resistant, gastight and high-strength multilayer textile structure which is coated inside by polyurethane spray coating technology. Such cargo container system is defined deformable, flexible and foldable using blast resistant rigid reinforcing composite elements for floor and, where required, lateral walls; and a gastight and high-strength zip system for opening and closure system.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0024] A full and enabling disclosure of the present invention, including the best mode thereof, to one of ordinary skill in the art, is set forth more particularly in the remainder of the specification, including reference to the accompanying figures characterised in that:
    1. 1 - is the front part of the container,
    2. 2 - is the back part of the container,
    3. 3 - is the middle part of the container,
    4. 4 - is the zip system,
    5. 5 - are the hanging loops and/or strips equipped with cam buckles and/or single studs,
    6. 6 - are the fastening straps (6) and/or net-like structure equipped with snap hooks and/or D-rings,
    7. 7 - are the reinforcing composite elements (7) and/or free standing inner frame made of composite tubes,
    8. 8 - are additional attached zip covering pads at the inner side of the zip.

    Fig. 1 shows a schematic front view of the textile-based, lightweight, and blast resistant cargo container system according to an embodiment with the numbered elements (1), (3) and (4).

    Fig. 2 shows a schematic back view of the textile-based, lightweight, and blast resistant cargo container system according to an embodiment with the numbered elements (2), (5) and (6A).

    Fig. 3 shows a detailed view of the embodiment for the inner reinforcing composite elements (7A).

    Fig. 4 shows a detailed isometric view of the embodiment shown in an application for a narrow body aircraft

    Fig. 5, 6 and 7 show possible configurations of zip systems integrated in the embodiment, whereby Fig. 5 shows a reverse T-shape configuration, Fig. 6 shows a U-shape configuration, and Fig. 7 shows an U-shape configuration open to the side.

    Fig. 8 discloses the detailed front view with the numbered element (8).


    DESCRIPTION more detailed



    [0025] The invention discloses an entirely textile-based, lightweight cargo container system which is able to resist a medium size explosion. It is gas and heat resistant and flame retardant, but at the same time flexible and foldable. It is therefore for primary use in all sections of the transportation industry, including the airline industry, both cargo and passenger.

    [0026] Different functions of the multilayer textile structure are fulfilled and show the following advantages:
    • foldable, drapeable (textile) structure because of flexible, lightweight materials,
    • resistance to the peak pressure generated in the milliseconds after the detonation by gas tightness,
    • holds overpressure (longer term quasi-static pressure) up to 4 seconds and thanks to the high tensile strength material of the textile construction,
    • and provides a slow decrease of internal pressure by controlled venting,
    • withstanding the large material strains by means of controlled deformation zones which have been integrated by the ductility and structure of the material and additionally, PU/Fibre composite increased material resilience,
    • slowing down and trapping of accelerated cargo goods by means of momentum transfer into the larger structure,
    • flame barrier and heat insulation by of use of heat resistant and flame retardant materials.


    [0027] Three main categories of material were defined:
    1. 1. high-strength materials
    2. 2. ductile/deformable materials
    3. 3. insulating/flame resistant materials
    which were integrated in the multilayer structure of the textile container. Several materials have been indicated to be suitable for the application in a multilayer design. These materials have been arranged in different fibre and/or filament architectures as well as with functional coatings to optimise their behaviour in and interaction between the multilayers and multi-material design.

    [0028] Regarding to the multilayer textiles fabric design, functional areas have been integrated in the blast resistant containment. The whole design is based on an inner and an outer container side as well as an asymmetrical sequence of layers. At least three layers of selected textile material have to be combined into the multilayer textile structure to fulfil the requested requirements. An additional coating layer of polyurethane of thickness 0.05-0.5 millimetres is transforming the internal textile multilayer structure into a flexible composite system where the reinforcement is given by the textile fibres. The matrix is the polyurethane resin in a way that a bonding effect similar to composites is achieved with an effective fibre/matrix load transfer resulting in an increased strength.
    The following points give an impression of the material behaviour and its function inside the container itself.
    1. (1) Gas/heat resistant and flame retardant barrier: Use of relatively gastight felts and nonwovens made of novoloid fibres or aramid fibres or a fire proof membrane. Functionality description: Flexible layers are required which withstand higher temperatures (up to 500...1000°C) for a short time (seconds). Furthermore, these materials are characterised by a low thermal conductivity at least 0,03...0,05 W/(mK)).
    2. (2) Inner deformation and energy absorbing zone: Use of para-aramid or high-oriented polypropylene filaments into woven or/and multiaxial warp knits. It is a relatively voluminous layer, which is flexible and allows an inner deformation of the layer itself. This inner deformation causes an energy absorption by material compression and inner friction of the fibre/yarn macrostructure. This zone is preferably made of high-strength and highly ductile material with specific macroscopic structures. However, it is believed that the use of high-strength, horizontally extending yarns in conjunction with lower strength, higher elongation, vertically extending yarns increases the ductility and strength of the overall textile structure. Warp and filler yarns of the preferred fabric are used to extend substantially in horizontal and vertical directions.
    3. (3) Reinforcing and splinter protection layer/zone: Made of high-strength material in a relatively dense textile structure (warp knitted or woven) i.e. para-aramid or carbon fibre, additionally coated with rheopectic substances. This layer has to trap and slow down accelerated cargo goods and explosion born splinters.
    4. (4) Defined outer deformation: An additional flexible net-like structure or strap system made of high-strength polymers such as high-molecular polyethylene or/and liquid crystal polymers envelopes the whole container. The multilayer textile structure is in this way reinforced by textile belts or/and air cargo straps and strips also called webbing, which are horizontally and/or vertically attached and integrated onto the multilayer textile structure or are wrapped loosely around only hold by sewed belt holders to reinforce the external structure of the container in any direction. Such belts are attached to the multilayer textile structure by sewing, gluing, welding or any other joining process which is applicable to textile surfaces. Furthermore, the multilayer textile structure is equipped with devices, especially straps with cam buckles and/or single stud fittings that are attached to the multilayer textile structure by sewing, gluing, welding or any other joining process which is applicable to textile surfaces and that allow the installation of the cargo-container into the transport vehicle for both possibilities: free hanging or for hanging with touching the ground floor of the transport vehicle. This open net or strap construction will give the outer shape of the container after a blast event (defined expansion of specific areas between the straps). Furthermore, it enables a decoupling of the blast resistant container walls from the aircraft frame by defined distances from the fuselage.


    [0029] The devices used in prototype manufacturing according to the described manufacturing method comprises for assembling following elements in detail:
    • Sewing thread: ultra-high-molecular-weight polyethylene multifilament twisted sewing yarn, 2120 dtex, tensile strength 500.00 N, elongation at break 4,5%
    • Glue to seal the seams: one-component or two-component glue used and certified for air cargo applications
    • Webbing for enveloping straps, version 1: Polyester Strap 70 160/48 mm, white, without treatment, minimum breaking strength 6.000 daN, width 48 mm, elongation at 2.000 daN 4-5%
    • Webbing for enveloping straps, version 2: Polyester Strap 70 051/50 mm, white, without treatment, minimum breaking strength 7.500 daN, width 50 mm, elongation at 2.500 daN 4-5%
    • Webbing for fastening straps: for example 50 mm polyester webbing, loom state (untreated) with minimum breaking load 7,500 daN
    • Webbing for hanging loops: 25 mm polyester, loom state, minimum breaking load 2,000 daN
    • Buckles for hanging loops: cam buckles, made of steel and aluminium, minimum breaking load 1,000 daN
    • Single studs for hanging loops: made of steel and aluminium, minimum breaking load 1,800 daN
    • Hooks for fastening straps are made of steel with minimum breaking load 2,250 daN
    • D-rings for fastening straps are made of stainless steel with minimum breaking load 4,750 daN


    [0030] Different composite panel designs are being considered for making the additional rigid parts inserted into the blast resistant textile container. When in contact with the transport vehicle floor, it is the aim to obtain the highest blast protection within the minimum panel thickness and the design aims to withstand the shock pressure generated by the design blast event and to distribute blast impulse onto the internal surface of the textile container over a larger area. The composite panels are designed to cover entirely the floor of the internal surface of the textile container and the lateral walls, where required, to provide additional protection to rear critical structures. They are designed to allow the entire container to be quickly unfolded and allow in this way the loading of larger items in the airplane cargo hold.
    In the first phase of work, 36 panels were tested in 8 different configurations of panel makeup. Aramid and E-glass reinforcement were used in the fibre reinforced plastics (FRP) hardened near and far face surfaces, with expanded Polyvinyl chloride (PVC) foam of varying densities used as core material. In this first phase, all panels had a total of 4mm of fibre reinforced plastic thickness, split between a front and rear face (in 2mm-2mm, 3mm-1mm and 1mm-3mm configurations), with a 16mm thickness of foam core bonded to the two faces to give a panel structure.
    Post test, the panels' performance can be categorised as;

    ■ panel survived without penetration,

    ■ panel survived with breaching at the attack face,

    ■ panel survived but with some breaching (minor tearing) of the far face,

    ■ catastrophic failure of the panel.



    [0031] Panel survived without penetration: Testing at larger standoffs (and therefore lower loading) the attack face did not shear and no shock breaching occurred. Plastic bending was witnessed on each of the panels with varying severity. In general, the permanent deformation of aramid panels is more pronounced when compared to that of glass panels.
    In general, the E-glass fibre reinforced panels performed significantly better than those reinforced with aramid fibres, and the best performance was observed when the front and rear faces were both 2mm thick, surviving the blast loading at 100mm standoff. From the conclusion of the first series of tests, a second phase of testing was conducted in which the thickness of the E-glass reinforced front and back faces were increased, and solid E-glass panels were included as comparison tests. Of the panels tested in phase 2, a composite panel with 3mm thick E-glass fibre composite attack and far face (with a 14mm thick foam core) and a solid 8mm thick E-glass fibre composite panel survived a standoff of 80mm.

    [0032] The zip used for the zip system (4) in the present invention is characterised by area section of tooth of the order of 1-3 square millimetres, depending from the tooth material used, in order to resist the tearing force generated during the explosion, which try to separate the two sides of the zip. The teeth are preferably made in high density polyethylene reinforced with short fibres, but also other plastic material can be used or metal. Zip tooth are firmly joined to the tape by sewing or co-moulding or other joining systems or their combination. For instance a screw can be used as additional tooth-tape connection system to provide additional strength and avoid separation of the tooth from the tape during loading. The zip system is equipped with an internal zip covering pad to cover the entire zip in the internal side of the container in order that, in case of an explosion inside the container, the overpressure generated would press the flap against the zip preventing the rapid venting of the gas though the gaps of the zip system. The zip covering pads (9) are connected by sewing or other joining systems to the internal textile layer of the container and it is preferably made from the same textile material. Alternatively the zip covering pads is obtained directly from one of the textile layers of the container; cut is a way to cover the zip.

    [0033] The work leading to this invention has received funding from the European Union Seventh Framework Programme FP7 under grant agreement no. GA-2008-213577.


    Claims

    1. Blast resistant cargo container system which is foldable for primary use in all transportation industries, characterised in that the cargo container system is entirely textile-based, lightweight, deformable in a defined way and flexible and comprises a gastight and high-strength multilayer textile structure using an internal coating, consisting of at least three textile layers and of at least three parts:

    - a front part (1) containing high-strength and gastight zip system (4) for opening and closure system

    - a back part (2)

    - a middle part (3) connecting the front part (1) and back part (2) whereby the three parts are joined by sealed seams and whereby the whole container system is equipped additionally with following components:

    • a reinforcing composite element (7) for floor and/or lateral back wall inside and/or

    • a free standing inner frame made of composite tubes.


     
    2. Blast resistant cargo container system according to claim 1 which withstands and contains a blast overpressure for at least four seconds.
     
    3. Blast resistant cargo container system according to according to claim 1 and 2, characterised by at least three parts which are joined by high-strength sewing using an ultra-high-molecular-weight polyethylene multifilament twisted sewing yarn and/or gluing techniques using a one-component or a two-component glue.
     
    4. Blast resistant cargo container system, according to at least one of the preceding claims, characterised in that at least three fabric layers of the multilayer textile structure consist of

    i. one outside fabric layer made of highly oriented polypropylene filament material,

    ii. one intermediate hybrid fabric layer made of highly oriented polypropylene filament and carbon fibre material, and

    iii. one inside fabric layer made of fire-resistant para-aramid filament material.


     
    5. Blast resistant cargo container system according to at least one of the preceding claims, characterised in that the multilayer textile structure is coated by a coating layer with a thickness of 0.05 to 0.5 millimetres of polyurethane or silicone or natural rubber mixtures or polytetrafluorethylen, or ethylen-tetrafluorethylen which transforms the internal textile layer into a flexible composite system with absolutely gastight properties of the textile multilayer so that the tensile strength in this system is provided by the flexible interaction of high strength fibres and the gas tight coating.
     
    6. Blast resistant cargo container system according to at least one of the preceding claims, characterised in that the multilayer textile structure is reinforced by fastening straps (6) made of high-strength polyester material, characterised by the use of at least one horizontal oriented and one vertical oriented or two cross-linked fastening straps which are attached onto the multilayer textile structure by sewing, gluing, or ultrasonic welding and/or which are wrapped loosely around the external structure of the container in any direction fixed by belt loops.
     
    7. Blast resistant cargo container system according to at least one of the preceding claims, characterised in that the multilayer textile structure is reinforced by a net-like structure, which is horizontally and/or vertically attached and/or integrated into the multilayer textile structure or wrapped around the external structure of the container in any direction.
     
    8. Blast resistant cargo container system according to at least one of the preceding claims, characterised in that the intrinsically gastight zip system (4) comprises a tooth design of an tooth area section of at least 1 to 10 square millimetres made of high density polyethylene reinforced with short fibres and is characterised in that the zip system (4) comprises at least one zip covering pad (8) attached on the inner side of the zip.
     
    9. Blast resistant cargo container system according to at least one of the preceding claims, characterised in that the zip design (4) used for the cargo container opening and closure system to provide a practical loading and unloading of the cargo container characterised by the arrangement of a system of zip in U, T or H shape which allows to open and close all zip elements in the front part (1).
     
    10. Blast resistant cargo container system according to at least one of the preceding claims, characterised in that reinforcement composite elements (7) are used for the floor and/or back wall and which are characterized by foldable composite sandwich construction of at least 20mm thickness comprising a foam core including two facings consisting of E-glass fibre composite for the attack and rear face.
     
    11. Blast resistant cargo container system according to at least one of the preceding claims, characterised in that the weight of the textile multilayer structure is below the weight of an, in size comparable, commercially available aluminium Unit Load Device (ULD) container used in air cargo applications by about 25%.
     
    12. Blast resistant cargo container system according to at least one of the preceding claims, characterised in that the outer shape of the three parts (1, 2, 3) are compatible in size with various cargo rooms such as aircrafts, ships, trains, trucks and/or safety cars for cash transport.
     
    13. Blast resistant cargo container system according to at least one of the preceding claims, characterised in that at least one safety detector for alarm is installed inside the container which detects smoke and/or fire and/or dust and/or sudden air pressure lost.
     
    14. Blast resistant cargo container system according to claim 1, characterised in that the container system is equipped additionally with at least four attached hanging loops (5) equipped with cam buckles and/or single studs fixed at the outside of the container to install, fasten or hang the container into vehicles.
     
    15. Blast resistant cargo container system according to claims 1-5, characterised in that the front part (1) and the back part (2) are equipped with the hanging loops (5) that are attached at the outside of the multilayer textile structure by sewing, gluing, or ultrasonic welding and that allow the installation of the cargo-container into the transport vehicle whereby the hanging loops (5) are equipped with cam buckles and/or single studs.
     
    16. Blast resistant cargo container system according to claim 1, characterised in that the container system is equipped additionally with at least two cross-linked attached fastening straps (6) equipped with snap hooks and D-rings and/or a net-like structure fixed around the outside to envelope and reinforce the textile container.
     
    17. Manufacturing method for an entirely textile-based, lightweight, and blast resistant cargo container system which is defined deformable, flexible, and foldable for primary use in all transportation industries comprising following steps:

    - cutting at least three single layers of a gastight and high strength multilayer textile structure for at least three parts (1, 2, 3);

    - cutting the opening for a gastight zip into the front part (1) into at least three single layers;

    - placing and pre-fixing the number of textile layers in the predetermined sequence whereof at least one layer is placed as an intermediate layer;

    - sewing and/or gluing the gastight zip covering pads (8) for the gastight zip onto the front part (1) of the container covering the full length of the gastight zip;

    - sewing the gastight zip (4) into the front part (1);

    - sewing the textile belt holders onto the front part (1), back part (2), and the middle part (3)

    - sewing at least four hanging loops (5) onto the outside of the front part (1) and/or the back part (2) whereby the hanging loops are equipped with hooks and/or single studs for later installation of the container into vehicles

    - sewing the back part (2) and the middle part (3) together and/or glue the seam

    - sewing the front part (1) onto the other side of the middle part (3) together and/or glue a seam

    whereby sewing is performed by using an ultra-high-molecular-weight polyethylene multifilament twisted sewing yam and/or gluing techniques using a one- or two-component glue and which is comprising after the assembling of the fixed parts of the container the following steps:

    - spray the whole textile container by using a coating in this way that the sprayed coating is inside the container,

    - attach the loose horizontal air cargo straps (6) and/or air cargo tie down net which are equipped with air cargo karabiner hooks at the outside of the container by using the belt holders,

    - equip the textile container with reinforcing blast resistant composite panels (7) for floor and/or lateral back walls and/or a free standing inner frame made of composite tubes inside.


     


    Ansprüche

    1. Explosionsbeständiges Frachtcontainersystem, das faltbar ist, für eine Hauptanwendung in allen Transportbranchen, dadurch gekennzeichnet, dass das Frachtcontainersystem vollständig textilbasiert, leicht, auf definierte Weise verformbar und biegsam ist und eine eine innere Beschichtung nutzende, gasdichte und hochfeste mehrschichtige Textilstruktur umfasst, die aus mindestens drei Textilschichten und mindestens drei Teilen besteht:

    - einem vorderen Teil (1), der ein hochfestes und gasdichtes Reißverschlusssystem (4) als Öffnungs- und Verschlusssystem umfasst

    - einen hinteren Teil (2)

    - einen mittleren Teil (3), der den vorderen Teil (1) und den hinteren Teil (2) verbindet

    wobei die drei Teile durch gedichtete Nähte verbunden sind und wobei das ganze Containersystem zusätzlich mit folgenden Komponenten ausgestattet ist:

    • einem Verstärkungs-Verbundmaterialelement (7) für das Innere eines Bodens und/oder einer hinteren Querwand und/oder

    • einen freistehenden inneren Rahmen aus Verbundmaterialrohren.


     
    2. Explosionsbeständiges Frachtcontainersystem nach Anspruch 1, das einem Explosionsüberdruck mindestens vier Sekunden lang widersteht und ihn eindämmt.
     
    3. Explosionsbeständiges Frachtcontainersystem nach Anspruch 1 und 2, gekennzeichnet durch mindestens drei Teile, die durch hochfestes Nähen unter Verwendung eines verdrillten Multifilament-Nähgarns aus Polyethylen mit ultrahohem Molekulargewicht und/oder Klebetechniken unter Verwendung eines Einkomponenten- oder eines Zweikomponenten-Klebstoffs verbunden sind.
     
    4. Explosionsbeständiges Frachtcontainersystem nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mindestens drei Stoffschichten der mehrschichtigen Textilstruktur aus Folgendem bestehen:

    i. einer äußeren Stoffschicht, die aus stark orientiertem Polyproplyen-Filamentmaterial hergestellt ist,

    ii. einer Zwischen-Hybridstoffschicht, die aus stark orientiertem Polypropylen-Filament- und Kohlenstofffasermaterial hergestellt ist, und

    iii. einer inneren Stoffschicht, die aus feuerbeständigem Para-Aramid-Filamentmaterial hergestellt ist.


     
    5. Explosionsbeständiges Frachtcontainersystem nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die mehrschichtige Textilstruktur mit einer Beschichtungsschicht mit einer Dicke von 0,05 bis 0,5 Millimetern aus Polyurethan oder Silikon oder Naturkautschukgemischen oder Polytetrafluorethylen oder Ethylen-Tetrafluorethylen beschichtet ist, die die innere Textilschicht in ein biegsames Verbundmaterialsystem mit absolut gasdichten Eigenschaften der Textilmehrfachschicht verwandelt, sodass die Zugfestigkeit in diesem System von der biegsamen Wechselwirkung hochfester Fasern und gasdichter Beschichtung vorgesehen wird.
     
    6. Explosionsbeständiges Frachtcontainersystem nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die mehrschichtige Textilstruktur durch aus hochfestem Polyestermaterial hergestellte Befestigungsgurte (6) verstärkt ist, gekennzeichnet durch die Verwendung von mindestens einem horizontal orientieren und einem vertikal orientierten oder zwei vernetzten Befestigungsgurten, die durch Nähen, Kleben oder Ultraschallschweißen an der mehrschichtigen Textilstruktur befestigt sind und/oder die in beliebiger Richtung durch Gurtschlaufen fixiert locker um die äußere Struktur des Containers gewickelt sind.
     
    7. Explosionsbeständiges Frachtcontainersystem nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die mehrschichtige Textilstruktur durch eine netzartige Struktur verstärkt ist, die horizontal und/oder vertikal befestigt und/oder in die mehrschichtige Textilstruktur integriert ist oder in beliebiger Richtung um die äußere Struktur des Containers gewickelt ist.
     
    8. Explosionsbeständiges Frachtcontainersystem nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das intrinsisch gasdichte Reißverschlusssystem (4) eine Zahnausführung mit einer Zahnquerschnittsfläche von mindestens 1 bis 10 Quadratmillimetern, hergestellt aus mit kurzen Fasern verstärktem hochdichtem Polyethylen umfasst und dadurch gekennzeichnet ist, dass das Reißverschlusssystem (4) mindestens ein Reißverschluss-Abdeckpolster (8) umfasst, das an der Innenseite des Reißverschlusses befestigt ist.
     
    9. Explosionsbeständiges Frachtcontainersystem nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die für das Frachtcontainer-Öffnungs- und Verschlusssystem verwendete Reißverschlussausführung (4) zum Bereitstellen von praktischem Beladen und Entladen des Frachtbehälters gekennzeichnet ist durch die Anordnung eines Reißverschlusssystems in U-, T- oder H-Form, die es ermöglicht, alle Reißverschlusselemente im vorderen Teil (1) zu öffnen und zu schließen.
     
    10. Explosionsbeständiges Frachtcontainersystem nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Verstärkungs-Verbundmaterialelemente (7) für den Boden und/oder die hintere Wand verwendet werden und diese gekennzeichnet sind durch eine faltbare Verbundmaterial-Sandwichkonstruktion mit mindestens 20 mm Dicke, umfassend einen Schaumstoffkern mit zwei aus E-Glasfaserverbundmaterial bestehenden Außenschichten für die Angriffs- und die Rückseite.
     
    11. Explosionsbeständiges Frachtcontainersystem nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Gewicht der mehrschichtigen Textilstruktur um ungefähr 25 % unter dem Gewicht einer kommerziell erhältlichen, in Luftfrachtanwendungen verwendeten aus Aluminium bestehenden Ladeeinheit (ULD) vergleichbarer Größe liegt.
     
    12. Explosionsbeständiges Frachtcontainersystem nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die äußere Form der drei Teile (1, 2, 3) von der Größe her mit verschiedenen Frachträumen, wie etwa Flugzeugen, Schiffen, Zügen, Lkw und/oder Sicherheitsfahrzeugen für den Bargeldtransport kompatibel ist.
     
    13. Explosionsbeständiges Frachtcontainersystem nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in dem Container mindestens ein Sicherheitsmelder für einen Alarm installiert ist, der Rauch und/oder Feuer und/oder Staub und/oder plötzlichen Luftdruckabfall erkennt.
     
    14. Explosionsbeständiges Frachtcontainersystem nach Anspruch 1, dadurch gekennzeichnet, dass das Containersystem zusätzlich mit mindestens vier befestigten Hängeschlaufen (5) ausgestattet ist, die mit Gurtschlössern und/oder einzelnen Knöpfen ausgestattet sind, die an der Außenseite des Containers fixiert sind, um den Container in Fahrzeugen zu installieren, zu befestigen oder aufzuhängen.
     
    15. Explosionsbeständiges Frachtcontainersystem nach Ansprüchen 1 bis 5, dadurch gekennzeichnet, dass der vordere Teil (1) und der hintere Teil (2) mit den Hängeschlaufen (5) ausgestattet sind, die durch Nähen, Kleben oder Ultraschallschweißen am Äußeren der mehrschichtigen Textilstruktur befestigt sind und die die Installation des Frachtcontainers in das Transportfahrzeug ermöglichen, wobei die Hängeschlaufen (5) mit Gurtschlössern und/oder einzelnen Knöpfen ausgestattet sind.
     
    16. Explosionsbeständiges Frachtcontainersystem nach Anspruch 1, dadurch gekennzeichnet, dass das Containersystem zusätzlich mit mindestens zwei vernetzten befestigten Befestigungsgurten (6), die mit Schnapphaken und D-Ringen ausgestattet sind und/oder einer netzartigen Struktur ausgestattet ist, die um das Äußere fixiert sind, um den Textilcontainer zu umhüllen und zu verstärken.
     
    17. Herstellungsverfahren für ein vollständig textilbasiertes, leichtes und explosionsbeständiges Frachtcontainersystem, das definiert verformbar, biegsam und faltbar ist, für die Hauptverwendung in allen Transportbranchen, umfassend folgende Schritte:

    - Schneiden von mindestens drei einzelnen Schichten aus einer gasdichten und hochfesten Textilstruktur für mindestens drei Teile (1, 2, 3);

    - Schneiden der Öffnung für einen gasdichten Reißverschluss in den vorderen Teil (1) in mindestens drei einzelne Schichten;

    - Platzieren und Vorfixieren der Zahl von Textilschichten in der vorherbestimmten Reihenfolge, wobei mindestens eine Schicht als eine Zwischenschicht platziert wird;

    - Nähen und/oder Kleben der Abdeckpolster (8) des gasdichten Reißverschlusses für den gasdichten Reißverschluss an den vorderen Teil (1) des Containers, wobei die volle Länge des gasdichten Reißverschlusses abgedeckt wird;

    - Nähen des gasdichten Reißverschlusses (4) in den vorderen Teil (1);

    - Nähen der Textilgurthalter an den vorderen Teil (1), den hinteren Teil (2) und den mittleren Teil (3);

    - Nähen von mindestens vier Hängeschlaufen (5) an das Äußere des vorderen Teils (1) und/oder des hinteren Teils (2), wobei die Hängeschlaufen mit Haken und/oder einzelnen Knöpfen für die spätere Installation des Containers in Fahrzeuge ausgestattet sind;

    - Zusammennähen des hinteren Teils (2) und des mittleren Teils (3) und/oder Kleben der Naht;

    - Zusammennähen des vorderen Teils (1) an die andere Seite des mittleren Teils (3) und/oder Kleben einer Naht;

    wobei das Nähen unter Verwendung eines verdrillten Multifilament-Nähgarns aus Polyethylen mit ultrahohem Molekulargewicht und/oder Klebetechniken unter Verwendung eines Ein- oder Zweikomponentenklebers ausgeführt wird und es nach dem Montieren der fixierten Teile des Containers die folgenden Schritte umfasst:

    - Sprühen des gesamten Textilcontainers unter Verwendung einer Beschichtung auf die Weise, dass sich die gesprühte Beschichtung innerhalb des Containers befindet,

    - Befestigen der/des mit Luftfracht-Karabinerhaken ausgestatteten lockeren horizontalen Luftfrachtgurte (6) und/oder Luftfracht-Verzurrungsnetzes am Äußeren des Containers unter Verwendung der Gurthalter,

    - Ausstatten des Textilcontainers mit verstärkenden explosionsbeständigen Verbundmaterialplatten (7) für den Boden und/oder die Querrückwände und/oder einem freistehenden inneren Rahmen aus Verbundmaterialrohren im Inneren.


     


    Revendications

    1. Système de conteneur de fret anti-déflagration qui est pliable pour un usage principal dans toutes les industries de transport, caractérisé en ce que le système de conteneur de fret est entièrement à base de textile, léger, déformable d'une manière définie et souple et comprend une structure textile multicouches étanche aux gaz et de haute résistance à revêtement interne, consistant en au moins trois couches textiles et au moins trois parties :

    - une partie frontale (1) qui contient un système de fermeture éclair (4) de haute résistance et étanche aux gaz comme système d'ouverture et de fermeture

    - une partie arrière (2)

    - une partie centrale (3) qui relie la partie frontale (1) et la partie arrière (2) les trois parties étant jointes par des coutures scellées et la totalité du système de conteneur étant doté de plus des composants suivants :

    • un élément composite intérieur de renforcement (7) comme plancher et/ou paroi arrière latérale et/ou

    • un cadre interne indépendant composé de tubes composites.


     
    2. Système de conteneur de fret anti-déflagration selon la revendication 1 qui résiste à une surpression de déflagration et confine celle-ci pendant au moins quatre secondes.
     
    3. Système de conteneur de fret anti-déflagration selon les revendications 1 et 2, caractérisé par au moins trois parties qui sont jointes par une couture de haute résistance utilisant un fil à coudre à multibrins torsadés de polyéthylène à haut module et/ou des techniques de collage utilisant une colle à un ou deux composants.
     
    4. Système de conteneur de fret anti-déflagration selon au moins l'une des revendications précédentes, caractérisé en ce qu'au moins trois couches de tissu de la structure textile multicouches consistent en

    i. une couche de tissu extérieure composée d'un tissu à filaments de polypropylène fortement orientés,

    ii. une couche de tissu hybride intermédiaire composée de filaments de polypropylène fortement orientés et de tissu à fibre de carbone, et

    iii. une couche de tissu intérieure composée d'un tissu à filaments de paraaramide ininflammable.


     
    5. Système de conteneur de fret anti-déflagration selon au moins l'une des revendications précédentes, caractérisé en ce que la structure textile multicouches est revêtue d'une couche de revêtement d'une épaisseur de 0,05 à 0,5 millimètres de polyuréthane ou de silicone ou de mélanges de caoutchoucs naturels ou de polytétrafluoroéthylène ou d'éthylène-tétrafluoroéthylène qui transforme la couche textile interne en un système composite souple dont les multicouches textiles possèdent des propriétés de parfaite étanchéité aux gaz, la résistance à la rupture de ce système étant conférée par l'interaction souple des fibres à haute résistance et du revêtement étanche aux gaz.
     
    6. Système de conteneur de fret anti-déflagration selon au moins l'une des revendications précédentes, caractérisé en ce que la structure textile multicouches est renforcée par des sangles de fixation (6) composées d'un tissu de polyester de haute résistance, caractérisé par l'utilisation d'au moins une sangle de fixation orientée horizontalement et d'une sangle de fixation orientée verticalement ou de deux sangles de fixation croisées qui sont attachées sur la structure textile multicouches par couture, collage ou soudage ultrasonique et/ou qui sont enveloppées de manière lâche autour de la structure externe du conteneur dans n'importe quel sens fixées par des passants.
     
    7. Système de conteneur de fret anti-déflagration selon au moins l'une des revendications précédentes, caractérisé en ce que la structure textile multicouches est renforcée par une structure du type filet, laquelle est attachée horizontalement et/ou verticalement et/ou est intégrée dans la structure textile multicouches ou enveloppée autour de la structure externe du conteneur dans n'importe quel sens.
     
    8. Système de conteneur de fret anti-déflagration selon au moins l'une des revendications précédentes, caractérisé en ce que le système de fermeture éclair (4) intrinsèquement étanche aux gaz comprend une conception de denture présentant une superficie en coupe de dent d'au moins 1 à 10 millimètres carrés composée de polyéthylène de haute densité renforcé de fibres courtes et est caractérisé en ce que le système de fermeture éclair (4) comprend au moins un tampon de recouvrement de fermeture éclair (8) attaché sur le côté interne de la fermeture éclair.
     
    9. Système de conteneur de fret anti-déflagration selon au moins l'une des revendications précédentes, caractérisé en ce que la conception de fermeture éclair (4) utilisée comme système d'ouverture et de fermeture du conteneur de fret pour permettre un chargement et un déchargement pratiques du conteneur de fret est caractérisée par un système de fermeture éclair agencé en forme de U, de T ou de H permettant d'ouvrir et de fermer tous les éléments de la fermeture éclair dans la partie frontale (1).
     
    10. Système de conteneur de fret anti-déflagration selon au moins l'une des revendications précédentes, caractérisé en ce que les éléments composites de renforcement (7) sont utilisés pour le plancher et/ou la paroi arrière et sont caractérisés par une construction en sandwich composite pliable d'une épaisseur d'au moins 20 mm comprenant un coeur de mousse à deux faces consistant en un composite de fibre de verre E comme face d'attaque et face arrière.
     
    11. Système de conteneur de fret anti-déflagration selon au moins l'une des revendications précédentes, caractérisé en ce que le poids de la structure textile multicouche est inférieur d'environ 25% au poids d'un conteneur d'unité de chargement (ULD) en aluminium disponible dans le commerce, de taille comparable utilisé dans les applications de fret aérien.
     
    12. Système de conteneur de fret anti-déflagration selon au moins l'une quelconque des revendications précédentes, caractérisé en ce que la forme externe des trois parties (1, 2, 3) est compatible en taille à divers espaces pour fret, telles qu'avions, bateaux, trains, camions et/ou voitures de sécurité pour le transport de fonds.
     
    13. Système de conteneur de fret anti-déflagration selon au moins l'une quelconque des revendications précédentes, caractérisé en ce qu'au moins un détecteur d'alarme de sécurité est installé à l'intérieur du conteneur pour détecter fumée et/ou feu et/ou poussières et/ou chute soudaine de pression d'air.
     
    14. Système de conteneur de fret anti-déflagration selon la revendication 1, caractérisé en ce que le système de conteneur est doté de plus d'au moins quatre boucles de suspension (5) attachées munies de boucles à cames et/ou de boulons simples fixés sur l'extérieur du conteneur afin d'installer, de fixer, ou de suspendre le conteneur dans des véhicules.
     
    15. Système de conteneur de fret anti-déflagration selon les revendications 1 à 5, caractérisé en ce que la partie frontale (1) et la partie arrière (2) sont munies des boucles de suspension (5) qui sont attachées sur l'extérieur de la structure textile multicouches par couture, collage ou soudage ultrasonique et qui permettent d'installer le conteneur de fret dans le véhicule de transport, les boucles de suspension (5) étant munies des boucles à cames et/ou des boulons simples.
     
    16. Système de conteneur de fret anti-déflagration selon la revendication 1, caractérisé en ce que le système de conteneur est doté de plus d'au moins deux sangles de fixation attachées (6) croisées munies de mousquetons et d'anneaux en D et/ou d'une structure du type filet fixée autour de l'extérieur pour envelopper et renforcer le conteneur textile.
     
    17. Procédé de fabrication d'un système de conteneur de fret entièrement à base de textile, léger et anti-déflagration qui est défini pour être déformable, souple et pliable pour une utilisation principale dans toutes les industries de transport comprenant les étapes suivantes :

    - la coupe d'au moins trois couches individuelles d'une structure textile multicouches étanche aux gaz et de haute résistance pour former au moins trois parties (1, 2, 3) ;

    - la coupe de l'ouverture d'une fermeture éclair étanche aux gaz dans la partie frontale (1) dans au moins trois couches individuelles ;

    - la pose et la préfixation du nombre de couches textiles dans leur séquence prédéterminée, au moins une couche étant posée comme couche centrale ;

    - la couture et/ou le collage des tampons de recouvrement de fermeture éclair étanche aux gaz (8) de la fermeture éclair étanche aux gaz sur la partie frontale (1) du conteneur pour recouvrir toute la longueur de la fermeture éclair étanche aux gaz ;

    - la couture de la fermeture éclair étanche aux gaz (4) dans la partie frontale (1) ;

    - la couture des supports de ceinture textiles sur la partie frontale (1), la partie arrière (2) et la partie centrale (3) ;

    - la couture d'au moins quatre boucles de suspension (5) sur l'extérieur de la partie frontale (1) et/ou la partie arrière (2), les boucles de suspension étant munies de crochets et/ou de boulons simples pour l'installation ultérieure du conteneur dans des véhicules ;

    - la couture de la partie arrière (2) avec la partie centrale (3) et/ou le collage de la couture ;

    - la couture de la partie frontale (1) avec l'autre côté de la partie centrale (3) et/ou le collage d'une couture ;
    la couture étant exécutée en utilisant un fil à coudre à multibrins torsadés de polyéthylène à haut module et/ou des techniques de collage utilisant une colle à un ou deux composants et lequel comprend, après l'assemblage des parties fixes du conteneur, les étapes suivantes :

    - la vaporisation de tout le conteneur textile par l'utilisation d'un revêtement, de manière que le revêtement vaporisé soit à l'intérieur du contenant,

    - la fixation des sangles de fret aérien horizontales lâches (6) et/ou du filet d'arrimage de fret aérien qui sont dotés de mousquetons de fret aérien sur l'extérieur du conteneur au moyen des supports de ceinture,

    - l'équipement intérieur du conteneur textile avec des panneaux composites anti-déflagration de renforcement (7) comme plancher et/ou paroi arrière latérale et/ou un cadre interne indépendant composé de tubes composites.


     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description