(19)
(11) EP 1 571 247 B2

(12) NEUE EUROPÄISCHE PATENTSCHRIFT
Nach dem Einspruchsverfahren

(45) Veröffentlichungstag und Bekanntmachung des Hinweises auf die Entscheidung über den Einspruch:
04.12.2013  Patentblatt  2013/49

(45) Hinweis auf die Patenterteilung:
24.06.2009  Patentblatt  2009/26

(21) Anmeldenummer: 04030194.7

(22) Anmeldetag:  20.12.2004
(51) Internationale Patentklassifikation (IPC): 
D04H 13/00(2006.01)
D04H 1/72(2012.01)

(54)

Verfahren zur Herstellung von Produkten aus Mineralwolle, insbesondere ein- und mehrschichtige Produkte

Process for manufacturing mineral wool products, in particular singlelayered and multilayered products

Procédé de fabrication de produits en laine minérale, en particulier des produits monocouche et multicouches


(84) Benannte Vertragsstaaten:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

(30) Priorität: 19.12.2003 DE 10359902

(43) Veröffentlichungstag der Anmeldung:
07.09.2005  Patentblatt  2005/36

(73) Patentinhaber: SAINT-GOBAIN ISOVER
92400 Courbevoie (FR)

(72) Erfinder:
  • Horres, Johannes
    68526 Ladenburg (DE)
  • Mellem, Joachim
    68766 Hockenheim (DE)

(74) Vertreter: Kuhnen & Wacker 
Patent- und Rechtsanwaltsbüro Prinz-Ludwig-Straße 40A
85354 Freising
85354 Freising (DE)


(56) Entgegenhaltungen: : 
EP-A- 0 434 536
EP-A2- 1 111 113
FR-A- 2 591 621
GB-A- 923 715
US-A- 2 589 008
US-A- 4 632 685
EP-A- 1 111 113
CH-A- 371 730
FR-A- 2 682 403
GB-A- 2 204 385
US-A- 2 589 008
   
       


    Beschreibung


    [0001] Die Erfindung betrifft ein Verfahren zur Herstellung von Produkten aus Mineralwolle nach dem Oberbegriff des Anspruchs 1.

    [0002] Zur Herstellung von Mineralfasern sind verschiedene Verfahren bekannt und in Gebrauch, so etwa Zerfaserung mit innerer Zentrifugierung (sog. TEL-Verfahren), Verfahren mit äußerer Zentrifugierung wie Kaskaden-Schleuderverfahren (sog. REX-Verfahren), Düsenblasverfahren und andere. Bei all diesen bekannten Verfahren werden die zu erzeugenden Fasern mittels großer Volumenströme von einem Gemisch aus Luft und Verbrennungsgasen, die für das Ausziehen der Fasern benötigt werden, in eine Sammelkammer, vielfach Fallschacht genannt, eingebracht. Zur Erzeugung gebundener Mineralwolleprodukte werden die Fasern bei ihrem Weg durch den Fallschacht mit Bindemittel versehen. Ferner können im Fallschacht auch andere verfahrensrelevante Stoffe zugesetzt werden, wie etwa Staubbindemittel, Hydrophobierungsmittel und dergleichen.

    [0003] Die so erhaltenen Fasern werden an einem bewegten, perforierten Element, das eine der Begrenzungen des Fallschachtes darstellt, abgeschieden und vom begleitenden Gas-Luftstrom getrennt. Beim Abscheiden der Fasern auf dem perforierten Element entstehen endlose Vliese, bei denen die in bezug auf Flächengewicht, Breite, Faserorientierung und Homogenität entsprechenden Eigenschaften des nachfolgenden Produktes vorgeben sind. Diese Eigenschaften können nachträglich nicht mehr wesentlich geändert werden, so daß bei der Abscheidung aus dem Fallschacht erzeugte Orientierungen der Fasern im Vlies oder Inhomogenitäten im späteren Produkt vorgegeben sind, wenn das Vlies nicht nachträglich aufgespalten oder aufgedoppelt, oder zu nebeneinander liegenden Bahnen getrennt wird.

    [0004] Das Flächengewicht wird bei konstantem Fasereintrag durch Variation der Geschwindigkeit des perforierten Abscheideelementes beeinflußt, wobei die Faserorientierung in der Regel im wesentlichen laminar verläuft. Unter "laminar" ist hier zu verstehen, daß die Fasern im wesentlichen parallel zu einer Fläche, üblicherweise deren Auflagefläche, orientiert sind. Bei der Herstellung des Vlieses muß die gesamte Luft/Gas-Menge das sich bildende Vlies passieren. Dabei werden je nach Flächengewicht und zur Verfügung stehender Absaugfläche unterschiedliche Unterdrücke in der Absaugung benötigt.

    [0005] Von dieser bekannten Erzeugung von Primärvliesen aus Mineralwolle geht die Erfindung aus. Es wurde erkannt, daß dabei sogenannte Inhomogenitäten bei der Vliesbildung bei jedem der bekannten Zerfaserungsverfahren praktisch unvermeidlich sind. Es kann sich dabei um Inhomogenitäten in der Wolleverteilung handeln, wobei an einzelnen Stellen eine verminderte Mineralwollemenge und an anderen eine erhöhte Mineralwollemenge zu liegen kommt. Weiter führen Fehlstellen wie Bindemittelbatzen oder unsauber zerfaserte Glasteile zu Qualitätseinbußen.

    [0006] Auch können Inhomogenitäten der Bindemittelverteilung auftreten, wie mehrfach benetzte Wolleanhäufungen, die durch Rückströmungen mehrfach in den Bereich der Bindemittelbesprühung gelangt waren, oder Faserbündel, die den Bereich der Besprühung zu schnell passiert haben. Derartige Bindemittelmangelstellen oder - anreicherungen sind im Endprodukt z. B. durch Farbunterschiede erkennbar. Für die Erzielung der vollen Funktionalität der Bindung muß wegen der inhomogenen Verteilung des Bindemittels eine größere Menge an Bindemittel zugegeben werden als theoretisch notwendig.

    [0007] Die inhomogene Wolleverteilung kann sich ferner in lokal unterschiedlichen Flächengewichten des Vlieses auswirken, die aus Stellen unterschiedlicher Rohdichte resultieren. Derartige Schwankungen in der Wolleverteilung beeinflussen Qualitätsmerkmale negativ, wie insbesondere etwa den Wärmedurchlaßwiderstand, aber auch die mechanische Festigkeit. Besonders bei niederen Rohdichten, bei denen die Bereiche mit weiter verminderter Rohdichte optisch erkennbar sind, wird die erzielbare Mindestrohdichte durch derartige Inhomogenitäten erhöht, schon um sichtbare Fehlstellen wie "Löcher" zu vermeiden. Im Ergebnis muß also mit einer im Mittel höheren Rohdichte als eigentlich nötig gefahren werden, um diesen Inhomogenitäten der Wolleverteilung Rechnung zu tragen. Dies führt zu höheren Gestehungskosten und damit höheren Produktkosten sowie zur Verminderung des Wärmedurchlaßwiderstands aufgrund der höheren Rohdichte. Die Folge ist insgesamt ein Produkt, welches eine Qualität aufweist, die von der theoretisch möglichen Qualität abweicht.

    [0008] Aus den Dokumenten EP 1 111 113 A2, EP 0 434 536 A1 und US 4,632,685 sind gestauchte Mineralwollevliese bekannt geworden.

    [0009] Ferner beschreibt die FR 2 682 403 ein Verfahren zur mechanischen Zerkleinerung eines Primärvlieses zu Mineralwolleflocken.

    [0010] Aus der US 2,589,008 geht ein Verfahren zur Herstellung von Produkten aus Mineralwolle hervor, bei der ein Primärvlies aus loser, bindemittelfreier Wolle oder derartiger Wolle vermischt mit Bindemittelpulver einer mechanischen Einwirkung zur Reorientierung der einzelnen Fasern in mehreren Stufen unterzogen wird, um hieraus ein Endvlies mit homogeneren Eigenschaften herzustellen. Auf dieses Endvlies kann dann zusätzlich Bindemittel aufgesprüht werden. In einem abschließenden Härteschritt wird vorhandenes Bindemittel im Endvlies ausgehärtet.

    [0011] Die vorliegende Erfindung geht von der Lehre der FR 2 591 621 A1 aus, aus welcher ein Verfahren gemäß dem Oberbegriff des Anspruches 1 bekannt ist. Bei dieser bekannten Verfahrensweise wird jedoch ein Primärvlies mit ausgehärtetem Bindemittel einer mechanischen Zerkleinerung unterzogen.

    [0012] Dem gegenüber liegt der Erfindung die Aufgabe zugrunde, ein Verfahren zur Herstellung von Produkten aus Mineralwolle zu schaffen, bei dem die Auswirkungen der bei den unterschiedlichen Herstellungsverfahren produktionstechnisch unvermeidbaren Inhomogenitäten im Endprodukt derart minimiert sind, daß optimale produktspezifische Eigenschaften bei minimal möglichem Mineralwolleaufwand erzielt werden können, wobei insbesondere damit auch mehrschichtige Produkte mit unterschiedlichen Eigenschaften der einzelnen Schichten und hochwertige einschichtige Produkte herstellbar sein sollen.

    [0013] Diese Aufgabe wird durch ein Verfahren nach Anspruch 1 gelöst.

    [0014] Das Mineralwollematerial des Primärvlieses wird aus seinem Verbund heraus mechanisch in einzelne Mineralwolleflocken zerkleinert. Diese werden danach zur Bildung des Endvlieses erneut so abgelegt, daß das Mineralwollematerial im Endvlies isotrop vorliegt. Unter isotrop ist hierbei zu verstehen, daß einzelne theoretisch vereinzelte, z.B. würfelförmige Elemente des Endvlieses nach allen Richtungen im Raum hin gleiche Eigenschaften wie Belastbarkeit usw. aufweisen. Bei der Bestimmung "gleicher" Eigenschaften nach allen Richtungen ist natürlich zu berücksichtigen, daß Mineralwolle aus zufällig angeordneten und orientierten Einzelfasern aufgebaut ist und somit statistisch unvermeidbare Schwankungen auftreten.

    [0015] Die Herstellung eines solchen Produkts wird dadurch erreicht, daß die Zerkleinerung des Mineralwollematerials des Primärvlieses durch einen kombinierten Schlag- und Schneidvorgang erfolgt.

    [0016] Aus der US 3,050,427 ist ein Verfahren zur Herstellung eines Verbundproduktes aus geschäumtem Material und Mineralfasern bekannt, bei dem ein Primärvlies aus Glasfasern mechanisch aufgeschlossen und anschließend unter Bildung eines plattenförmigen Endprodukts zusammen mit dem aufschäumenden Material kombiniert wird. Mit der Lehre dieser Druckschrift soll die Aufgabe gelöst werden, geschäumte Produkte durch möglichst viele Verstärkungsfasern in der Form von Glaswolle zu armieren, wozu man ein Primärvlies aus Glaswolle mittels Kardierwalzen zerkleinert und bei diesem Vorgang gleichzeitig das aufschäumbare Material beimischt.

    [0017] Die vorliegende Erfindung geht gegenüber diesem Stand der Technik einen ganz anderen Weg: man geht von einem vorzugsweise laminaren Primärvlies aus Mineralwolle aus, das gezielt in einzelne Mineralwolleflocken zerkleinert wird, um anschließend ein verbessertes Produkt zu erhalten, das in seiner Struktur ausschließlich wieder aus Mineralwolle besteht. Dabei wurde überraschenderweise erkannt, daß durch eine bestimmte Zerkleinerung des Primärvlieses, nämlich durch einen kombinierten Schlag- und Schneidvorgang, einzelne Mineralwolleflocken erhalten werden, die bei einer erneuten Ablage zu einem Endvlies ein Produkt liefern, das eine gegenüber dem Primärvlies geringere Rohdichte aufweist, aber dennoch mindestens die sonstigen Dämm- und Festigkeitswerte des Primärvlieses besitzt. Das bedeutet Rohdichteeinsparung ohne Qualitätsverlust.

    [0018] Dabei wird bei der Erzeugung des Primärvlieses den Mineralwollefasem Bindemittel zugesetzt. Hierdurch kommen die Vorteile des erfindungsgemäßen Verfahrens ebenfalls zum Tragen, da hiermit auch die Bindemittelverteilung homogenisiert wird, welche sich insbesondere auf die Festigkeit des Produktes vorteilhaft auswirkt.

    [0019] Die gezielte Zerkleinerung des Primärvlieses in bestimmte Mineralwolleflocken kann bei einer Ausführungsform der Erfindung erreicht werden, wenn bei dem Schlag- und Schneidvorgang in ihrer Form unterschiedlich ausgebildete Zinken verwendet werden, die Bestandteil von auf einer Walze umfangsseitig achsparallel angeordneten Leisten sind und die beim Zerkleinerungsvorgang mit korrespondierenden Vorsprüngen eines Niederhalters für das Primärvlies mit einem Spiel kämmen. Hierbei wird das Primärvlies über eine Fördereinrichtung, insbesondere ein Förderband, dem Schlag- und Schneidvorgang derart zugeführt, daß es zwischen dem Förderband und dem Niederhalter zwangsgeführt wird, wobei dazu zweckmäßigerweise das Förderband und der Niederhalter zueinander konisch verlaufen.

    [0020] Die Zinken der auf der Walze vorgesehenen Leisten können dabei alternierend als Schlagfinger und als Schneidmesser ausgebildet sein, wobei die Schlagfinger und die Schneidmesser an ihren Schlagflächen bzw. Schneidkanten mit einer hochverschleißfesten Beschichtung ausgestattet sein sollen, da dadurch der Verschleiß minimiert werden kann, den glasige Mineralwollefasem hervorrufen können. Die als Schneidmesser ausgebildeten Zinken können dagegen alternierend unterschiedlich groß ausgebildet und mit ihren konischen Spitzen in Richtung des Walzenradius ausgerichtet sein, um dadurch unterschiedlich große Lücken für den Gegenpart in der Form von alternierenden Gleitfingern und stabförmigen Förderorganen zu schaffen. Hierbei sollten die Gleitfinger starr an dem Niederhalter vorgesehen sein und jeweils bis nahe der kleineren Schneidmesser reichen, wogegen die stabförmigen Förderorgane, z. B. als endlos umlaufende Ketten ausgebildet, sich bis nahe der größeren Schneidmesser erstrecken sollten.

    [0021] Durch den Einsatz der Schlagfinger werden die beim Zerkleinern entstehenden Mineralwolleflocken vorteilhaft in einem gewissen Grad vorverdichtet, wobei diese Vorverdichtung mehr als 50 % bezogen auf die Dichte des Primärvlieses betragen kann, z. B. eine Rohdichteerhöhung von ursprünglich 30 kg/m3 auf 50 kg/m3. Ferner wurde erkannt, daß die Größe der erzeugten Mineralwolleflocken von Bedeutung ist, um im Endvlies eine isotrope Struktur zu erhalten, und zwar wurde aus vielen Versuchen ermittelt, daß die Mineralwolleflocken vorzugsweise eine mittlere radiale Ausdehnung von 10 bis 30 mm, insbesondere 15 +/- 5 mm aufweisen sollen.

    [0022] Bei der Bestimmung der Größe der erzeugten Mineralwolleflocken zeigte sich, daß bei der Verwendung von zu großen Mineralwolleflocken die Festigkeit des Endvlieses dadurch leidet, daß die einzelnen Flocken Teilbereiche mit einer vom Primärvlies stammenden laminaren Faserstruktur besitzen können, die den angestrebten isotropen Charakter nicht aufweisen, d. h. diese Mineralwolleflocken verhalten sich nicht gleich unter z.B. gleichen Belastungen aus verschiedenen Richtungen. Auf der anderen Seite erhöht sich die Rohdichte des Endvlieses, wenn die erzeugten Mineralwolleflocken in ihrer mittleren radialen Ausdehnung zu klein gewählt werden.

    [0023] Dazu kommt, daß bei der Rekombination des Mineralwollematerials zur Bildung des Endvlieses die Mineralwolleflocken vorteilhaft beeinflusst durch die Vorverdichtung zufallsbedingt abgelegt werden, so daß diese zufällige bzw. chaotische Verteilung einer erneuten Bildung von Inhomogenitäten entgegenwirkt. Es ergibt sich im Endvlies somit eine Ablage, welche die bei der Ablage im Fallschacht produktionstechnisch unvermeidbaren Inhomogenitäten vermeidet und so zu einem erheblich homogeneren Produkt führt. Ferner erhält man ein Endvlies, das trotz der Vorverdichtung der einzelnen Mineralwolleflocken im Zusammenspiel von chaotischer Ablage, geeigneter Flockengröße und eben der Vorverdichtung eine geringere Rohdichte bei etwa gleicher Druckfestigkeit und etwa gleichem Wärmedämmvermögen als es das Primärvlies besessen hat, was ein wesentlicher wirtschaftlicher Vorteil ist.

    [0024] Bei herkömmlichen Verfahren zur Herstellung von Mineralwolleprodukten wird häufig angestrebt, die laminare Faserausrichtung durch eine andere Faserausrichtung zu ersetzen, welche zu besseren Produkteigenschaften insbesondere hinsichtlich der Festigkeit führt. So haben Mineralfaserplatten mit laminarer Faserausrichtung eben infolge dieser Faserausrichtung geringe Festigkeiten gegen Zug- und Druckkräfte an den Großflächen, welche die Platte zusammenzudrücken bzw. aufzureißen suchen. Daher werden mechanische Eigenschaften wie Druckfestigkeit und Abreißfestigkeit verbessert, oder insoweit geforderte Werte bereits bei geringerer Rohdichte erreicht, wenn ein erheblicher Teil der Fasern senkrecht zur Fertigungsebene verläuft. Weithin angewendet wird hierzu ein Aufstauchen der Fasern in einer Stauch- oder Crepage-Anlage. In diesem Verfahrensschritt werden vor der Aushärtung des Bindemittels die überwiegend waagerecht in der Fertigungsebene orientierten Fasern teilweise in Richtung der Senkrechten orientiert. Hierdurch ergibt sich in Längsrichtung sowie vor allem in Dickenrichtung des Produkts eine unkontrollierte, zufällige Wellung der Fasern und so deren Umorientierung, während in Breitenrichtung lediglich ein minimales "Verziehen" der Faserstränge oder "Ketten" erfolgt, und die Fasern im wesentlichen in ihrer laminaren gegenseitigen Lage verbleiben. Die Umorientierung der Fasern beim Stauchen erfolgt somit in nur zwei Dimensionen, ähnlich wie bei parallelen Oberflächenwellen auf einer Flüssigkeit, bei denen sich die zuvor glatte Flüssigkeitsoberfläche nur wölbt, die darauf befindlichen Teilchen aber ansonsten in Wellenlängsrichtung in gleicher Relativlage verbleiben.

    [0025] Ein solcher Effekt kann beim erfindungsgemäßen Verfahren ebenfalls erreicht werden. Dadurch, daß die Mineralwolleflocken mit im wesentlichen chaotischer Faserorientierung im Endvlies im wesentlichen chaotisch abgelegt werden, liegen etwa gleiche Faseranteile in sämtlichen Hauptrichtungen des Produkts vor. Hierdurch wird im Gegensatz zu einem sehr feinen Aufschluß bis zu einzelnen Fasern vermieden, daß die Fasern bei der Ablage zum Endvlies erneut eine bevorzugte Faserausrichtung einnehmen. Auf diese Weise läßt sich also infolge der chaotischen Ablage erstmals ein gewissermaßen dreidimensional gestauchtes Produkt mit Orientierung etwa gleicher Faseranteile in allen drei Hauptrichtungen erzeugen, wobei aber der mit den bekannten Verfahren unvermeidbare Nachteil einer gleichzeitig einhergehenden Verdichtung bzw. Rohdichtezunahme vermieden ist.

    [0026] Es ist ferner bekannt und für viele Mineralwolleprodukte wünschenswert, daß im Produkt Zonen unterschiedlicher Rohdichte erzeugt werden, etwa um die Oberfläche des Produktes stärker belasten zu können. Dabei wird entweder ein Teil des Primärvlieses abgespalten und einem Verdichtungsverfahren, Aufstauchung oder einer anderen Verfestigung unterzogen sowie danach wieder mit dem Grundvlies zusammengeführt, oder aber ein in einem separaten Fallschacht erzeugtes Vlies wird nach entsprechender Bearbeitung mit einem Grundvlies zusammengefahren. Im letzteren Falle kann das im separaten Fallschacht erzeugte Vlies unterschiedliche Eigenschaften aufweisen, wie etwa höheren Bindemittelgehalt.

    [0027] Insoweit ist auch erfindungsgemäß vorteilhaft vorgesehen, daß das Endvlies mit seiner isotropen Struktur mit mindestens einem weiteren Mineralwollematerial, z. B. in der Form eines Vlieses, zur Bildung eines Verbundproduktes kombiniert wird. Im einfachsten Fall können dabei die erzeugten Mineralwolleflocken des Primärvlieses auf dem weiteren, ggf. andersartigen Mineralwollematerial einfach abgelegt und zusammen mit diesem weiteren Bearbeitungsschritten wie einer Verdichtung und/oder einem Stauchvorgang und/oder einem Aushärtevorgang unterzogen werden.

    [0028] Hierbei gibt es eine Vielzahl von Möglichkeiten einer Kombination mit weiteren Mineralwolleschichten sowie der Behandlung der einzelnen Schichten, und zwar einzeln und/oder in Kombination. Auf diese Weise können Verbundprodukte mit sehr unterschiedlichen Eigenschaften der Schichten erzeugt werden, so etwa ein Verbundprodukt mit einem inneren Mineralwollekörper und wenigstens einer stabilen äußeren Schutzschicht, wobei letztere in ihrer Rohdichte nicht wesentlich von derjenigen des Grundkörpers abweicht.

    [0029] So ist es z. B. möglich, das Primärvlies in einem separaten Fallschacht mit einem höheren Gehalt an Bindemittel und/oder sonstigen verstärkenden Stoffe im Vergleich zu dem weiteren Mineralwollematerial zu erzeugen und dann mit letzterem zu kombinieren. Hierdurch kann die Festigkeit der so erhaltenen Deckschicht auch bei annähernd gleicher Rohdichte noch weiter erhöht werden.

    [0030] Wie aufgezeigt, bietet das erfindungsgemäße Verfahren vor allem in einfacher Weise die Möglichkeit, mehrschichtige Produkte herzustellen, die unter dem Begriff Bidensity-Platten bekannt sind, welche insbesondere ihren Einsatz beim Flachdach und an der Fassade finden. Hierbei zeichnet sich das erfindungsgemäße Produkt durch eine Schicht mit isotroper und einer Schicht mit laminarer Faserstruktur aus, wobei die Schicht mit der isotropen Struktur eine höhere Druckfestigkeit aufweist als die andere Schicht.

    [0031] Ferner sind auch Produkte möglich, die plattenförmig ausgebildet sind und nur aus einer Schicht bestehen, die eine isotrope Faserstruktur besitzt, welche z. B. als sog. Trittschalldämmplatten im Estrichbereich Verwendung finden können.

    [0032] Weitere Einzelheiten, Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen anhand der Zeichnung.

    [0033] Es zeigt:
    Fig. 1
    in Seitenansicht eine prinzipielle Darstellung des erfindungsgemäßen Verfahrens an einer Zerkleinerungsstation hierfür;
    Fig. 2
    in Seitenansicht ein Detail des Schlag- und Schneidevorgangs einer bevorzugten Zerkleinerungsstation mit einer Einzelheit "Z",
    Fig. 2a
    eine Draufsicht auf die Zerkleinerungsstation nach Fig. 2,
    Fig. 3
    eine schaubildliche Darstellung eines gestauchten Produktes nach dem Stand der Technik unter Zug- und Druckbelastung,
    Fig. 4
    eine Fig. 3 entsprechende Darstellung eines erfindungsgemäß hergestellten Produktes,
    Fig. 5
    eine grafische Darstellung der Wärmeleitfähigkeit über der Rohdichte, und
    Fig. 6
    in einer den Fig. 3 und 4 entsprechenden Darstellung ein erfindungsgemäß hergestelltes Produkt mit verfestigter Oberflächenschicht.


    [0034] In Fig. 1 ist eine insgesamt mit 1 bezeichnete Station zum Zerkleinern von Mineralwollematerial eines Primärvlieses 2 veranschaulicht. Die Zerkleinerungsstation 1 ist zwischen einer gemäß Förderrichtung Pfeil 3 stromauf liegenden Zerfaserungsstation und einem stromab liegenden Aushärteofen angeordnet. Die Zerfaserungsstation und der Aushärteofen können von jeder beliebigen bekannten Bauart sein und sind daher nicht näher dargestellt.

    [0035] Das Primärvlies 2 wird in der Zerfaserungsstation dadurch hergestellt, daß aus einer Schmelze erzeugte Mineralfasern mittels eines großvolumigen Förder-Gasluftstroms an einem besaugten perforierten Element abgelegt werden, etwa einem Siebgewebe, welches in Produktionsrichtung fortschreitend bewegt wird. Hierdurch ergibt sich eine Faserablage im Primärvlies 2 derart, daß die Mineralfasern überwiegend parallel zur Auflagefläche bzw. zu den Großflächen des Primärvlieses 2 angeordnet sind, gewissermaßen also "liegen". Eine solche Faserablage wird als "laminar" bezeichnet.

    [0036] Im Beispielsfalle möge zur Herstellung eines gebundenen Mineralwolleproduktes dem Faserstrom vor der Abscheidung auf dem perforierten Element ein Bindemittel zugegeben worden sein, welches in einem stromabliegenden üblichen Aushärteofen ausgehärtet wird, um so dem Mineralwolleprodukt seine stabile endgültige Form zu verleihen. Zwischen Zerfaserungsstation und Aushärteofen liegt das Bindemittel noch unausgehärtet vor, und sind die Fasern noch gegeneinander beweglich, und können im Sinne einer Umorientierung beeinflußt werden. Hierzu ist es bekannt, das Mineralwollematerial dadurch zu "stauchen", daß das Primärvlies 2 in einer Stauchstation oberflächenseitig zunehmend gebremst wird, so daß sich die Fasern unter diesem Stauchdruck aufzurichten beginnen und in größerer Anzahl eine Hauptrichtung senkrecht zu den Großflächen des Produkts erhalten. Hierdurch wird die Festigkeit des Produktes bei damit einhergehender Rohdichtezunahme gegen Flächendruck und Flächenzug deutlich gesteigert, jedoch nimmt umgekehrt die Biegefestigkeit ab.

    [0037] Es ist weiter bekannt, vor dem Einlauf in den Aushärteofen mehrere Primärvliese übereinander zu fahren oder Abschnitte desselben Primärvlieses pendelnd aufeinander abzulegen. Hierdurch kann jedes Primärvlies mit nur geringer Dicke unter produktionstechnisch optimierten Bedingungen hergestellt werden und anschließend zu einem komplexeren, dickeren Produkt kombiniert werden. Auch können dadurch gezielt die Eigenschaften von Schichten oder Lagen von Verbundprodukten beeinflußt werden. Die grundsätzlich laminare Faserablage ändert sich dadurch nicht. Bei Bedarf kann eine Stauchung (Crepage) zur Anwendung kommen.

    [0038] Erfindungsgemäß ist nun zwischen Zerfaserungsstation und Aushärteofen die Zerkleinerungsstation 1 angeordnet. In dieser wird das Mineralwollematerial des Primärvlieses 2 mechanisch zerkleinert, also aus seinem Verbund heraus in Mineralwolleflocken vereinzelt, und dann diese neu zur Bildung eines Endvlieses 4 abgelegt.

    [0039] Hierzu läuft das Primärvlies 2 beim Einlauf in die Zerkleinerungsstation 1 durch ein umlaufendes Preßorgan 5 in seiner Dicke komprimiert, und wird durch einen Niederhalter 6 im komprimierten Zustand gehalten. In dieser Position erfolgt eine Vereinzelung des Mineralwollematerials aus dem Verbund des Primärvlieses 2 heraus durch zwischen dem Niederhalter 6 hindurchgreifende Zinken 7 einer Zerflockungswalze 8, die das Primärvlies 2 von unten her beaufschlagen und zwischen Lücken des Niederhalters 6 unter Bildung von Mineralwolleflocken 9 vereinzeln.

    [0040] Der einzelne Mineralwolleflocken 9 enthaltende Faserstrom, bezeichnet mit 10, wird im Beispielsfalle einem bodenseitigen perforierten Transportband 11 zugeführt und auf diesem abgelegt. Im Raum 12 unterhalb des Transportbandes 11 erfolgt eine Luftabsaugung, so daß die Faserablage auf dem Transportband 11 durch eine großvolumige Luftströmung unterstützt wird. Insofern ähnelt die Faserablage auf dem Transportband 11 derjenigen auf dem perforierten Element in der Zerfaserungsstation.

    [0041] Erfindungsgemäß werden in der Zerkleinerungsstation 1 relativ kompakte Flocken erzeugt, die durch die Einwirkung der mit dem Niederhalter 6 kämmenden Zinken 7 bereits eine gewisse Vorverdichtung gegenüber der Rohdichte im Primärvlies 2 erfahren, wobei die Ablage der Flocken in einer zufälligen Orientierung erfolgt. Daher liegt die Faserausrichtung im Endvlies 4 chaotisch, d.h. isotrop vor. Im Beispielsfalle nach entsprechender, nicht näher dargestellter weiterer Vorverdichtung gelangt das Material mit dieser isotropen Ausrichtung in den Aushärteofen, in dem das Bindemittel aushärtet. Je nach Bedarf kann vor dem Aushärteofen auch noch eine weitere Faserbeeinflussung etwa durch eine Stauchung erfolgen.

    [0042] An der Unterseite das Faserstromes 10 kann ein Führungselement 13 angeordnet werden, welches in seinem stromab liegenden Bereich den Faserstrom 10 in Richtung auf seine Ablagestelle auf dem Transportband 11 führt, und mit seinem stromaufseitigen Ende in nicht näher dargestellter Weise abgestützt ist und zwischen die Zinken 7 der Zerflockungswalze 8 eingreift, um eine Bildung von Faseransammlungen dort zu verhindern.

    [0043] Weiterhin können in den lockeren Faserstrom 10 Zuschlagstoffe wie etwa Hydroxide oder Fremdfasern eingeführt werden, um gewünschte Eigenschaften zu erzeugen oder zu unterstützen.

    [0044] Ebenso wie bei der Vliesbildung in der Zerfaserungsstation kann der das Transportband 11 umfassende Vliesbildner in nicht näher dargestellter Weise mit an sich bekannten, im Abstand zueinander verstellbaren Seitenwänden versehen werden, um das Endvlies 4 seitlich zu führen und zu begrenzen. Dem Vliesbildner kann weiter eine Vorrichtung zur Beeinflussung der Wolleverteilung zu- oder nachgeordnet werden. Insbesondere bei geringen Flächengewichten des Endvlieses 4 kann die Wolle dadurch weiter vergleichmäßigt werden, um bei der Ablage aus dem Faserstrom 10 etwa aufgetretene Inhomogenitäten der Wolleverteilung weiter zu vergleichmäßigen oder aber eine gewünschte Wolleverteilung herbeizuführen. Hierzu kann die Wolleverteilung durch lokal unterschiedlich wirksame Absaugleistungen oder auch durch Luftlanzen oder mechanische Einwirkung je nach Bedarf beeinflußt werden.

    [0045] Wie ohne weiteres ersichtlich ist, können derartige Zerkleinerungsstationen 1 im Bereich zwischen Zerfaserungsstation und Aushärteofen vielfältig zur Anwendung gelangen. Eine Zerkleinerungsstation 1 kann zunächst einmal überall dort angewendet werden, wo bislang eine Stauchstation vorgesehen war. Sie kann auch jedes einzelne Primärvlies für sich homogenisieren und dabei isotrop umformen, wonach an Stelle von Primärvliesen 2 die so gebildeten Endvliese 4 sodann übereinander gefahren oder aufeinander abgelegt werden können. Es ist aber auch möglich, in Form eines weiteren Primärvlieses 2 oder Endvlieses 4 weiteres Mineralwollematerial auf das Transportband 11 zu fördern, und auf dessen Oberseite das Endvlies 4 als weitere Lage zu bilden.

    [0046] Das erfindungsgemäße Verfahren schränkt somit die Anwendbarkeit bekannter Vorgehensweisen nirgends ein, sondern erweitert diese um die Möglichkeit, jedes beliebige Vlies, ob nun erfindungsgemäß oder anderweitig vorbehandelt oder nicht, als Primärvlies 2 einer Zerkleinerungsstation 1 zuzuführen und so in jedem Falle zu homogenisieren, und dabei in eine isotrope Faserorientierung umzuformen.

    [0047] Der in Fig. 2 und 2a jeweils dargestellte Ausschnitt einer bevorzugten Zerkleinerungsstation 1' zeigt in der Seitenansicht eine Zerflockungswalze 8', die umfangseitig eine Vielzahl im gleichen Abstand zueinander angeordnete und achsparallel verlaufende Leisten 14 aufweist, welche an ihren freien Enden mit Zinken 7' versehen sind. Die Zinken 7' kämmen mit einem Niederhalter 6' und zwar mit einem Spiel 15 , um die Bildung der Mineralwolleflocken 9 (nicht gezeigt) zu ermöglichen. Das Spiel 15 ist in Fig. 2a deutlich zu erkennen und kann in seiner Größe eingestellt werden.

    [0048] Das mit 2' bezeichnete Primärvlies wird dem Schlag- und Schneidvorgang mittels einem Förderband 12' und einem Niederhalter 6' zugeführt, wobei das Förderband 12' und der Niederhalter 6' in Transportrichtung konisch zueinander verlaufen, so daß das Primärvlies 2' zwangsgeführt wird.

    [0049] Die Zinken 7' der Leisten 14 sind alternierend als Schlagfinger 16 und als eine Art Schneidmesser 17 ausgebildet, welche an ihren Schlag- und Schneidflächen mit einer hochverschleißfesten Beschichtung ausgestattet sind. Die Schneidmesser 17 sind wiederum alternierend unterschiedlich groß - 17a; 17b - ausgebildet und mit ihren konischen Spitzen radial bezüglich der Zerflockungswalze 8' ausgerichtet.

    [0050] Der Niederhalter 6' wiederum besitzt alternierend angeordnete starre Gleitfinger 18, die jeweils bis in die Nachbarschaft der kleineren, radial relativ vorstehenden Schneidmesser 17a reichen, und stabförmige Förderorgane 19 in der Form von endlos umlaufenden Ketten, die bis in die Nachbarschaft der größeren, radial relativ inneren Schneidmesser 17b reichen.

    [0051] Beim eigentlichen Schlag- und Schneidvorgang zur Erzeugung der Mineralwolleflocken 9 wird das Primärvlies 2' über das Förderband 12' und den Niederhalter 6' der Zerflockungswalze 8' entsprechend den in Fig. 2 in Transportrichtung angegebenen Pfeilen zwangszugeführt, während die Zerflockungswalze 8' entgegen dem Uhrzeigersinn gemäß der Darstellung in Fig. 2 mit etwa 1000 Umdrehungen pro Minute angetrieben wird, was bei einem mittleren Walzendurchmesser von 800 mm eine Umfangsgeschwindigkeit von 32 Metern pro Minute bedeutet. Hierbei erfolgt beim Zerkleinern des Mineralwollematerials des Primärvlieses 2' in Mineralwolleflocken 9 insbesondere durch die Schlagfinger 16 eine gewisse Vorverdichtung der Mineralwolleflocken 9. Diese Vorverdichtung kann mehr als 50 % bezogen auf die Dichte des Primärvlieses 2' betragen, also z.B. eine Erhöhung der Rohdichte im Primarvlies 2' von 25 kg/m3 auf 50 kg/m3 in den Mineralwolleflocken 9 bewirken. Hierbei wird eine bevorzugte mittlere Ausdehnung der Mineralwolleflocken 9 von 15 +/- 5 mm erreicht, so daß das Endvlies 4 (nicht gezeigt) eine isotrope Faserstruktur erhält. Durch die zunächst lose Ablage der vorverdichteten Mineralfaserflocken 9 auf dem Transportband 11 wird vorteilhaft bewirkt, daß das Endvlies 4 eine geringere Rohdichte als das Primärvlies 2' aufweist, jedoch bei sonst etwa gleichen Parametern (Wärmeleitfähigkeit, mechanische Festigkeit).

    [0052] In Fig. 3 ist schaubildartig eine konventionell gestauchte Platte dargestellt, wie sie Flächenzug bzw. Flächendruck ausgesetzt wird. Wie in der Zeichnung angedeutet, führt die Stauchung (Crepage) je nach Art der zur Stauchung verwendeten Einrichtung zu einer unterschiedlichen Ausbildung an der mit 21 bezeichneten Seitenfläche des Produkts 20, welches in einer Produktionsrichtung gemäß Pfeil 3 produziert wurde. Die Ausbildung der Seitenfläche 21 reicht je nach verwendeter Einrichtung von einer ausgeprägten Wellenform bis zu einer weitgehend regellosen Wirrlage, wie sie in Fig. 3 veranschaulicht ist. Eine solche weitgehend regellose Wirrlage an der Seitenfläche 21 läßt sich etwa mit einer Hochleistungs-Stauchanlage gemäß der EP 1 144 742 B1 erzielen, auf die wegen weiterer Einzelheiten insoweit vollinhaltlich verwiesen wird.

    [0053] An den Großflächen 22 hingegen ist nur eine mehr oder weniger ausgeprägte Wellung erkennbar, welche von den Stauchwalzen oder Stauchbändern herrührt, die über diese Flächen die Stauchkräfte eingebracht haben.

    [0054] An den mit 23 bezeichneten Stirnflächen des Produktes 20, die bei der Ablängung von Platten aus der gehärteten Mineralwollebahn entstehen, ist hingegen nach wie vor eine laminare Ablage der Fasern erkennbar. Alle bei der Stauchung aufgetretenen Kräfte haben nur senkrecht zu dieser Stirnfläche 23 gewirkt, so daß quer zur Produktionsrichtung gemäß Pfeil 3 liegende Faserstränge oder "Ketten" zwar möglicherweise gedreht oder gekippt wurden, so daß in Produktionsrichtung gemäß Pfeil 3 liegende Fasern in Richtung der Senkrechten orientiert wurden. Quer zur Produktionsrichtung gemäß Pfeil 3 liegende Fasern des laminaren Produktes wurden jedoch in ihrer Ausrichtung nicht beeinflußt. Insoweit ist das Produkt 20 über seine stirnseitige Breite an der Stirnfläche 23 gesehen auch nach der Stauchung noch laminar.

    [0055] Das Produkt 20 muß für bestimmte Flächenzug- bzw. Flächendruckbelastungen ausgelegt werden, denen es im Einsatz ausgesetzt ist. Um diese Festigkeiten zu erzielen, muß eine gewisse Rohdichte eingehalten werden, da das Produkt mit höherer Rohdichte fester wird. Um beispielsweise eine Flächenzugfestigkeit von 30 kN/m2 zu erhalten, möge beim Produkt 20 eine Rohdichte von 130 kg/m3 erforderlich sein. Um eine Flächendruckfestigkeit von 60 kN/m2 zu erreichen, möge eine Rohdichte von 160 kg/m3 erforderlich sein. Erhöhte Rohdichte führt zu erhöhtem Materialeinsatz und damit erhöhten Kosten sowie oberhalb einer Rohdichte von etwa 50 bis 70 kg/m3 zu einer Verminderung des Wärmedurchlaßwiderstandes durch Erhöhung der Wärmebrücken an den Fasern, also zu einem Qualitätsabfall.

    [0056] In Fig. 4 ist ein beispielhaftes erfindungsgemäß erhaltenes Produkt 30 in einer Darstellung entsprechend Fig. 3 dargestellt. Das Produkt 30 ist erhalten worden durch die mechanische Zerkleinerung eines Primärvlieses zur Bildung von Flocken sowie Rekombination der Flocken zu einem Endvlies 4, welches in gewünschter Weise vorverdichtet und sodann im Aushärteofen unter Verdichtung auf seine Enddicke ausgehärtet wurde.

    [0057] In den einzelnen Mineralwolleflocken 9 liegen die Fasern in überwiegend nicht paralleler Anordnung, sondern so, wie sie die Zusammenwirkung der Zinken 7' mit dem Niederhalter 6' ausgebildet hat. Im Faserstrom 10 werden die Flocken gegeneinander bewegt und schließlich regellos auf dem Transportband 11 zur Bildung des Endvlieses 4 abgelegt. Auf diese Weise ist die zuvor laminare Faserablage des Primärvlieses 2 zu einer völlig regellosen, isotropen Faserablage im Endvlies 4 umorientiert worden. Nach Verdichtung des Endvlieses 4 sind die einzelnen Mineralwolleflocken 9 im Endvlies 4 nicht mehr erkennbar, sondern ist die abgelegte Flockenmasse zu einer homogenen und integralen neuen Struktur geworden.

    [0058] Optisch zeigt sich dies daran, daß die Fasern an Seitenfläche 31, Großfläche 32 und Stirnfläche 33 völlig regellos angeordnet sind. Während bei einer Stauchung gemäß Fig. 3 eine lediglich zweidimensionale Umorientierung der Fasern erfolgt, welche die Breitenrichtung im wesentlichen unbeeinflußt läßt, erfolgt bei der Erfindung gemäß Fig. 4 somit eine vollständig dreidimensionale Umorientierung, welche alle drei Hauptrichtungen voll erfaßt.

    [0059] Durch diese isotrope Ausrichtung der Fasern und ihre Freiheit von Inhomogenitäten ergibt sich bei gleichem Bindemittelgehalt wie bei einer gestauchten Platte gemäß Fig. 3 eine Flächenzugfestigkeit von 30 kN/m2 bereits bei einer Rohdichte von etwa 95 kg/m3, und eine Flächendruckfestigkeit von über 60 kN/m2 bereits bei einer Rohdichte von etwa 105 kg/m3. Dies ergibt somit eine Verminderung der Rohdichte von mehr als 25%, und infolge verminderten Materialeinsatzes eine dementsprechende Verminderung der Produktkosten.

    [0060] Andererseits ergibt sich verbesserte Qualität infolge verbesserten Wärmedurchlaßwiderstandes: Bei gleichen Abmessungen und sonstigen Parametern der Produkte gemäß Fig. 3 und Fig. 4 ergab sich beim erfindungsgemäß hergestellten Produkt gemäß Fig. 4 eine um 4 bis 5 mW/(m K) verminderte Wärmeleitfähigkeit. Neben der homogenen Konsistenz des erfindungsgemäß hergestellten Produktes gemäß Fig. 4 ergibt sich die Verbesserung der Wärmeleitfähigkeit auch daraus, daß die Verminderung der Rohdichte oberhalb des Optimums von etwa 50 bis 70 kg/m3 regelmäßig zu einer Verminderung der Materialleitung von Wärme durch die Fasern und somit zur Erhöhung des Wärmedurchlaßwiderstandes führt.

    [0061] Bei geringen Rohdichten unterhalb von etwa 50 kg/m3 steigt die Wärmeleitfähigkeit zwangsläufig wieder an, da mit geringerer Rohdichte der Einschluß ruhender Luft zwangsläufig immer schlechter gelingt. Produkte dämmen ja bekanntlich nicht durch das Dämmaterial selbst, sondern durch die vom Dämmaterial eingeschlossene ruhende Luft. Während bei hohen Rohdichten die Leitung durch das Dämmaterial selbst immer stärker in den Vordergrund tritt und die Wärmeleitfähigkeit erhöht, spielt dies bei geringen Rohdichten keine wesentliche Rolle mehr, dafür aber gelingt der Einschluß eines ruhendes Luftpolsters zwangsläufig immer schlechter.

    [0062] Dies ist in der graphischen Darstellung gemäß Fig. 5 näher veranschaulicht. Die dortige strichpunktiert veranschaulichte Kurve 40 zeigt einen typischen Verlauf der Wärmeleitfähigkeit über der Rohdichte bei laminarem, mit innerer Zentrifugierung hergestelltem Mineralwollematerial. Dem gegenüber veranschaulicht die mit ausgezogener Linie gezeigten Kurve 41 den entsprechenden Verlauf bei einem erfindungsgemäß hergestellten, durch gezielte Zerkleinerung homogenisierten Materials mit isotroper Faserstruktur und sonst gleichen Parametern wie das Wollematerial der Kurve 40. Wie daraus ersichtlich ist, verschiebt sich ein Punkt A gleicher Wärmeleitfähigkeit bei erfindungsgemäß hergestelltem Material um einen Betrag a in Richtung auf verminderte Rohdichte. Dies bedeutet, daß Produkte, welche eine bestimmte Rohdichte zur Erzielung eines gewünschten Wärmeleitwertes bislang nicht unterschreiten konnten, erfindungsgemäß mit dem gegenüber verminderter Rohdichte hergestellt werden können, was zu entsprechenden Einsparungen führt. Gerade bei den Materialien mit hoher Rohdichte, wie sie etwa bei der Flachdachdämmung verwendet werden, ergibt jede zulässige Absenkung der Rohdichte infolge der hohen Produktionsmengen einen erheblichen Kostenvorteil.

    [0063] Die zulässige Absenkung der Rohdichte bei leichten Materialien ergibt sich im wesentlichen durch die erfindungsgemäß erzielte Homogenisierung der Wolle- und Bindemittelverteilung im Produkt. Dadurch wird das Produkt immer weiter seinem theoretischen Idealzustand angenähert, und es braucht nicht mit Materialüberschüssen gefahren zu werden, nur um auch an Mangelstellen noch ausreichend Material vorliegen zu haben.

    [0064] Umgekehrt kann aber auch gemäß Fig. 5 bei einem Punkt B gleicher Rohdichte gearbeitet werden. Dann ergibt sich eine Verbesserung b des Wärmeleitwertes, also bei gleichem Materialeinsatz eine erhebliche Verbesserung der Wärmedämmeigenschaften und ggf. eine bessere Wärmeleitfähigkeitsgruppe.

    [0065] Schließlich kann sowohl die Rohdichte um einen gegenüber dem Wert a geringeren Wert a1 vermindert als auch die Wärmeleitfähigkeit um einen gegenüber dem Wert b verminderten Wert b1 verbessert werden, wie dies in Fig. 5 durch Pfeil c veranschaulicht ist. Dies empfiehlt sich etwa dann, wenn die Verbesserung der Wämleitfähigkeit um den Wert b1 bereits ausreicht, um eine angestrebte bessere Wärmeleitfähigkeitsgruppe zu erzielen, so daß eine weitere Absenkung der Wärmeleitfähigkeit nicht mehr erforderlich ist und stattdessen um den noch zur Verfügung stehenden Wert a1 an Rohdichte gespart werden kann.

    [0066] Ein wesentliches weiteres Anwendungsgebiet der vorliegenden Erfindung liegt in Verbundprodukten, wobei der Einsatz der Erfindung zumindest immer dort erfolgen kann, wo konventionell mit Stauchvorgängen (Crepage) gearbeitet wurde.

    [0067] Ein solches Verbundprodukt ist in Fig. 6 als Produkt 50 dargestellt. Ein solches Produkt, beispielsweise eine Fassadendämmplatte, weist eine laminare Dämmschicht 51 sowie eine feste Oberflächenschicht 52 auf. Die feste Oberflächenschicht 52, üblicherweise eine Stauchplatte relativ hoher Rohdichte, dient zum Schutz der Dämmschicht 51 gegen punktähnlich aufgebrachte Kräfte. Im Falle einer Fassadendämmplatte werden diese Kräfte von Haltedübeln aufgebracht, welche die Fassadendämmplatte mit der festen Oberflächenschicht nach außen gegen die Gebäudewand festlegen und gegen Schwerkraft und Windkräfte halten. Aus Gründen des Montageaufwandes ist dabei anzustreben, mit möglichst wenigen Dübeln auszukommen.

    [0068] In einem solchen Falle treten in der festen Oberflächenschicht im Bereich der Ränder des Dübeltellers, der bei 53 angedeutet ist, erhebliche Scherkräfte auf. Die Dübeldurchzugsfestigkeit der Fassadendämmplatte ergibt sich aus der Aufnahmefähigkeit der festen Oberflächenschicht 52 gegen diese Scherkräfte an den Dübelrändem.

    [0069] Wird die feste Oberflächenschicht 52 aus einer gestauchten Platte konventionell hergestellt, so enthält diese zwar eine Vielzahl in Dickenrichtung liegender Fasern, welche eine Einbuchtung der festen Oberflächenschicht im Bereich des Dübeltellers 53 (Matratzeneffekt) vermeiden, jedoch gegen Scherkräfte an den Dübelrändern nur sehr begrenzte Festigkeit aufweisen, da sie durch ebenfalls in Dickenrichtung wirkende Kräfte relativ leicht gegeneinander verschoben werden können. Daher sind sehr hohe Rohdichten und vergleichsweise hohe Dicken der festen Oberflächenschichten 52 erforderlich, was infolge des stark verminderten Wärmedurchlaßwiderstandes der festen Oberflächenschicht zu einer erhöhten erforderlichen Dicke der gesamten Fassadendämmplatte führt.

    [0070] Wird die feste Oberflächenschicht 52, wie dies in Fig. 6 schaubildlich veranschaulicht ist, erfindungsgemäß dadurch hergestellt, daß ein Primärvlies 2 zur Bildung von Mineralwolleflocken 9 gezielt zerkleinert und dann zu einem Endvlies 4 rekombiniert wird, so ergibt die dreidimensionale, isotrope Faserablage eine Ausrichtung der Fasern in alle Richtungen. Auf diese Weise sind einerseits genügend Fasern vorhanden, welche einer Einbuchtung (Matratzeneffekt) entgegenwirken, jedoch auch ausreichende Fasern, welche im Bereich der Dübelränder quer zu den dort eingeleiteten Scherkräften verlaufen und diese somit sauber abfangen. So wurden an einem Produkt entsprechend dem Produkt 50 einmal mit gestauchter fester Oberflächenschicht und einmal mit erfindungsgemäß geflockter fester Oberflächenschicht 52 bei gleichen Bindemittelgehalten und Rohdichten die Dübeldurchzugsfestigkeit gemessen, also diejenige Dübelkraft, bei der die feste Oberflächenschicht 52 über den Dübelteller 53 geschoben oder gezogen wird. Dieser Vergleichsversuch ergab im Falle der gestauchten festen Oberflächenschicht eine Dübeldurchzugskraft von gut 500 N, im Falle der erfindungsgemäß hergestellten festen Oberflächenschicht 52 hingegen eine Dübeldurchzugskraft von fast 1000 N.

    [0071] Somit wird die erforderliche Dübeldurchzugskraft bei einer erfindungsgemäß hergestellten festen Oberflächenschicht 52 bereits mit erheblich verminderter Dicke und/oder Rohdichte erzielt, was dementsprechend zu einer Verminderung des Materialeinsatzes bei gleichzeitiger Verbesserung der Dämmwirkung führt.

    [0072] Hinzu kommt, daß bei einer festen Oberflächenschicht aus gestauchtem Material Inhomogenitäten vorhanden sind. Diese bestehen beispielsweise in Bereichen höherer und geringerer Bindemittelgehalts, also härteren und weicheren Stellen. Überdies kann auch die Rohdichte lokal erheblich variieren. Derartige Inhomogenitäten führen dazu, daß die lokale Aufnahmefähigkeit für Scherkräfte drastisch absinkt. Wenn also eine derartige Dichteschwankung in den Bereich eines Dübelrandes kommt, so kann der Dübel ausreißen, obwohl die Dübeldurchzugsfestigkeit der gesamten Platte, gemessen an vielen anderen Stellen, ausreicht. Aus diesem Grund muß Dübeldurchzugsfestigkeit in der gestauchten Platte gewissermaßen "vorgehalten" werden, um auch für den Fall, daß der Dübel an einer Schwachstelle zu sitzen kommt, noch ausreichende Dübeldurchzugsfestigkeit zu haben. Dies führt wiederum zu höheren erforderlichen Dicken oder Rohdichten der festen Oberflächenschicht.

    [0073] Erfindungsgemäß hergestellte Harthäute sind infolge des Aufschlusses und der damit einhergehenden Auflösung von Inhomogenitäten im Primärvlies 2 erheblich homogener und weisen so gut wie keine Fehlstellen auf. Sowohl die Bindemittelverteilung als auch die Wolleverteilung sind erheblich gleichmäßiger. Damit schwanken die Dübeldurchzugsfestigkeiten an verschiedenen Stellen einer Fassadendämmplatte auch nur unwesentlich, so daß keine Dübeldurchzugsfestigkeit "vorgehalten" werden muß, um Schwachstellen auszugleichen. Dies ist ein zusätzlicher Grund dafür, warum erfindungsgemäß hergestellte feste Oberflächenschichten 52 mit gegenüber der obigen Schilderung noch weiter verminderten Dicken und/oder Rohdichten auskommen können.

    [0074] Neben einem Verbundprodukt können nach dem erfindungsgemäßen Verfahren auch Produkte aus Mineralwolle, insbesondere Steinwolle hergestellt werden, die ausschließlich eine isotrope Faserstruktur aufweisen. Ein typischer Anwendungsfall wären sogenannte Trittschälldämmplatten oder Flachdachdämmplatten, wobei letztere zu einer weiteren Erhöhung ihrer Druckfestigkeit zwei- oder dreidimensional gestaucht werden können.


    Ansprüche

    1. Verfahren zur Herstellung von Produkten aus Mineralwolle, bei dem zunächst ein Primärvlies mit einer vorzugsweise laminaren Faserstruktur dadurch erzeugt wird, dass Fasern bei ihrem Weg durch einen Fallschacht mit einem Bindemittel besprüht werden, wobei das Primärvlies sodann zu einem Endvlies weitergebildet wird, wobei das Mineralwollematerial des Primärvlieses (2, 2') aus seinem Verbund heraus mechanisch derart in Mineralwolleflocken (9) zerkleinert wird und danach die Mineralwolleflocken (9) zur Bildung des Endvlieses (4) erneut derart abgelegt werden, dass das Mineralwollematerial nach seiner erneuten Ablage im Endvlies (4) isotrop vorliegt, wobei das Bindemittel bei der Zerkleinerung des Mineralwollematerials des Primärvlieses noch unausgehärtet vorliegt,
    dadurch gekennzeichnet,
    daß die Zerkleinerung des Mineralwollematerials des Primärvlieses (2, 2') durch einen kombinierten Schlag- und Schneidvorgang erfolgt, und
    daß das Primärvlies (2, 2') über eine Fördereinrichtung, insbesondere ein Förderband (12'), dem Schlag- und Schneidvorgang derart zugeführt wird, daß es zwischen dem Förderband (12') und dem Niederhalter (6,6') zwangsgeführt wird.
     
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß bei dem Schlag- und Schneidvorgang in ihrer Form unterschiedlich ausgebildete Zinken (7, 7'), die Bestandteil von auf einer Zerflockungswalze (8, 8') umfangseitig achsparallel angeordneten Leisten (14) sind, mit korrespondierenden Vorsprüngen eines Niederhalters (6, 6') für das Primärvlies (2, 2') mit einem Spiel (15) kämmen.
     
    3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Förderband (12') und der Niederhalter (6') in Transportrichtung konisch zueinander verlaufen.
     
    4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Zinken (7, 7') alternierend als Schlagfinger (16) und als Schneidmesser (17) ausgebildet sind.
     
    5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die Schlagfinger (16) und die Schneidmesser (17) an ihren Schlag- bzw. Schneidflächen mit einer hochverschleißfesten Beschichtung versehen sind.
     
    6. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die Schneidmesser (17) alternierend unterschiedlich groß (17a, 17b) ausgebildet und mit ihren konischen Spitzen jeweils radial zur Zerflockungswalze (8, 8') ausgerichtet sind.
     
    7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Niederhalter (6, 6') alternierend durch starre Gleitfinger (18), die jeweils bis in die Nachbarschaft der kleineren Schneidmesser (17a) reichen und durch stabförmige Förderorgane (19), die bis in die Nachbarschaft der größeren Schneidmesser (17b) reichen, gebildet sind.
     
    8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß als stabförmige Förderorgane (19) endlos umlaufende Ketten dienen.
     
    9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß beim Zerkleinern des Mineralwollematerials des Primärvlieses (2, 2') in Mineralwolleflocken (9) insbesondere durch die Schlagfinger (16) eine Vorverdichtung der Mineralwolleflocken (9) erfolgt.
     
    10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß die Vorverdichtung der Mineralwolleflocken (9) mehr als 50 % bezogen auf die Dichte des Primärvlieses (2, 2') beträgt.
     
    11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Mineralwolleflocken (9) eine mittlere Ausdehnung von 10 bis 30 mm aufweisen.
     
    12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß die Mineralwolleflocken (9) eine mittlere Ausdehnung von 10 bis 20 mm aufweisen.
     
    13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Endvlies (4) eine geringere Rohdichte als das Primärvlies (2, 2') aufweist.
     
    14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Endvlies (4) mit seiner isotropen Struktur mit mindestens einem weiteren Mineralwollevlies (51) kombiniert wird.
     
    15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, daß die Kombination aus Endvlies (4) und dem weiteren Mineralwollevlies (51) gemeinsam einem Stauchvorgang unterzogen wird.
     
    16. Verfahren nach den Ansprüchen 14 oder 15, dadurch gekennzeichnet, daß das weitere Mineralwollevlies (51) eine laminare Faserstruktur aufweist.
     


    Claims

    1. Process for the production of mineral wool products, in which a primary nonwoven with a preferably laminar fibre structure is firstly generated by spraying a binding agent on fibres on their path through a fall shaft, wherein the primary nonwoven is then further processed into a final nonwoven, wherein the mineral wool material of the primary nonwoven (2, 2') is mechanically broken up from its composite structure into mineral wool flocks (9) and the mineral wool flocks (9) are then stacked once again to form the final nonwoven (4) in such a way that after its re-stacking the mineral wool material is present isotropically in the final nonwoven (4), wherein the binding agent is present in still uncured form during the breaking up of the mineral wool material of the primary nonwoven, characterised in that
    the mineral wool material of the primary nonwoven (2, 2') is broken up by means of a combined beating and cutting process, and
    the primary nonwoven (2, 2') is fed to the beating and cutting process by a transport means, in particular a conveyor belt (12'), in such a way that it is guided between the conveyor belt (12') and the pressing holder (6, 6').
     
    2. Process according to claim 1, characterised in that during the beating and cutting process prongs (7, 7') configured in different shapes forming part of bars (14) arranged axis-parallel on the periphery side of a flocking roller (8, 8') mesh with corresponding projections of a pressure holder (6, 6') for the primary nonwoven (2, 2') with clearance (15).
     
    3. Process according to claim 1 or 2, characterised in that the conveyor belt (12') and the pressing holder (6') run conically towards one another in the transport direction.
     
    4. Process according to one of the preceding claims, characterised in that the prongs (7, 7') are configured alternately as beater fingers (16) and as cutting blades (17).
     
    5. Process according to claim 4, characterised in that the beater fingers (16) and the cutting blades (17) are provided with a highly wear-resistant coating on their impact and cutting surfaces.
     
    6. Process according to claim 4, characterised in that the cutting blades (17) are configured to alternately differ in size (17a, 17b) and are respectively oriented radially to the flocking roller (8, 8') with their conical tips.
     
    7. Process according to one of the preceding claims, characterised in that the pressing holders (6, 6') are alternately formed by rigid sliding fingers (18), which respectively extend into the vicinity of the smaller cutting blades (17a), and by bar-shaped transport members (19), which extend into the vicinity of the larger cutting blades (17b).
     
    8. Process according to claim 7, characterised in that endless loop chains serve as bar-shaped transport members (19).
     
    9. Process according to one of the preceding claims, characterised in that during breaking up of the mineral wool material of the primary nonwoven (2, 2') into mineral wool flocks (9), in particular by the breaker fingers (16), the mineral wool flocks (9) are pre-compressed.
     
    10. Process according to claim 9, characterised in that the pre-compression of the mineral wool flocks (9) amounts to more than 50% in relation to the density of the primary nonwoven (2, 2').
     
    11. Process according to one of the preceding claims, characterised in that the mineral wool flocks (9) have an average extent of 10 to 30 mm.
     
    12. Process according to claim 11, characterised in that the mineral wool flocks (9) have an average extent of 10 to 20 mm.
     
    13. Process according to one of the preceding claims, characterised in that the final nonwoven (4) has a lower raw density than the primary nonwoven (2, 2').
     
    14. Process according to one of the preceding claims, characterised in that the final nonwoven (4) with its isotropic structure is combined with at least one further mineral wool nonwoven (51).
     
    15. Process according to claim 14, characterised in that the combination of final nonwoven (4) and the further mineral wool nonwoven (51) are jointly subjected to an upsetting process.
     
    16. Process according to claims 14 or 15, characterised in that the further mineral wool nonwoven (51) has a laminar fibre structure.
     


    Revendications

    1. Procédé de fabrication de produits en laine minérale, dans lequel un non-tissé primaire doté d'une structure fibreuse de préférence laminaire est produit en vaporisant un liant sur les fibres lorsqu'elles se déplacent à travers un puits de chute, le non-tissé primaire étant alors perfectionné pour obtenir un non-tissé final, le matériau en laine minérale du non-tissé primaire (2, 2') étant broyé mécaniquement pour être décomposé en flocons de laine minérale (9) puis les flocons de laine minérale (9) étant redéposés pour former le non-tissé final (4), de telle sorte que le matériau en laine minérale, une fois redéposé dans le non-tissé final (4), se présente de façon isotrope, le liant se présentant sous forme encore non durcie lors du broyage du matériau en laine minérale du non-tissé primaire,
    caractérisé en ce
    que le broyage du matériau en laine minérale du non-tissé primaire (2, 2') s'effectue par un processus de frappe et de découpage combiné, et en ce
    que le non-tissé primaire (2, 2') est amené par un dispositif de transport, en particulier un tapis roulant (12'), au processus de frappe et de découpage de telle sorte qu'il est guidé de force entre le tapis roulant (12') et le serre-flan (6, 6').
     
    2. Procédé selon la revendication 1, caractérisé en ce que lors du processus de frappe et de découpage, des dents (7, 7') présentant des formes différentes, qui font partie intégrante de baguettes (14) disposées en parallélisme axial sur la périphérie d'un cylindre de floconnage (8, 8'), s'engrènent avec un jeu (15) avec les saillies correspondantes d'un serre-flan (6, 6') pour le non-tissé primaire (2, 2').
     
    3. Procédé selon la revendication 1 ou 2, caractérisé en ce que le tapis roulant (12') et le serre-flan (6') s'étendent de façon conique l'un par rapport à l'autre dans la direction de transport.
     
    4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les dents (7, 7') sont réalisées en alternance comme des doigts de frappe (16) et comme des lames (17).
     
    5. Procédé selon la revendication 4, caractérisé en ce que les doigts de frappe (16) et les lames (17) sont pourvus sur leurs surfaces de frappe et/ou de découpage d'un revêtement hyper résistant à l'usure.
     
    6. Procédé selon la revendication 4, caractérisé en ce que les lames (17) sont réalisées en alternance avec des dimensions différentes (17a, 17b) et sont orientées avec leurs pointes coniques respectivement radialement en direction du cylindre de floconnage (8, 8').
     
    7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le serre-flan (6, 6') est formé en alternance par des doigts coulissants rigides (18), qui parviennent respectivement jusqu'au voisinage des lames plus petites (17a), et par des organes de transport en forme de barre (19), qui parviennent jusqu'au voisinage des lames plus grandes (17b).
     
    8. Procédé selon la revendication 7, caractérisé en ce que des chaînes à rotation sans fin servent d'organes de transport en forme de barre (19).
     
    9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que lors du broyage du matériau en laine minérale du non-tissé primaire (2, 2') en flocons de laine minérale (9), il s'effectue une pré-compression des flocons de laine minérale (9), en particulier par les doigts de frappe (16).
     
    10. Procédé selon la revendication 9, caractérisé en ce que la pré-compression des flocons de laine minérale (9) est supérieure à 50 % par rapport à l'épaisseur du non-tissé primaire (2, 2').
     
    11. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les flocons de laine minérale (9) comprennent une extension moyenne de 10 à 30 mm.
     
    12. Procédé selon la revendication 11, caractérisé en ce que les flocons de laine minérale (9) comprennent une extension moyenne de 10 à 20 mm.
     
    13. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le non-tissé final (4) comprend une densité apparente inférieure à celle du non-tissé primaire (2, 2').
     
    14. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le non-tissé final (4) doté d'une structure isotrope est combiné à au moins un autre non-tissé en laine minérale (51).
     
    15. Procédé selon la revendication 14, caractérisé en ce que la combinaison du non-tissé final (4) et de l'autre non-tissé en laine minérale (51) est soumise dans l'ensemble à un processus d'écrasement.
     
    16. Procédé selon l'une quelconque des revendications 14 ou 15, caractérisé en ce que l'autre non-tissé en laine minérale (51) comprend une structure fibreuse laminaire.
     




    Zeichnung























    Angeführte Verweise

    IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE



    Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

    In der Beschreibung aufgeführte Patentdokumente