(19)
(11) EP 2 654 121 B1

(12) FASCICULE DE BREVET EUROPEEN

(45) Mention de la délivrance du brevet:
24.09.2014  Bulletin  2014/39

(21) Numéro de dépôt: 13163734.0

(22) Date de dépôt:  15.04.2013
(51) Int. Cl.: 
H01P 5/22(2006.01)
H01Q 21/20(2006.01)
H01P 5/18(2006.01)

(54)

Réseau de formation de faisceau d'antenne à faible encombrement pour réseau antennaire circulaire ou tronc-conique

Strahlbildungsnetz einer Antenne mit geringem Platzbedarf für kreis- oder kegelstumpfförmiges Antennennetz

Network for forming a beam of a compact antenna for circular or tapering antenna network


(84) Etats contractants désignés:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priorité: 20.04.2012 FR 1201167

(43) Date de publication de la demande:
23.10.2013  Bulletin  2013/43

(73) Titulaire: Thales
92200 Neuilly Sur Seine (FR)

(72) Inventeurs:
  • Khureim-Castiglioni, Shadi
    31400 Toulouse (FR)
  • Monteillet, Benjamin
    31300 Toulouse (FR)

(74) Mandataire: Hammes, Pierre et al
Marks & Clerk France Immeuble Visium 22, avenue Aristide Briand
94117 Arcueil Cedex
94117 Arcueil Cedex (FR)


(56) Documents cités: : 
US-A- 446 465
US-A1- 2005 259 019
US-A- 4 980 692
US-B1- 7 508 343
   
  • JOHN REED: "The Multiple Branch Waveguide Coupler", IRE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES,, 1 octobre 1958 (1958-10-01), pages 398-403, XP001366591,
  • MOHAMMADI M ET AL: "A compact planar monopulse combining network at W-band", GCC CONFERENCE & EXHIBITION, 2009 5TH IEEE, IEEE, 17 mars 2009 (2009-03-17), pages 1-5, XP031982889, DOI: 10.1109/IEEEGCC.2009.5734259 ISBN: 978-1-4244-3885-3
   
Il est rappelé que: Dans un délai de neuf mois à compter de la date de publication de la mention de la délivrance de brevet européen, toute personne peut faire opposition au brevet européen délivré, auprès de l'Office européen des brevets. L'opposition doit être formée par écrit et motivée. Elle n'est réputée formée qu'après paiement de la taxe d'opposition. (Art. 99(1) Convention sur le brevet européen).


Description


[0001] La présente invention a pour objet un réseau de formation de faisceau d'antenne à faible encombrement pour réseau antennaire circulaire ou tronc-conique ainsi qu'un dispositif antennaire comprenant un tel réseau.

[0002] Le domaine de l'invention est celui des réseaux antennaires, notamment pour antennes satellites en bande Ka, mais également celui des dispositifs permettant la formation de faisceau d'antenne par routage du signal approprié vers les différents éléments antennaires d'un réseau en vue de configurer le diagramme de l'antenne formée par l'ensemble desdits éléments.

[0003] Plus précisément, l'invention concerne le domaine des dispositifs de formation de faisceau à base de réseaux de coupleurs ainsi que les domaines associés à la technologie guide d'onde.

[0004] L'invention est avantageusement applicable pour la formation de faisceau d'antenne tronc-conique du type de celle décrite dans la demande de brevet européen du demandeur publiée sous le numéro EP0512487 et portant sur une antenne à lobe formé et grand gain. Le contenu de cette demande antérieure est incorporé par référence dans la présente demande.

[0005] L'invention n'est cependant pas limitée à une utilisation pour des antennes tronc-coniques, elle peut également s'appliquer pour tout réseau antennaire dont les points d'accès aux alimentations des éléments antennaires sont disposés sur la circonférence d'un cercle.

[0006] La demande de brevet européen EP0512487 décrit une antenne tronc-conique, utilisable pour la transmission de données entre un satellite et une station au sol, dont les caractéristiques principales sont rappelées à la figure 1. Une telle antenne comprend un réseau conformé 10 disposé sur une surface conformée 11 ayant un axe de révolution et un profil tronc-conique. Le réseau 10 est constitué de sources ou éléments rayonnants 13 disposés le long de génératrices 12 de la surface conformée 11 tronc-conique. L'ensemble des sources rayonnantes 13 d'une même génératrice constitue un sous réseau. L'antenne comporte en outre, pour chaque génératrice, un déphaseur 14 et un répartiteur passif 15 divisant le signal en amplitude et en phase entre chacune des sources 13.

[0007] La figure 2 schématise un exemple de réalisation de l'antenne décrite dans la demande de brevet précitée comportant vingt-quatre sous-réseaux 21 constitués chacun d'une rangée d'éléments rayonnants (non représentée). Pour alimenter chacun des sous-réseaux, on utilise plusieurs matrices de Butler 22 à quatre entrées et quatre sorties communément désignées matrices de Butler 4x4. Une matrice de Butler est un dispositif passif, composé de coupleurs et de déphaseurs, couramment utilisé pour la formation de faisceaux d'antennes. Une matrice de Butler 22 est utilisée pour alimenter quatre sous-réseaux antennaires disposés à une distance angulaire de 90° l'un par rapport à l'autre comme illustré à la figure 2. Ainsi, six matrices de Butler sont nécessaires pour adresser l'ensemble des vingt-quatre sous réseaux 21.

[0008] Les connexions 23,24,25,26 sont faites avec des câbles coaxiaux qui permettent de respecter plusieurs contraintes techniques. Tout d'abord, l'isolongueur doit être respectée entre l'accès principal du signal et chaque sous-réseau antennaire. Ce point est important pour éviter l'introduction de déphasages non maitrisés et de dispersion de phase sur les signaux routés jusqu'aux sous-réseaux antennaires. En outre la longueur des câbles doit être minimisée de sorte à limiter l'encombrement global de l'antenne ainsi que les pertes.

[0009] L'utilisation de câbles coaxiaux associés à des matrices de Butler linéaires satisfait aux contraintes techniques précitées dans le cas d'application d'antennes fonctionnant dans des bandes de fréquences inférieures à la dizaine de giga hertz.

[0010] Cependant, lorsque l'application visée concerne une antenne fonctionnant dans des bandes de fréquence plus élevées, par exemple la bande Ka ou la bande X ou pour toute fréquence supérieure à 15-GHz, les câbles coaxiaux traditionnels souffrent de pertes en hautes fréquences trop importantes pour constituer une solution technique acceptable, c'est-à-dire que le signal subit une atténuation trop importante.

[0011] Afin de limiter les pertes à haute fréquences dans les câbles reliant les sorties des matrices de Butler aux entrées des sous-réseaux antennaires, il est nécessaire d'utiliser, à la place des câbles coaxiaux traditionnels, une technologie guide d'ondes.

[0012] Cependant, cette technologie présente des inconvénients par rapport aux câbles coaxiaux, du point de vue de la flexibilité des connectiques réalisés. En effet, le matériau utilisé étant rigide (par exemple un métal tel que l'aluminium), la gestion de l'isolongueur et de l'encombrement global de l'antenne est plus complexe.

[0013] Une illustration de ce problème est montrée à la figure 3 qui représente la même réalisation que la figure 2 en remplaçant les câbles coaxiaux flexibles 23,24,25,26 par des connexions rigides en guide d'onde 33,34,35,36. Une matrice de Butler linéaire 31 est représentée sur la partie haute de la figure 3. Elle comporte quatre entrées et quatre sorties agencées linéairement, c'est-à-dire que toutes les sorties sont disposées du même coté de la matrice et toutes les entrées sont disposées du coté opposé aux sorties.

[0014] On remarque que l'isolongueur ne peut pas être respectée entre les quatre connexions issues d'une même matrice de Butler 31 linéaire, sans mettre en oeuvre une solution encombrante et complexe, du fait que chaque connexion doit adresser un sous-réseau antennaire disposé autour de la section du cône 32 et que la distance entre une sortie de la matrice de Butler 31 et l'accès à l'un des sous-réseaux visés varie pour chacune des sorties. En outre, l'utilisation de la technologie guide d'onde pour réaliser les connexions entre les matrices de Butler et les éléments antennaires, engendre également des difficultés pour la gestion de l'encombrement global de l'antenne.

[0015] L'invention vise à résoudre les problèmes de gestion de l'isolongueur et d'encombrement précités en proposant un réseau de formation de faisceau d'antenne agencé pour respecter ces contraintes. Un tel réseau est particulièrement adapté à une antenne tronc-conique pour communications entre un satellite et une station au sol telle que décrite dans la demande européenne EP0512487.

[0016] Le document US 7 508 343 divulgue un appareil comme defini dans le préambule de la revendication 1.

[0017] L'invention a ainsi pour objet un réseau de formation de faisceau pour réseau antennaire comprenant une pluralité d'éléments superposés comprenant chacun un réseau de coupleurs en croix comportant deux groupes opposés d'un nombre K d'entrées appariées et deux groupes opposés d'un nombre K de sorties appariées, un nombre, égal au nombre d'entrées, de guides d'onde d'entrée, rigides, de longueurs égales entre elles, reliés à une extrémité auxdites entrées du réseau de coupleurs et destinées à recevoir, à leurs extrémités opposées libres, un signal d'alimentation et un nombre, égal au nombre de sorties, de guides d'onde de sortie, rigides, de longueurs égales entre elles, reliés à une extrémité auxdites sorties du réseau de coupleurs et destinés à être reliés, à leurs extrémités opposées libres, aux éléments rayonnants dudit réseau antennaire pour les alimenter, les longueurs desdits guides d'onde de chaque élément étant configurées de sorte que le chemin électrique parcouru par une onde entre une extrémité libre d'un guide d'onde d'entrée relié à une entrée (E1,E2,E3,E4) donnée et une extrémité libre d'un guide d'onde de sortie relié à une sortie (S1,S2,S3,S4) donnée est constant pour tous les éléments, chaque réseau de coupleurs d'un élément étant tourné d'un angle prédéterminé par rapport au réseau de coupleurs de l'élément immédiatement inférieur.

[0018] Selon un aspect particulier de l'invention, un réseau de coupleurs en croix est formé d'une pluralité de coupleurs à K entrées et K sorties agencés pour former une croix.

[0019] Selon un autre aspect particulier de l'invention, la valeur de l'angle prédéterminé est sensiblement égale à un multiple de 360° divisé par le nombre N d'éléments antennaires à alimenter.

[0020] Selon un autre aspect particulier de l'invention, lesdites extrémités libres des guides d'onde d'entrée sont disposées dans un premier plan sensiblement parallèle au plan du réseau en croix et lesdites extrémités libres des guides d'onde de sortie sont disposées dans un second plan sensiblement parallèle au plan du réseau en croix et disposé du côté opposé au premier plan.

[0021] Selon un autre aspect particulier de l'invention, les extrémités libres des guides d'onde de sortie sont disposées sur la circonférence d'un cercle de façon équirépartie.

[0022] Selon un autre aspect particulier de l'invention, les guides d'onde de sortie reliés à un couple de sorties appariées sont orientés, à leur connexion avec lesdites sorties, de sorte à former entre eux un angle sensiblement égal à 180/K degrés.

[0023] Selon un autre aspect particulier de l'invention, le nombre total 2K d'entrées et le nombre total 2K de sorties de la matrice est égal à quatre.

[0024] Selon un autre aspect particulier de l'invention, chaque guide d'onde de sortie comporte au moins une première branche, reliée à une première sortie d'un réseau de coupleurs en croix, s'étendant dans une direction formant un angle de 45° avec l'axe passant par deux sorties opposées dudit réseau de coupleurs, une deuxième branche reliée à une extrémité à la première branche et s'étendant à l'autre extrémité jusqu'à un point de l'axe de symétrie dudit cercle passant par l'extrémité libre du guide d'onde et une troisième branche reliée à la deuxième branche et s'étendant jusqu'à l'extrémité libre.

[0025] Selon un autre aspect particulier de l'invention, lesdits guides d'onde sont formés en aluminium.

[0026] L'invention a également pour objet un réseau antennaire caractérisé en ce qu'il comprend une pluralité d'éléments rayonnants agencés en sous-réseaux antennaires, les entrées d'alimentation desdits sous-réseaux antennaires étant disposées de façon équirépartie sur la circonférence d'un cercle, un répartiteur pour diviser la puissance d'un signal d'alimentation entre la pluralité d'éléments rayonnants et un réseau de formation de faisceau selon l'invention agencé de sorte que les extrémités libres des guides d'onde d'entrée sont connectées aux sorties dudit répartiteur et les extrémités libres des guides d'onde de sortie sont connectées aux entrées d'alimentation des sous-réseaux antennaires.

[0027] Selon un aspect particulier de l'invention, chaque élément dudit réseau de formation de faisceau est connecté à un nombre égal à 2K de sous-réseaux antennaires dont les entrées d'alimentation sont équiréparties sur ledit cercle.

[0028] Selon un aspect particulier de l'invention, chaque sous-réseau antennaire est constitué d'une pluralité d'éléments rayonnants agencés linéairement sur la surface conformée d'un cône.

[0029] Dans une variante de réalisation de l'invention, le réseau antennaire selon l'invention comprend en outre, sur chaque guide d'onde d'entrée, un déphaseur apte à appliquer un déphasage au signal d'alimentation.

[0030] Dans une variante de réalisation de l'invention, leréseau antennaire selon l'invention est utilisé en bande de fréquences Ka.

[0031] D'autres caractéristiques et avantages de la présente invention apparaîtront mieux à la lecture de la description qui suit en relation aux dessins annexés qui représentent:
  • La figure 1, une antenne tronc-conique à formation de faisceau selon l'art antérieur,
  • La figure 2, un schéma particulier d'alimentation des éléments antennaires de l'antenne de la figure 1 utilisant un ensemble de matrices de Butler linéaires,
  • La figure 3, une illustration des limitations du schéma de la figure 2 pour des applications dans des bandes de fréquences supérieures à la dizaine de GigaHertz, notamment en bande Ka,
  • Les figure 4a, 4b et 4c trois schémas de réseaux de coupleurs en croix,
  • La figure 5, un schéma d'un empilement de matrices de Butler 4x4 en croix agencés dans une disposition particulière selon l'invention,
  • La figure 6, un schéma d'un exemple de réalisation d'un réseau de formation de faisceau selon l'invention,
  • La figure 7, un schéma simplifié illustrant l'agencement du réseau de formation de faisceau selon l'invention dans un dispositif antennaire compact,
  • La figure 8a, un schéma d'un dispositif antennaire comprenant un réseau de formation de faisceau selon l'invention,
  • La figure 8b, un schéma d'un dispositif antennaire comprenant un réseau de formation de faisceau selon l'invention,
  • La figure 9, une vue partielle de certains éléments constituant le réseau de formation de faisceau selon l'invention,
  • La figure 10, une vue de dessus schématique de l'agencement des guides d'onde de sortie d'une matrice de Butler,
  • La figure 11, une vue de dessous des éléments décrits à la figure 9.


[0032] Pour résoudre les problèmes d'encombrement existants lorsqu'on utilise des matrices de Butler linéaires, l'invention consiste à utiliser un réseau de coupleurs en croix tel que représenté aux figures 4a et 4c.

[0033] Par la suite, on décrit un exemple particulier de réalisation de l'invention à partir d'un réseau de coupleurs matriciel dit 4x4 c'est-à-dire comportant quatre entrées et quatre sorties. Le principe à la base de l'invention peut être élargi à tout réseau de coupleurs comportant un nombre pair d'entrées et de sorties. Le terme matrice de Butler est réservé dans la littérature à un réseau de coupleurs ayant une fonction de transfert particulière. L'invention ne se limite pas à ce cas précis mais s'étend au contraire à tout réseau de coupleurs, tel que décrit par la suite à l'appui des figures 4a à 4c, et de fonction de transfert quelconque.

[0034] Le réseau de coupleurs en croix 40 schématisé à la figure 4a comporte deux entrées appariées E1,E2 disposées à l'extrémité d'une première branche 41 de la croix et deux entrées appariées E3,E4 disposées à l'extrémité d'une deuxième branche 42 de la croix opposée à la première branche 41. De façon similaire, deux sorties S1,S2 appariées sont disposées à l'extrémité d'une troisième branche 43 et deux autres sorties S3,S4 appariées sont disposées à l'extrémité d'une quatrième branche 44 opposée à la troisième branche 43. De façon plus générale, un réseau de coupleurs en croix 40 est caractérisé par le positionnement opposé des deux couples de sorties appariées (S1, S2), (S3, S4) ainsi que des deux couples d'entrées appariées (E1, E2), (E3, E4).

[0035] L'utilisation d'un réseau de coupleurs en croix 40 est plus avantageuse qu'un réseau de coupleurs linéaire, tel que la matrice de Butler 31 représentée à la figure 3, pour alimenter quatre sous-réseaux antennaires disposés autour d'un cercle et espacés d'une distance angulaire de 90° comme illustré à la figure 2 comme cela sera décrit plus en détail par la suite. A ce stade, on peut déjà remarquer que l'orientation opposée des deux couples de sorties (S1,S2) et (S3,S4) du réseau 40 permet plus aisément d'adresser des réseaux antennaires disposés en opposition sur un cercle, autrement dis situés à une distance angulaire de 180° l'un de l'autre.

[0036] La figure 4b représente un exemple de coupleur 401 utilisé pour réaliser un réseau de coupleurs en croix 4x4. Le coupleur 401 est à deux entrées I1, I2 et deux sorties O1,O2. Il comporte deux lignes de transmission parallèles physiquement couplées ensemble par trois branches.

[0037] Le coupleur 401 illustré à la figure 4b est donné à titre d'exemple et peut être remplacé par tout autre dispositif de couplage à deux entrées et deux sorties qui permet de répartir la puissance du signal d'entrée sur les deux sorties avec un déphasage éventuel d'une sortie par rapport à l'autre d'un multiple de 90°.

[0038] La figure 4c représente un réseau de coupleurs en croix 40 formé de quatre coupleurs 401,402,403,404 disposés pour former quatre branches d'une croix. Une première sortie O1 d'un premier coupleur 401 est connectée en formant un coude à +90° à une première entrée d'un deuxième coupleur 402. Une deuxième sortie O2 du premier coupleur 401 est connectée avec un coude à -90° à une première entrée d'un troisième coupleur 403.

[0039] De façon similaire, les deux sorties d'un quatrième coupleur 404 sont connectées respectivement à la deuxième entrée du deuxième coupleur 402 avec un coude à -90° et à la deuxième entrée du troisième coupleur 403 avec un coude à +90°.

[0040] De cette façon, l'agencement des quatre coupleurs forme une croix. En fonction d'une loi de phase prédéterminée des signaux sur les quatre entrées E1,E2,E3,E4 du réseau de coupleurs 40, la puissance du signal est acheminée vers les quatre sorties S1,S2,S3,S4 de sorte à obtenir une loi d'amplitude et de phase donnée.

[0041] La figure 5 schématise un empilement 50 de six réseaux de coupleurs en croix agencées pour adresser vingt quatre sous réseaux antennaires comme dans l'exemple de la figure 2. Chaque réseau de coupleurs 51 est empilé sur le précédent 52 en imprimant une rotation d'un angle égal à 360/N degrés, où N est égal au nombre de sous-réseaux antennaires à alimenter, autour d'un axe z de rotation commun à toutes les réseaux. Cet angle est aussi égal à l'écart angulaire entre chaque sous-réseau du réseau antennaire. L'axe z est aussi un axe de symétrie de chaque réseau de coupleurs ainsi que de l'ensemble constitué de l'empilement des six réseaux de coupleurs tel que représenté à la figure 5. Dans l'exemple de la figure 5, chaque réseau de coupleurs 51 subit une rotation d'un angle de 15° autour de l'axe z par rapport au réseau 52 situé juste en dessous de lui.

[0042] De cette façon, chaque réseau de coupleurs est disposé de sorte que ses sorties sont orientées vers le sous-réseau antennaire approprié.

[0043] De façon plus générale, dans une variante de réalisation de l'invention, l'angle de rotation imprimé entre deux réseaux de coupleurs superposés peut être un multiple quelconque de 360/N degrés qui n'est pas forcément linéairement croissant avec l'ordre d'empilement des réseaux. En particulier, les angles de rotation entre deux réseaux de coupleurs superposés d'un même ensemble peuvent également ne pas être constants.

[0044] L'agencement 50 de l'ensemble des réseaux de coupleurs est avantageusement disposé entre un répartiteur de puissance un vers N situé en dessous de l'empilement et le cône 53 formé par l'ensemble des sous-réseaux antennaires dans le cas préféré d'utilisation conjointe avec une antenne tronc-conique ou plus généralement le plan des entrées des sous-réseaux antennaires.

[0045] La figure 6 représente un exemple de réseau de formation de faisceau 600 selon l'invention comportant quatre éléments empilés 631,632,633,634. Chaque élément est constitué d'un réseau de coupleurs en croix 601,602,603,604 tel que décrit aux figures 4a et 4b et d'une pluralité de guides d'onde pour acheminer le signal d'alimentation depuis un répartiteur jusqu'à un réseau antennaire. Quatre guides d'onde 611,612,613,614 sont connectés aux quatre sorties de chaque réseau de coupleurs 601. On les qualifie par la suite de guides d'onde de sortie. Quatre autres guides d'onde 621,622,623,624 sont connectés aux quatre entrées de chaque réseau de coupleurs 601. On les qualifie par la suite de guides d'onde d'entrée.

[0046] Les guides d'onde d'entrée sont agencés de sorte à pouvoir connecter les entrées d'un réseau de coupleurs aux sorties correspondantes d'un répartiteur de puissance (non représenté à la figure 6) disposées dans un plan parallèle au plan du réseau, c'est-à-dire au plan défini par les deux branches de la croix. Les guides d'onde de sortie sont agencés de sorte à pouvoir connecter les sorties d'un réseau de coupleurs aux entrées d'alimentation correspondant d'un réseau antennaire (non représenté à la figure 6) disposées dans un autre plan parallèle au plan des coupleurs. Le réseau de formation de faisceau selon l'invention est destiné à être positionné entre un répartiteur et un réseau antennaire. L'invention n'est pas limitée à un empilement d'une pluralité de réseaux de coupleurs comme indiqué à la figure 6 mais peut également consister en un seul réseau de coupleurs permettant d'alimenter quatre sous-réseaux antennaires si le dispositif antennaire ne comporte pas plus de quatre sous-réseaux antennaires. Le nombre d'éléments de l'empilement est directement défini par le nombre de sous-réseaux antennaires à alimenter.

[0047] La figure 7 représente schématiquement la disposition du réseau de formation de faisceau selon l'invention lorsqu'il est intégré dans un dispositif antennaire global.

[0048] Les guides d'onde d'entrée des réseaux de coupleurs en croix 71,72,73,74,75,76 sont reliés à un répartiteur disposé dans un premier plan 701 sensiblement parallèle au plan 70 défini par les branches de la croix. Ce plan est celui défini par les axes z et y sur la figure 5 ou tout autre plan parallèle à celui-ci.

[0049] Le répartiteur a pour fonction de diviser le signal d'alimentation en amplitude en autant de signaux nécessaires que de sous-réseaux antennaires à alimenter.

[0050] Les guides d'onde de sortie des coupleurs sont reliés aux entrées d'alimentation des sous-réseaux antennaires. Ces entrées sont disposées sur la circonférence d'un cercle situé dans un deuxième plan 702 également sensiblement parallèle au plan 700 de chaque coupleur et disposé du côté des coupleurs opposé à celui du premier plan 701.

[0051] Pour respecter l'isolongueur entre chaque sortie du répartiteur et chaque entrée d'un sous-réseau antennaire, une contrainte à respecter est que, pour chaque réseau de coupleurs, la somme de la longueur A1 d'un guide d'onde de sortie et de la longueur B1 d'un guide d'onde d'entrée doit être constante. Autrement dit, dans l'exemple de la figure 7 qui représente six réseaux de coupleurs empilés, la relation suivante doit être respectée :



[0052] Plus précisément, la longueur Ai, pour i variant de 1 à 6 correspond au chemin parcouru par le guide d'onde entre la sortie du réseau de coupleurs et l'entrée du sous-réseau antennaire. La longueur Bi correspond au chemin parcouru par le guide d'onde entre la sortie du répartiteur et l'entrée du réseau de coupleurs. Autrement dit, les longueurs desdits guides d'onde de chaque élément sont configurées de sorte que le chemin électrique parcouru par une onde entre une extrémité libre d'un guide d'onde d'entrée et une extrémité libre d'un guide d'onde de sortie constant pour tous les éléments. Autrement dit, le chemin électrique parcouru par une onde entre une extrémité libre d'un guide d'onde d'entrée et une extrémité libre d'un guide d'onde de sortie pour un élément 631 est égale au chemin électrique parcouru par une onde entre une extrémité libre d'un guide d'onde d'entrée et une extrémité libre d'un guide d'onde de sortie pour les autres éléments 632,633,634 en considérant un guide d'onde d'entrée et un guide d'onde de sortie associés aux mêmes numéros d'entrée ou de sortie des réseaux de coupleurs 601,602,603,604. Par exemple, le chemin parcouru par une onde entre une extrémité libre du guide d'onde d'entrée relié à l'entrée E1 d'un réseau de coupleurs et une extrémité libre du guide d'onde de sortie relié à la sortie S1 du même réseau de coupleurs est constant pour tous les éléments.

[0053] La figure 8a décrit un dispositif antennaire du type de celui divulgué dans la demande antérieure EP0512487. Ce dispositif comprend au moins un réseau antennaire 801 comprenant une pluralité d'éléments rayonnants disposés sur les génératrices de la surface d'un cône, un réseau de formation de faisceau 802 selon l'invention, un répartiteur de puissance 803 et une pluralité de déphaseurs 804.

[0054] Le dispositif antennaire décrit à la figure 8 comporte 24 rangées d'éléments rayonnants qui constituent des sous-réseaux antennaires 811. Chaque sous-réseau antennaire est alimenté via un point d'entrée (non représenté). Les 24 points d'entrée d'alimentation sont disposés dans un même plan et sur la circonférence d'un cercle qui correspond, par exemple, à la base de la surface tronc-conique.

[0055] Chaque entrée d'alimentation est alimentée par le réseau de formation de faisceau 802 selon l'invention par le biais d'un guide d'onde de sortie 821 qui permet de relier cette entrée à un réseau de coupleurs 822. Un même réseau 822 est relié en sortie à quatre entrées d'alimentation disposées à une distance angulaire de 90° les unes des autres comme déjà expliqué.

[0056] Les entrées du réseau de coupleurs 822 sont reliées à un répartiteur passif 803 par le biais de guides d'onde d'entrée 823. Un déphaseur 804 est en outre disposé sur chaque guide d'onde d'entrée 823 afin de permettre la commande précise en phase de chaque sous-réseau du réseau antennaire 801 et indirectement la commande en amplitude ou plus généralement le paramétrage de la fonction de transfert des réseaux de coupleurs. Le répartiteur passif 803 est chargé de répartir la puissance du signal entre les 24 guides d'onde d'entrée.

[0057] Le réseau de formation de faisceau d'antenne 802 selon l'invention permet de respecter l'isolongueur entre les entrées d'alimentation du réseau antennaire 801 et le répartiteur passif 803. Il peut être utilisé de façon similaire pour alimenter tout réseau antennaire à formation de faisceau dont les entrées d'alimentation sont disposées sur la circonférence d'un cercle.

[0058] La figure 8b représente une autre vue du dispositif antennaire de la figure 8 sur laquelle on distingue le répartiteur passif 803 qui réalise une répartition de la puissance du signal généré vers les 24 guides d'onde d'entrée du réseau de formation de faisceau 802 selon l'invention.

[0059] Les guides d'ondes d'entrée doivent être agencés de façon à permettre une connexion compacte avec les sorties correspondantes du répartiteur passif 803 qui lui-même comporte une pluralité de sorties dirigées vers l'extérieur de sorte à pouvoir se connecter avec les différents guides d'ondes d'entrée. Dans l'exemple de la figure 8b, le répartiteur 803 comporte 12 sorties orientées dans un sens et 12 sorties orientées dans le sens opposé. Le répartiteur passif ne modifie pas la phase des différents signaux, le chemin électrique de chaque voie étant identique et ainsi l'isophase est respectée entre les différents signaux en entrée des déphaseurs 804. Dans une variante de réalisation du dispositif antennaire selon l'invention, le répartiteur passif 803 peut être remplacé par 24 amplificateurs unitaires ou tout autre dispositif équivalent adapté pour acheminer la puissance du signal vers les 24 guides d'onde.

[0060] La figure 9 schématise une vue partielle du dispositif antennaire de la figure 8 pour laquelle seuls deux réseaux de coupleurs 910,920 empilés sont représentés. L'axe de symétrie du premier réseau en croix 910 est tourné d'un angle prédéterminé par rapport à l'axe de symétrie du second réseau en croix 920 sur lequel le premier réseau en croix 910 est superposé. Dans l'exemple d'application des figures 8a et 8b, c'est-à-dire pour un réseau antennaire comprenant 24 sous-réseaux, l'angle prédéterminé est égal à 360/24=15°.

[0061] Cet écart angulaire se retrouve également entre les axes d'orientation d'un guide d'onde de sortie du réseau de coupleurs 910 et du guide d'onde de sortie équivalent pour le réseau de coupleurs 920. Ainsi, les guides d'onde de sortie 921,922,923,924 du second réseau de coupleurs 920 sont décalés d'un angle de 15° par rapport aux guides d'onde de sortie 911,912,913,914 du premier réseau de coupleurs 910. Ce principe de décalage angulaire est réitéré pour chaque réseau superposé par rapport au réseau sur lequel il est placé.

[0062] De la même façon, les guides d'onde d'entrée 925,926,927,928 du second réseau de coupleurs 920 sont également décalés du même angle par rapport aux guides d'onde d'entrée 915,916,917,918 du premier réseau de coupleurs 910.

[0063] Le décalage angulaire d'un réseau en croix par rapport à un autre réseau en croix sur lequel il est superposé a pour effet de permettre une orientation adaptée des sorties des réseaux en croix vers les sous-réseaux antennaires qu'ils doivent chacun alimenter. En effet, chaque réseau de coupleurs alimente quatre sous-réseaux antennaires séparés d'un écart angulaire de 90°. Le réseau de coupleurs superposé au précédent alimente quatre autres sous-réseaux antennaires décalés d'un angle de 15°.

[0064] Les guides d'onde de sortie doivent être agencés de sorte à permettre l'alimentation des sous-réseaux antennaires auxquels ils sont rattachés et de sorte à minimiser l'encombrement global du dispositif.

[0065] La figure 10 représente schématiquement une vue de dessus d'un réseau de coupleurs 910 et des quatre guides d'onde de sortie 911,912,913,914 connectés aux quatre sorties respectives du réseau 910. Chacune des sorties doit être reliée à l'entrée d'alimentation 931, 932, 933, 934 d'un sous-réseau antennaire. Les entrées à alimenter sont disposées sur la circonférence d'un cercle 930. Un réseau en croix 910 est en charge d'alimenter quatre entrées 931, 932, 933, 934 disposées sur ce cercle 930 à une distance angulaire de 90° les uns des autres comme schématisé sur la figure 10.

[0066] La figure 10 montre que pour obtenir ce résultat, les guides d'ondes de sortie 911,912,913,914 peuvent être agencés selon une configuration géométrique particulière. On décrit à présent une configuration géométrique particulière des guides d'onde de sortie.

[0067] Une première branche 91, du guide d'onde 911, est reliée à une première sortie S1 du réseau de coupleurs 910 et s'étend dans une direction formant un angle de 45° avec l'axe passant par deux sorties opposées S1,S4 du réseau de coupleurs 910. De façon similaire, le guide d'onde 912, relié à une deuxième sortie S2 appariée à la première sortie S1, c'est-à-dire disposée sur la même branche de sortie du réseau en croix 910 que la première sortie S1, comprend une première branche 94 qui s'étend dans une direction formant également un angle de 45° avec le même axe A1 et formant un angle de 90° avec la première branche 91 du premier guide d'onde 911.

[0068] De cette façon, les guides d'ondes 911,912, reliés à deux sorties appariées S1,S2 sont orientés pour former un écart angulaire de 90° égal à la distance angulaire entre les deux sous-réseaux antennaires 931,932 qu'ils doivent alimenter.

[0069] Le premier guide d'ondes 911 comporte également une deuxième branche 92, sensiblement perpendiculaire à la première branche 91, et qui s'étend jusqu'à l'axe de symétrie D1 du cercle 930 qui passe par l'entrée 931 à alimenter. Enfin, une troisième branche 93, reliée à la deuxième branche 92, s'étend le long de l'axe de symétrie D1 jusqu'à l'entrée 931.

[0070] Le deuxième guide d'ondes 912 comporte également une deuxième et une troisième branche agencées de façon similaire pour atteindre la deuxième entrée 932 disposée sur le cercle 930 à une distance angulaire de 90° de la première entrée 931.

[0071] Les troisième et quatrième guides d'ondes de sortie 913,914 sont agencés de façon identique pour relier les troisième et quatrième sorties S3,S4 de la matrice 910 vers les troisième et quatrième entrées d'alimentation 933,934.

[0072] La figure 11 représente une vue de dessous de la figure 9 qui permet de visualiser l'agencement géométrique des guides d'onde de sortie décrit schématiquement à la figure 10.

[0073] Les guides d'onde de sortie peuvent être composés d'un nombre de branches supérieur à trois pour s'adapter aux contraintes géométriques spécifiques du dispositif antennaire.

[0074] L'agencement des guides d'onde de sortie décrit à l'appui des figures 10 et 11 a pour effet de permettre une connexion compacte entre les sorties du réseau de coupleurs en croix 910 et les sous-réseaux antennaires 931,932,933,934 à alimenter.

[0075] Tout agencement équivalent des guides d'onde de sortie est compatible de l'invention. En particulier la deuxième branche 92 d'un guide d'onde 911 n'est pas forcément perpendiculaire aux deux autres branches 91,93 mais doit permettre de relier l'axe D1 de symétrie du cercle 930 qui passe par l'entrée d'alimentation 931 du sous-réseau antennaire à alimenter.

[0076] Dans une variante de réalisation de l'invention, le réseau de coupleurs 4x4 peut être remplacé par un coupleur simple à deux entrées et deux sorties. Dans ce cas, les sous-réseaux antennaires alimentés par les deux sorties du réseau de coupleurs seront non plus séparés d'un écart angulaire de 90° mais d'un écart angulaire de 180°.

[0077] De façon plus générale, le réseau de coupleurs en croix 4x4 peut être remplacé par un réseau de coupleurs à 2K entrées et 2K sorties, K étant un nombre entier supérieur ou égal à un. Les guides d'onde de sortie seront dans ce cas orientés de sorte à alimenter des réseaux antennaires espacés d'un écart angulaire égal à 180/K degrés.

[0078] L'invention à pour avantage de permettre la réalisation d'un dispositif antennaire à formation de faisceau dans des bandes de fréquence supérieures à 20GHz qui soit compacte en masse et volume tout en respectant la contrainte d'iso-longueur entre le répartiteur passif et les sous-réseaux antennaires à alimenter.

[0079] L'exigence de compacité est d'autant plus importante que plus la bande de fréquence visée est élevée, plus les dimensions de l'antenne doivent être réduites et donc plus l'encombrement doit être maitrisé.


Revendications

1. Réseau de formation de faisceau (600,802) pour réseau antennaire comprenant une pluralité d'éléments (631,632,633,634) superposés comprenant chacun un réseau de coupleurs en croix (601,802,71,40) comportant deux groupes opposés d'un nombre K d'entrées appariées ((E1,E2),(E3,E4)) et deux groupes opposés d'un nombre K de sorties appariées ((S1,S2),(S3,S4)), un nombre, égal au nombre d'entrées ((E1,E2),(E3,E4)), de guides d'onde d'entrée (621,622,623,624), de longueurs égales entre elles, reliés à une extrémité auxdites entrées (E1,E2,E3,E4) du réseau de coupleurs (601,802,71) et destinées à recevoir, à leurs extrémités opposées libres, un signal d'alimentation et un nombre, égal au nombre de sorties ((S1,S2),(S3,S4)), de guides d'onde de sortie (611,612,613,614), de longueurs égales entre elles, reliés à une extrémité auxdites sorties (S1,S2,S3,S4) du réseau de coupleurs (601,802,71) et destinés à être reliés, à leurs extrémités opposées libres, aux éléments rayonnants dudit réseau antennaire pour les alimenter, les longueurs (A1,B1) desdits guides d'onde de chaque élément (631,632,633,634) étant configurées de sorte que le chemin électrique parcouru par une onde entre une extrémité libre d'un guide d'onde d'entrée relié à une entrée (E1,E2,E3,E4) donnée et une extrémité libre d'un guide d'onde de sortie relié à une sortie (S1,S2,S3,S4) donnée est constant pour tous les éléments (631,632,633,634), caracterisé en ce que les guides d'onde d'entrée et de sortie sont rigides, et en ce que chaque réseau de coupleurs (601) d'un élément (631) étant tourné d'un angle prédéterminé par rapport au réseau de coupleurs (602) de l'élément (632) immédiatement inférieur.
 
2. Réseau de formation de faisceau (600,802) pour réseau antennaire selon la revendication 1 caractérisé en ce qu'un réseau de coupleurs en croix (40) est formé d'une pluralité de coupleurs (401,402,403,404) à K entrées et K sorties agencés pour former une croix.
 
3. Réseau de formation de faisceau (600,802,71) pour réseau antennaire selon l'une des revendications 1 ou 2 caractérisé en ce que la valeur de l'angle prédéterminé est sensiblement égale à un multiple de 360° divisé par le nombre N d'éléments antennaires à alimenter.
 
4. Réseau de formation de faisceau (600,802) pour réseau antennaire selon l'une des revendications précédentes caractérisé en ce que lesdites extrémités libres des guides d'onde d'entrée (621,622,623,624) sont disposées dans un premier plan (701) sensiblement parallèle au plan (700) du réseau en croix (601,802,71) et lesdites extrémités libres des guides d'onde de sortie (611,612,613,614) sont disposées dans un second plan (702) sensiblement parallèle au plan (700) du réseau en croix (601,802,71) et disposé du côté opposé au premier plan (701).
 
5. Réseau de formation de faisceau (600,802,71) pour réseau antennaire selon l'une des revendications précédentes caractérisé en ce que les extrémités libres (931,932,933,934) des guides d'onde de sortie (911,912,913,914) sont disposées sur la circonférence d'un cercle (930) de façon équirépartie.
 
6. Réseau de formation de faisceau (600,802,71) pour réseau antennaire selon la revendication 5 caractérisé en ce que les guides d'onde de sortie (911,912) reliés à un couple de sorties appariées (S1,S2) sont orientés, à leur connexion avec lesdites sorties (S1,S2), de sorte à former entre eux un angle sensiblement égal à 180/K degrés.
 
7. Réseau de formation de faisceau (600,802,71) pour réseau antennaire selon l'une des revendications précédentes caractérisé en ce que le nombre total 2K d'entrées et le nombre total 2K de sorties de la matrice est égal à quatre.
 
8. Réseau de formation de faisceau (600,802,71) pour réseau antennaire selon la revendication 7 caractérisé en ce que chaque guide d'onde de sortie (911) comporte au moins une première branche (91), reliée à une première sortie (S1) d'un réseau de coupleurs en croix (910), s'étendant dans une direction formant un angle de 45° avec l'axe (A1) passant par deux sorties (S1,S4) opposées dudit réseau de coupleurs (910), une deuxième branche (92) reliée à une extrémité à la première branche (91) et s'étendant à l'autre extrémité jusqu'à un point de l'axe de symétrie (D1) dudit cercle (930) passant par l'extrémité libre (931) du guide d'onde (911) et une troisième branche (93) reliée à la deuxième branche (92) et s'étendant jusqu'à l'extrémité libre (931).
 
9. Réseau de formation de faisceau (600,802,71) pour réseau antennaire selon l'une des revendications précédentes caractérisé en ce que lesdits guides d'onde sont formés en aluminium.
 
10. Réseau antennaire caractérisé en ce qu'il comprend une pluralité d'éléments rayonnants agencés en sous-réseaux antennaires (811), les entrées d'alimentation desdits sous-réseaux antennaires (811) étant disposées de façon équirépartie sur la circonférence d'un cercle, un répartiteur (803) pour diviser la puissance d'un signal d'alimentation entre la pluralité d'éléments rayonnants et un réseau de formation de faisceau (802) selon l'une des revendications 1 à 9 agencé de sorte que les extrémités libres des guides d'onde d'entrée (823) sont connectées aux sorties dudit répartiteur (803) et les extrémités libres des guides d'onde de sortie (821) sont connectées aux entrées d'alimentation des sous-réseaux antennaires (811).
 
11. Réseau antennaire selon la revendication 10 caractérisé en ce que chaque élément dudit réseau de formation de faisceau (802) est connecté à un nombre égal à 2K de sous-réseaux antennaires (811) dont les entrées d'alimentation sont équiréparties sur ledit cercle.
 
12. Réseau antennaire selon l'une des revendications 10 ou 11 caractérisé en ce que chaque sous-réseau antennaire (811) est constitué d'une pluralité d'éléments rayonnants agencés linéairement sur la surface conformée d'un cône.
 
13. Réseau antennaire selon l'une des revendications 10 à 12 caractérisé en ce qu'il comprend en outre, sur chaque guide d'onde d'entrée, un déphaseur (804) apte à appliquer un déphasage au signal d'alimentation.
 
14. Réseau antennaire selon l'une des revendications 10 à 13 pour utilisation en bande de fréquences Ka.
 


Ansprüche

1. Strahlbildungsnetz (600, 802) für ein Antennennetz, das eine Vielzahl übereinander angeordneter Elemente (631, 632, 633, 634) umfasst, die jeweils ein kreuzförmiges Kopplernetz (601, 802, 71, 40) umfassen, das zwei gegenüberliegende Gruppen einer Anzahl K paariger Eingänge ((E1, E2), (E3, E4)) und zwei gegenüberliegende Gruppen einer Anzahl K paariger Ausgänge ((S1, S2), (S3, S4)) aufweist, eine Anzahl gleich der Anzahl der Eingänge ((E1, E2), (E3, E4)) von Eingangswellenleitern (621, 622, 623, 624) gleicher Länge dazwischen, die an einem Ende mit den Eingängen (E1, E2, E3, E4) des Kopplernetzes (601, 802, 71) verbunden sind und dazu bestimmt, an ihren gegenüberliegenden freien Enden ein Versorgungssignal zu empfangen und eine Anzahl gleich der Anzahl der Ausgänge ((S 1, S2), (S3, S4)) von Ausgangswellenleitern (611, 612, 613, 614) gleicher Länge dazwischen, die an einem Ende mit den Ausgängen (S1, S2, S3, S4) des Kopplernetzes (601, 802, 71) verbunden sind und dazu bestimmt, an ihren gegenüberliegenden freien Enden mit den Strahlungselementen des Antennennetzes verbunden zu sein, um sie zu versorgen, wobei die Längen (A1, B1) der Wellenleiter jedes Elements (631, 632, 633, 634) derart konfiguriert sind, dass der von einer Welle zwischen einem freien Ende eines Eingangswellenleiters, der mit einem bestimmten Eingang (E1, E2, E3, E4) und einem freien Ende eines Ausgangswellenleiters, der mit einem bestimmten Ausgang (S1, S2, S3, S4) verbunden ist, durchlaufene elektrische Weg für alle Elemente (631, 632, 633, 634) konstant ist, dadurch gekennzeichnet, dass die Eingangs- und Ausgangswellenleiter starr sind und dass jedes Kopplernetz (601) eines Elements (631) in einem vorbestimmten Winkel im Verhältnis zum Kopplernetz (602) des unmittelbar darunter liegenden Elements (632) gedreht ist.
 
2. Strahlbildungsnetz (600, 802) für ein Antennennetz nach Anspruch 1, dadurch gekennzeichnet, dass ein kreuzförmiges Kopplernetz (40) von einer Vielzahl von Kopplern (401, 402, 403, 404) mit K Eingängen und K Ausgängen gebildet wird, die ausgebildet sind, um ein Kreuz zu bilden.
 
3. Strahlbildungsnetz (600, 802, 71) für ein Antennennetz nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass der Wert des vorbestimmten Winkels im Wesentlichen gleich einem Vielfachen von 360°, dividiert durch die Anzahl N zu versorgender Antennenelemente, ist.
 
4. Strahlbildungsnetz (600, 802) für ein Antennennetz nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die freien Enden der Eingangswellenleiter (621, 622, 623, 624) in einer ersten, zur Ebene (700) des Kreuznetzes (601, 802, 71) etwa parallelen Ebene (701) angeordnet sind und die freien Enden der Ausgangswellenleiter (611, 612, 613, 614) in einer zweiten, zur Ebene (700) des Kreuznetzes (601, 802, 71) etwa parallelen Ebene (702) angeordnet sind und auf der der ersten Ebene (701) gegenüber liegenden Seite angeordnet sind.
 
5. Strahlbildungsnetz (600, 802, 71) für ein Antennennetz nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die freien Enden (931, 932, 933, 934) der Ausgangswellenleiter (911, 912, 913, 914) auf dem Umfang eines Kreises (930) gleichverteilt angeordnet sind.
 
6. Strahlbildungsnetz (600, 802, 71) für ein Antennennetz nach Anspruch 5, dadurch gekennzeichnet, dass die mit einem paarigen Ausgangspaar (S1, S2) verbundenen Ausgangswellenleiter (911, 912) bei ihrer Kopplung mit den Ausgängen (S1, S2) derart ausgerichtet sind, dass sie untereinander einen Winkel bilden, der etwa gleich 180/K Grad entspricht.
 
7. Strahlbildungsnetz (600, 802, 71) für ein Antennennetz nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Eingangs-Gesamtanzahl 2K und die Ausgangs-Gesamtanzahl 2K der Matrix gleich vier ist.
 
8. Strahlbildungsnetz (600, 802, 71) für ein Antennennetz nach Anspruch 7, dadurch gekennzeichnet, dass jeder Ausgangswellenleiter (911) mindestens einen ersten Schenkel (91), der mit einem ersten Ausgang (S1) eines kreuzförmigen Kopplernetzes (910) verbunden ist, der sich in eine Richtung erstreckt, die einen Winkel von 45° mit der Achse (A1) bildet, die durch zwei gegenüberliegende Ausgänge (S1, S4) des Kopplernetzes (910) verläuft, einen zweiten Schenkel (92), der an einem Ende mit dem ersten Schenkel (91) verbunden ist und sich am anderen Ende bis zu einem Punkt der Symmetrieachse (D1) des Kreises (930) erstreckt, die durch das freie Ende (931) des Wellenleiters (911) verläuft, und einen dritten Schenkel (93), der mit dem zweiten Schenkel (92) verbunden ist und sich bis zum freien Ende (931) erstreckt, aufweist.
 
9. Strahlbildungsnetz (600, 802, 71) für ein Antennennetz nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Wellenleiter aus Aluminium gebildet sind.
 
10. Antennennetz, dadurch gekennzeichnet, dass es eine Vielzahl strahlender Elemente, die als Unter-Antennennetze (811) ausgebildet sind, wobei die Versorgungseingänge der Unter-Antennennetze (811) auf dem Umfang eines Kreises gleichverteilt angeordnet sind, einen Verteiler (803), um die Leistung eines Versorgungssignals auf die Vielzahl strahlender Elemente aufzuteilen und ein Strahlbildungsnetz (802) nach einem der Ansprüche 1 bis 9 umfasst, das derart ausgebildet ist, dass die freien Enden der Eingangswellenleiter (823) mit den Ausgängen des Verteilers (803) gekoppelt sind und die freien Enden der Ausgangswellenleiter (821) mit den Versorgungseingängen der Unter-Antennennetze (811) gekoppelt sind.
 
11. Antennennetz nach Anspruch 10, dadurch gekennzeichnet, dass jedes Element des Strahlbildungsnetzes (802) an eine Anzahl gleich 2K von Unter-Antennennetzen (811) gekoppelt ist, deren Versorgungseingänge auf dem Kreis gleichverteilt sind.
 
12. Antennennetz nach einem der Ansprüche 10 oder 11, dadurch gekennzeichnet, dass jedes Unter-Antennennetz (811) von einer Vielzahl strahlender Elemente gebildet wird, die linear auf der angepassten Fläche eines Konus ausgebildet sind.
 
13. Antennennetz nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass es ferner auf jedem Eingangswellenleiter einen Phasenverschieber (804) umfasst, der ausgebildet ist, um auf das Versorgungssignal eine Phasenverschiebung anzuwenden.
 
14. Antennennetz nach einem der Ansprüche 10 bis 13 für die Verwendung im Frequenzband Ka.
 


Claims

1. A beam forming network (600, 802) for an antenna array, comprising a plurality of superposed elements (631, 632, 633, 634) each comprising a network of cross-shaped couplers (601, 802, 71, 40) comprising two opposite groups of a number K of matched inputs ((E1, E2), (E3, E4)) and two opposite groups of a number K of matched outputs ((S1, S2), (S3, S4)), a number, equal to the number of inputs ((E1, E2), (E3, E4)), of input waveguides (621, 622, 623, 624), with equal lengths between them, connected at one end with said inputs (E1, E2, E3, E4) of the network of couplers (601, 802, 71) and designed to receive, at their opposite free ends, a feed signal and a number, equal to the number of outputs ((S1, S2), (S3, S4)), of output waveguides (611, 612, 613, 614), with equal lengths between them, connected at one end with said outputs (S1, S2, S3, S4) of the network of couplers (601, 802, 71) and designed to be connected, at their opposite free ends, to the radiating elements of said antenna array so as to feed said elements, with the lengths (A1, B1) of said waveguides of each element (631, 632, 633, 634) being configured so that the electrical path covered by a wave between a free end of an input waveguide connected to a given input (E1, E2, E3, E4) and a free end of an output waveguide connected to a given output (S1, S2, S3, S4) is constant for all of the elements (631, 632, 633, 634), characterised in that said input and output waveguides are rigid, and in that each network of couplers (601) of an element (631) is rotated by a predetermined angle relative to the network of couplers (602) of the element (632) immediately below.
 
2. The beam forming network (600, 802) for an antenna array according to claim 1, characterised in that a network (40) of cross-shaped couplers is formed by a plurality of couplers (401, 402, 403, 404), with K inputs and K outputs, arranged so as to form a cross.
 
3. The beam forming network (600, 802, 71) for an antenna array according to claim 1 or 2, characterised in that the value of the predetermined angle is substantially equal to a multiple of 360° divided by the number N of antenna elements to be fed.
 
4. The beam forming network (600, 802) for an antenna array according to any one of the preceding claims, characterised in that said free ends of said input waveguides (621, 622, 623, 624) are disposed in a first plane (701) substantially parallel to the plane (700) of the cross-shaped network (601, 802, 71) and said free ends of said output waveguides (611, 612, 613, 614) are disposed in a second plane (702) substantially parallel to the plane (700) of said cross-shaped network (601, 802, 71) and are disposed on the opposite side to the first plane (701).
 
5. The beam forming network (600, 802, 71) for an antenna array according to any one of the preceding claims, characterised in that the free ends (931, 932, 933, 934) of the output waveguides (911, 912, 913, 914) are disposed on the circumference of a circle (930) in an evenly distributed manner.
 
6. The beam forming network (600, 802, 71) for an antenna array according to claim 5, characterised in that said output waveguides (911, 912) connected to a pair of matched outputs (S1, S2) are oriented, at their connection with said outputs (S1, S2), so as to together form an angle substantially equal to 180/K degrees.
 
7. The beam forming network (600, 802, 71) for an antenna array according to any one of the preceding claims, characterised in that the total number 2K of inputs and the total number 2K of outputs of the matrix equals four.
 
8. The beam forming network (600, 802, 71) for an antenna array according to claim 7, characterised in that each output waveguide (911) comprises at least one first branch (91), connected to a first output (S1) of a network of cross-shaped couplers (910), extending in a direction forming an angle of 45° with the axis (A1) passing through two opposite outputs (S1, S4) of said network of couplers (910), a second branch (92) connected at one end to said first branch (91) and extending at the other end up to a point of the axis of symmetry (D1) of said circle (930) passing through the free end (931) of the waveguide (911) and a third branch (93) connected to the second branch (92) and extending up to the free end (931).
 
9. The beam forming network (600, 802, 71) for an antenna array according to any one of the preceding claims, characterised in that said waveguides are made of aluminium.
 
10. An antenna array, characterised in that it comprises a plurality of radiating elements arranged as antenna sub-arrays (811), with the feed inputs of said antenna sub-arrays (811) being disposed in an evenly distributed manner on the circumference of a circle, a splitter (803) for splitting the power of a feed signal between the plurality of radiating elements and a beam forming network (802) according to any one of claims 1 to 9 arranged so that the free ends of said input waveguides (823) are connected to the outputs of said splitter (803) and the free ends of the output waveguides (821) are connected to the feed inputs of said antenna sub-arrays (811).
 
11. The antenna array according to claim 10, characterised in that each element of said beam forming network (802) is connected to a number of antenna sub-arrays (811) that is equal to 2K, the feed inputs of which are evenly distributed on said circle.
 
12. The antenna array according to claim 10 or 11, characterised in that each antenna sub-array (811) is formed by a plurality of radiating elements linearly arranged on the adapted surface of a cone.
 
13. The antenna array according to any one of claims 10 to 12, characterised in that it further comprises, on each input waveguide, a phase shifter (804) designed to apply a phase shift to the feed signal.
 
14. The antenna array according to any one of claims 10 to 13 for use in the Ka frequency band.
 




Dessins






































Références citées

RÉFÉRENCES CITÉES DANS LA DESCRIPTION



Cette liste de références citées par le demandeur vise uniquement à aider le lecteur et ne fait pas partie du document de brevet européen. Même si le plus grand soin a été accordé à sa conception, des erreurs ou des omissions ne peuvent être exclues et l'OEB décline toute responsabilité à cet égard.

Documents brevets cités dans la description