(19)
(11) EP 2 100 084 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
10.12.2014 Bulletin 2014/50

(21) Application number: 07826457.9

(22) Date of filing: 19.09.2007
(51) International Patent Classification (IPC): 
F26B 21/00(2006.01)
(86) International application number:
PCT/IB2007/053800
(87) International publication number:
WO 2008/035298 (27.03.2008 Gazette 2008/13)

(54)

A DRYING APPARATUS FOR DRYING A PIPELINE AND A METHOD OF USING THE APPARATUS

TROCKNUNGSVORRICHTUNG ZUM TROCKNEN EINER PIPELINE UND VERFAHREN ZUR VERWENDUNG DER VORRICHTUNG

APPAREIL DE SECHAGE SERVANT A SECHER UN PIPELINE ET PROCEDE D'UTILISATION ASSOCIE


(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

(30) Priority: 19.09.2006 DK 200600246 U

(43) Date of publication of application:
16.09.2009 Bulletin 2009/38

(73) Proprietor: P.S.E. international ApS
8740 Brædstrup (DK)

(72) Inventor:
  • JENSEN, Peter Vemmelund
    8600 Silkeborg (DK)

(74) Representative: Holme Patent A/S 
Valbygårdsvej 33
2500 Valby
2500 Valby (DK)


(56) References cited: : 
EP-A- 0 626 244
WO-A-96/21834
DE-U1-202004 018 635
US-A- 4 474 021
US-A- 6 094 835
US-A1- 2006 086 120
WO-A-00/36344
DE-U1- 9 316 950
US-A- 3 864 102
US-A- 4 971 611
US-A1- 2004 060 315
   
  • CARGOCAIRE: "L'EVENEMENT SUPRACONDUCTIVITE" REVUE PRATIQUE DU FROID ET DU CONDITIONNEMENT D'AIR, PYC EDITION SA., PARIS, FR, vol. 40, no. 646, 17 July 1987 (1987-07-17), page 49, XP001060370 Paris, France ISSN: 0370-6699
   
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description


[0001] The present invention relates to a drying apparatus for drying a pipeline.

[0002] The present invention also relates to a method for drying a pipeline using the drying apparatus.

[0003] Known drying systems or apparatuses are conventionally adapted to a specific application, i.e. drying of a specific hollow object, which means that they are not capable of providing an effective drying within a wide range of applications.

[0004] Changing the application of a drying apparatus is equal to different demands on the performance of the drying apparatus. If a drying apparatus is to be used for a variety of different situations while still operating with high efficiency at all time it is necessary that the components of the drying apparatus are capable of operating with different performances depending on the specific situation.

[0005] European patent application no. EP 0 835 694 A1 discloses a drying system used for drying a coated product in a spray booth. A blower motor and an associated frequency drive system controls the amount of dried air and a dehumidification unit, which is either heat-based or refrigeration-based, provides for the drying of the air. In this system the efficiency of the drying process is difficult to control under changing working conditions and it is therefore not suited for purposes for prolonged drying tasks requiring high efficiency regarding the removal of fluid.

[0006] US 2004/060315 A1 describes a drying apparatus capable of controlling the amount of intake airflow and the performance of the refrigerating unit.

[0007] US 3,864,102 A describes a method for drying a pipeline using a portable dry air generating plant.

[0008] Hence there is a need within the art for improved apparatuses for producing dry air from an inexpensive air source such as atmospheric air.

[0009] As used in the present application the term "performance", e.g. of a mechanism, means the size of the output from the mechanism.

[0010] As used in the present application the term "regulate", e.g. of the performance, includes controlling and adjusting to a required or desired level or output.

[0011] In a first aspect according to the present invention is provided a drying apparatus of the kind mentioned in the opening paragraph capable of drying a wide variety of hollow objects with different dimensions, while still keeping the same effective drying.

[0012] In a second aspect according to the present invention is provided a drying apparatus of the kind mentioned in the opening paragraph capable of utilizing intake airflow such as atmospheric air for effective drying of different hollow objects.

[0013] In a third aspect according to the present invention is provided a drying apparatus of the kind mentioned in the opening paragraph where the fluid content of the air processed by the drying apparatus is reduced.

[0014] In a fourth aspect according to the present invention is provided a drying apparatus of the kind mentioned in the opening paragraph where the refrigerating unit is better prevented from blocking with ice when the performance of the drying apparatus is reduced than with known apparatuses.

[0015] In a fifth aspect according to the present invention is provided a drying apparatus of the kind mentioned in the opening paragraph where the efficiency of the dehumidifier is better prevented from decreasing when the performance of the drying apparatus is increased than with known apparatuses.

[0016] In a sixth aspect according to the present invention is provided a drying apparatus of the kind mentioned in the opening paragraph that is easy to use and transport.

[0017] The novel and unique way whereby this is achieved according to the present invention is the fact that the drying apparatus comprises a first means for transporting an intake airflow through the apparatus for drying of the pipeline, a refrigerating unit for initial removal of moisture from the intake airflow, thereby defining a first process airflow, a dehumidifier for further removal of moisture from the first process airflow to produce a second process airflow having a reduced moisture content, where the dehumidifier is arranged for providing a dew point of the second process airflow (C) of about -30 °C or lower, a first frequency transformer for regulating the amount of intake airflow, and a second frequency transformer for regulating the performance of the refrigerating unit, where the regulation by the second frequency transformer is based on data that is representative of the humidity and/or the temperature of the first process airflow.

[0018] Changing working conditions normally means that the amount of air transported through the drying apparatus must be changed. This change is expediently obtained by means of the first frequency transformer, which controls and adjusts the operation of the first means for transporting air to the current need and requirements.

[0019] The second frequency transformer serves for regulating the performance of the refrigerating unit to control the temperature of the first airflow of processed air leaving the refrigerating unit.

[0020] The advantage of controlling both the first means for transporting an intake airflow through the apparatus and the refrigerating unit is that when the working conditions of the drying apparatus changes over time during a specific drying task or changes when the drying apparatus is to be used for different drying tasks, the drying apparatus still provides an effective drying at all time, because the performance of the refrigerating unit is continuously adapted to the performance of the first means for transporting an intake airflow through the apparatus.

[0021] Preferably the refrigerating unit can be a vapour compression refrigeration system of the kind comprising an evaporator, a compressor, an expansion valve, a refrigerating agent, and a condenser.

[0022] Advantageously the regulation by the first frequency transformer can be based on data selected from the group comprising the pressure of the output airflow from the drying apparatus, the temperature of the output airflow from the drying apparatus, the dew point of the second process airflow, and the amount of intake airflow. In another embodiment an operator can control the first frequency transformer manually.

[0023] In order to sustain an effective drying the second frequency transformer can regulate the pressure of the refrigerating agent in the evaporator by controlling the performance of the compressor. For example can the second frequency transformer regulate the rotational speed of the compressor, thereby regulating and controlling the evaporation pressure of the refrigerating agent in the evaporator to provide regulation of the surface temperature of the evaporator, which surface is the location where the actual cooling of the airflow takes place. If the load on the refrigerating unit decreases this regulation prevents the evaporator from blocking with ice by reducing the performance of the compressor and thereby substantially preventing the surface temperature of the evaporator from decreasing.

[0024] Blocking with ice is highly undesirable because it would inhibit an optimum airflow through the refrigerating unit since ice presents a physical obstacle to the airflow. Blocking with ice is also undesirable because removing the ice would require shutting the drying apparatus down or reducing the performance of the refrigerating unit with reduced efficiency of the drying apparatus as a result. Blocking with ice is even further undesirable because it could cause mechanical damage to the refrigerating unit.

[0025] In another situation where the load on the refrigerating unit increases, the regulation of the compressor prevents an increase in the temperature of the first process airflow by increasing the performance of the compressor and thereby preventing the surface temperature of the evaporator from increasing. An increase in the temperature of the first process airflow is highly undesirable because it would result in a decrease in the efficiency of the subsequent dehumidifier.

[0026] Advantageously the regulation by the second frequency transformer can be based on data selected from the group comprising the pressure of the refrigerating agent measured in the evaporator, the temperature of the first process airflow, and the surface temperature of the evaporator, hence the data is used as input and/or feed-back data for the drying process. This regulation could also be based on other kinds of data that is representative of the humidity and/or the temperature of the first process airflow. Preferably a pressure transmitter can be used for measuring said pressure.

[0027] Hence, these data is used as information relevant to the necessary performance of the refrigerating unit in order to provide a first process airflow that is effectively dried and with a constant temperature, which enables an efficient operation of the dehumidifier.

[0028] The pressure of the refrigerating agent measured in the evaporator can preferably be between -10 °C and 2 °C, and more preferably between -8 °C and 0 °C, and most preferably between -6 °C and -2 °C, in order to provide an optimum drying of the first process airflow.

[0029] The surface temperature of the evaporator can preferably be between -2 °C and 12 °C, and more preferably between -1 °C and 6 °C, and most preferably between 0 °C and 3 °C.

[0030] Preferably the refrigerating agent is R22 (chlorodifluoromethane), but other agents can also be used.

[0031] The temperature of the first process airflow from the refrigerating unit can preferably be between 0 °C and 12 °C, more preferably between 1 °C and 8 °C, and most preferably between 2 °C and 4 °C.

[0032] Advantageously the drying apparatus can further comprise a second means for transporting air that removes heat from the refrigerating agent in the condenser, in order to increase the capacity of the refrigerating unit, which is especially desirable in situations where the load on the drying apparatus is especially high.

[0033] The performance of the second means for transporting air can advantageously be regulated by means of a third frequency transformer, in order to obtain a more efficient performance of the refrigerating unit.

[0034] The regulation by the third frequency transformer can advantageously be based on data representing the pressure of the refrigerating agent measured in the condenser. This regulation can also be based on other kinds of data representing the performance of the compressor, such as the rotational speed of the compressor.

[0035] To facilitate the transport of air through the drying apparatus a third means for transporting air can be located between the refrigerating unit and the dehumidifier. Preferably this third means can provide a pressure sufficient to transport up to 6000 m3 of air per hour through the refrigerating unit and the subsequent dehumidifier on its own.

[0036] In a preferred embodiment the drying apparatus can comprise pressure measuring means for measuring the pressure of the airflow before and after the third means for transporting air, so that, based on these measurement data, the first air transport means can be shut down in case the third air transport means malfunctions or its performance otherwise decreases.

[0037] Preferably the dehumidifier can comprise a dehumidification zone where fluid is removed from the first process airflow.

[0038] An effective drying of the hollow object is obtained when the dew point of the second process airflow is -30 °C or lower, as this means that the humidity of the second process airflow is very low.

[0039] If the dew point of the airflow entering the refrigerating unit decreases, then the load on the drying apparatus also decreases, resulting in a more economical performance of the drying apparatus. In extreme situations the drying apparatus can rely on the dehumidifier as the only means for removal of fluid while the refrigerating unit is turned off.

[0040] As the drying apparatus often is used in prolonged drying tasks the dehumidifier can advantageously be a sorption dehumidifier comprising a sorption rotor, where the rotation of the sorption rotor can cause each part of the rotor to cycle past the dehumidification zone, a regeneration zone and a cooling zone in a continuously cycle. After sorbing of fluid in the dehumidification zone follows the regeneration zone where a fourth means for transporting air can provide a heated airflow to the rotor, and thereby remove fluid from the rotor. Then follows a cooling zone where the temperature of the rotor is lowered before entering the dehumidification zone and thereby starting the cycle all over.

[0041] The combination of the regeneration and the cooling of the sorption rotor provide a very efficient removal of fluid from the first process airflow.

[0042] Advantageously the sorption rotor can comprise a humidity sorbing material that enables a highly efficient sorbing and retention of moisture, so that the second process airflow has a very low dew point. In one preferred embodiment this material can be silica gel, but other highly humidity sorbing materials could also be used.

[0043] In one preferred embodiment of the present invention the dehumidifier can be a dessicant dehumidifier MX5200 or MX6200 obtainable from Munters, Ryttermarken 4, 3520 Farum, Denmark with a rotational speed of the sorption rotor of about 6 to 10 rotations per hour during use.

[0044] Preferably the performance of the first means for transporting air can be between 800 m3 per hour and 10000 m3 per hour, more preferably between 1500 m3 per hour and 8000 m3 per hour, and most preferably between 2000 m3 per hour and 6000 m3 per hour, and the first means for transporting air can preferably provide a maximum differential pressure of 0,01 bar to 7 bar, more preferably 0,02 bar to 3 bar, and most preferably 0,03 bar to 1,3 bar between an outlet and an inlet of the first means for transporting air.

[0045] With this kind of capacity the drying apparatus is capable of drying large hollow objects, such as e.g. oil pipelines with lengths of e.g. 200 kilometres or even more and diameters of several meters, within an acceptable time. Within the scope of the present invention the apparatus can however quite as well be used for not hollow objects.

[0046] An extreme example of drying an object for which the apparatus according to the present invention is especially suited, is the drying of an oil pipeline with a length of 100 km, a diameter of 1,4 meters, containing 22 tons of water, and primarily located in the ground which has a temperature of 20 °C. The present invention can solve this drying task within about 200 hours, provided that a predryer initially has removed the major part of easy accessible water.

[0047] Preferably one or more of the first, second, third, and fourth means for transporting air can be at least one fan.

[0048] In a preferred embodiment of the present invention the first means for transporting air can be a positive displacement blower that is capable of providing a constant volumetric air displacement at a given rotational speed and independently of changes in the differential pressure between the outlet and the inlet of the first means for transporting air.

[0049] Advantageously the drying apparatus can further comprise a generator providing any or all of the compressor, the dehumidifier, and the first, second, third, and fourth means for transporting air with electrical energy. The generator is preferably a diesel generator with a fuel tank.

[0050] Preferably the drying apparatus can be integrated in a single compartment, more preferably a mobile single compartment, and most preferably a standard freight container. In this way the drying apparatus can easily be transported from location to location. In case the apparatus is integrated in a standard freight container it is preferred that the freight container is of the kind that can be approved for transport by container ships, so that quick and economical transport of the drying apparatus over long distances is possible.

[0051] In a situation where the drying apparatus is integrated in a single compartment, it is preferred that the drying apparatus has unlimited access to air from the surrounding during use. This can e.g. be obtained when the single compartment is provided with one or more doors in proximity to the evaporator and when these doors are kept open during use.

[0052] A method for drying a hollow or otherwise configured objects, such as a pipeline or flat, wavy or the like objects, may advantageously make use of the above discussed drying apparatus.

[0053] Such a method comprises the steps of establishing a fluid communication between the drying apparatus and the hollow object for providing dried air to the hollow object, continuous regulation of the performance of the first means for transporting air by means of the first frequency transformer, and continuous regulation of the performance of the refrigerating unit by means of the second frequency transformer, and optionally the step of a continuous regulation of the operating performance of the second means for transporting air by means of the third frequency transformer.

[0054] In case of tasks including removal of large amounts of fluid from the hollow object the method may also comprise a pretreament step of predrying the hollow object prior to or in conjunction with using the apparatus described above.

[0055] The invention will be explained in greater detail below where further advantageous properties and example embodiments are described with reference to the drawings, in which

Fig. 1 illustrates a first embodiment of the apparatus according to the present invention,

Fig. 2 is another schematic view of the first embodiment, but with a more detailed indication of the various airflows,

Fig 3 is a schematic view similar to fig. 2 but illustrating a second embodiment, and

Fig. 4 schematically shows the structure of the dehumidifier.



[0056] The drying apparatus is in the figures designated in general by the reference numeral 1.

[0057] Fig. 1 and 2 show a preferred first embodiment of the drying apparatus 1 and will be described in conjunction in the following.

[0058] The drying apparatus 1 is indicated as integrated in a single compartment 2. The arrows A, B, C, and D indicate the flow direction of the various airflows through the drying apparatus 1. A first motor M1, as seen only in fig. 1, drives a fan 3, representing the first means 3 for transporting air, and draws or otherwise transports the intake airflow A through the apparatus 1. First, the fan draws the intake air A through the refrigerating unit, generally designated by the reference numeral 4. The cooled first process airflow B exits the refrigeration unit 4 and is by means of the fan 5, representing the third air transport means 5, transported to the dehumidifier 6. A dehumidified second process airflow C exits the dehumidifier 6, passes the fan 3 and exits the apparatus 1 as dried air, as indicated by the arrow D.

[0059] In the preferred embodiment shown in fig. 1 the first means 3 is positioned after the dehumidifier 6, but in another embodiment (not shown) it could e.g. be positioned before the refrigerating unit 4.

[0060] The refrigerating unit 4 has an evaporator 7 for providing an initial removal of fluid from the intake airflow A, thereby producing a first process airflow B. A refrigerating agent 8 cycles from the evaporator 7 to the compressor unit 9, which includes a motor M2 (as seen only in fig. 1) for driving the compressor, to the condenser 10, to the expansion valve 11, and back to the evaporator 7 to complete a refrigerating cycle.

[0061] The drying apparatus 1 has a first frequency transformer 12 for regulating the performance of the fan 3, and a second frequency transformer 13 for regulating the performance of the compressor 9.

[0062] The drying apparatus 1 further has a second means 14 for transporting air, which second means 14 provides removal of heat from the refrigerating agent 8 in the condenser 10 by removing air from the condenser 10.

[0063] In the preferred embodiments shown in fig. 1 and 2 the drying apparatus 1 also has a generator 15 that provides electrical energy to the compressor 9, the dehumidifier 6, the fan 3, the second means 14, and the fan 5 as indicated by the arrowed connection lines 16a, 16b, and 16c.

[0064] Fig. 3 shows a second preferred embodiment of the drying apparatus 1 corresponding to the first embodiment shown in figs. 1 and 2, except that it also has a third frequency transformer 17 for regulating the performance of the second means 14.

[0065] Fig. 4 shows the structure of a preferred embodiment of a dehumidifier 6 for use in the apparatus 1 according to the present invention, and especially the sorption rotor 18 and the fourth means 19 for transporting air. The sorption rotor 18 has a dehumidification zone 20, a regeneration zone 21, and a cooling zone 22. The first process airflow B enters the dehumidification zone 20 and the second process airflow C exits the dehumidification zone 20. The rotation of the sorption rotor 18 is indicated by the arrow G, which shows that each part of the sorption rotor 18 is rotated in a cycle from the dehumidification zone 20 into the regeneration zone 21 followed by the cooling zone 22, and back to the dehumidification zone 20 to complete the cycle.

[0066] The fourth means 19 provides a heated airflow E that enters the regeneration zone 21 and exits the regeneration zone 21 as a humid containing airflow F.

[0067] The apparatus according to the present invention is primarily used for drying pipelines, oil pipes, fuel tanks, and reservoirs, but is not limited to these applications as it could also be used for drying other kinds of objects, including flat object.

[0068] The apparatus according to the present invention utilises in particular the fact that humidity in a hollow object can be removed by providing an airflow through the hollow object, where the humidity of the air in the provided airflow is lower than the humidity of the air original present in the hollow object. The initial removal of fluid in the refrigerating unit is based on the principle that fluid, such as humidity, condenses when the temperature is decreased.

[0069] In addition to the amount of intake air passing through the drying apparatus, an effective drying is also dependent on a sufficient low and stabile temperature of the first process airflow, which subsequent enters the dehumidifier. This is advantageously obtained by means of the second frequency transformer, which regulates the performance of the refrigerating unit depending on data representing e.g. the humidity of the first process airflow, so that the performance of the refrigerating unit at all time is adjusted to the present situation.


Claims

1. A drying apparatus (1) for drying a pipeline, said apparatus (1) comprises:

- a first means (3) for transporting an intake airflow (A) through the apparatus (1) for drying of the pipeline,

- a refrigerating unit (4) for initial removal of moisture from the intake airflow (A), thereby defining a first process airflow B,

- a dehumidifier (6) for further removal of moisture from the first process airflow (B) to produce a second process airflow (C) having a reduced moisture content, the dehumidifier being arranged for providing a dew point of the second process airflow (C) of about -30 °C, or lower,

- a first frequency transformer (12) for regulating the amount of intake airflow (A) by adjusting the performance of said first means (3), and

- a second frequency transformer (13) for regulating the performance of the refrigerating unit (4), the regulation by the second frequency transformer (13) being based on data that is representative of the humidity and/or the temperature of the first process airflow.


 
2. A drying apparatus (1) according to claim 1, characterized in that the refrigerating unit (4) is a vapour compression refrigeration system of the kind comprising one or more of an evaporator (7), a compressor (9), an expansion valve (11), a refrigerating agent (8), and a condenser (10).
 
3. A drying apparatus (1) according to claims 1 or 2 characterized in that the regulation by the first frequency transformer (12) is based on one or more data selected from the group comprising the pressure of the output airflow from the drying apparatus, the temperature, of the output airflow from the drying apparatus, the dew point of the second process airflow, and the amount of intake airflow.
 
4. A drying apparatus (1) according to claims 2 or 3, characterized in that the second frequency transformer (13) regulates the pressure of the refrigerating agent (8) in the evaporator (7) by controlling the performance of the compressor (9), where the regulation is based on data representing the humidity and/or the temperature of the first process airflow.
 
5. A drying apparatus (1) according to any of the preceding claims 1 - 4, characterized in that the temperature of the first process airflow (B) from the refrigerating unit (4) is between 0 °C and 12 °C, more preferably between 1 °C and 8 °C, and most preferably between 2 °C and 4 °C.
 
6. A drying apparatus (1) according to any of the preceding claims 2 - 5, characterized in that the drying apparatus (1) further comprises a second means (14) for transporting air that removes heat from the refrigerating agent (8) in the condenser (10), where the performance of the second means (14) is regulated by means of a third frequency transformer (17).
 
7. A drying apparatus (1) according to any of the preceding claims 1 - 6, characterized in that a third means (3) for transporting air is arranged between the refrigerating unit (4) and the dehumidifier (6).
 
8. A drying apparatus (1) according to any of the preceding claims 1 - 7, characterized in that the performance of the first means (3) for transporting air is between 800 m3 per hour and 10000 m3 per hour, more preferably between 1500 m3 per hour and 8000 m3 per hour, and most preferably between 2000 m3 per hour and 6000 m3 per hour.
 
9. A drying apparatus (1) according to any of the preceding claims 1 - 8, characterized in that the first means (3) for transporting air provides a maximum differential pressure of 0,01 bar to 7 bar, more preferably 0,02 bar to 3 bar, and most preferably 0,03 bar to 1,3 bar between the outlet and the inlet of the first means (3) for transporting air.
 
10. A drying apparatus (1) according to any of the preceding claims 1 - 9, characterized in that the drying apparatus (1) further comprises a generator (15).
 
11. A drying apparatus (1) according to any of the preceding claims 1 - 10, characterized in that the drying apparatus (1) is integrated in a single compartment, more preferably a mobile single compartment, and most preferably a freight container.
 
12. A method for drying a pipeline using the drying apparatus (1) according to any of the preceding claims 1 - 11, wherein the method comprises the step of:

- establishing a fluid communication between the drying apparatus (1) and the pipeline for providing dried air to the pipeline,

- continuous regulation of the performance of the first means (3) for transporting air by means of the first frequency transformer (12), and

- continuous regulation of the performance of the refrigerating unit (4) by means of the second frequency transformer (13).


 
13. A method according to claim 12, characterized in that the method further comprises the step of

- continuous regulation of the operating performance of the second means (14) for transporting air by means of the third frequency transformer (17).


 
14. A method according to any of the preceding claims 12 or 13, characterized in that the method further comprises the step of predrying the pipeline prior to or in conjunction with using the apparatus (1).
 


Ansprüche

1. Eine Trockenvorrichtung (1) zum Trocknen einer Rohrleitung mit:

- einem ersten Mittel (3) zum Fördern eines Einlassluftstroms (A) durch die Vorrichtung zum Trocknen der Rohrleitung,

- einer Kühleinheit (4) zum anfänglichen Entfernen vom Dampf aus dem Einlassluftstrom (A), wodurch ein erster Prozessluftstrom (B) definiert wird,

- einem Entfeuchter (6) zum weiteren Entfernen von Dampf aus dem ersten Prozessluftstroms (B) zum Erzeugen eines zweiten Prozessluftstroms (C), dessen Dampfgehalt geringer ist, wobei der Entfeuchter dazu verwendet wird, einen Taupunkt des zweiten Prozessluftstroms (C) von etwa -30 °C oder tiefer zu schaffen,

- einem ersten Frequenzwandler (12) zum Regulieren des Betrags des Einlassluftstroms (8) durch Justieren der Leistung des ersten Mittels (3) und

- einem zweiten Frequenzwandler (13) zum Regulieren der Leistung der Kühleinheit (4), wobei die Regulierung des zweiten Frequenzwandlers (13) auf Daten basiert, die für die Feuchtigkeit und/oder die Temperatur des ersten Prozessluftstroms repräsentativ sind.


 
2. Eine Trockenvorrichtung (1) nach Anspruch 1, dadurch gekennzeichnet, dass die Kühleinheit (4) ein Dampfkompressinonskühlsystem von der Art mit einem oder mehreren Verdampfern (7), einem Verdichter (9), einem Expansionsventil (11), einem Kühlmittel (8) und einem Kondensor (10) ist.
 
3. Eine Trockenvorrichtung (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Regulation durch den ersten Frequenzwandler (12) auf einem oder mehreren Daten ausgehend aus der Gruppe bestehend aus dem Druck des Ausgangs des Auslassluftstroms aus der Trockenvorrichtung, die Temperatur des Ausgangsluftstroms aus der Trockenvorrichtung, dem Taupunkt des zweiten Prozessluftstroms und der Menge des Einlassluftstroms basiert.
 
4. Eine Trockenvorrichtung (1) nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass der zweite Frequenzwandler (13) den Druck des Kühlmittels (8) in dem Verdampfer (7) durch Steuern der Leistung des Kompressors (9) regelt, wobei die Regulation auf Daten basiert, die die Feuchtigkeit oder die Temperatur des ersten Prozessluftstroms repräsentieren.
 
5. Eine Trockenvorrichtung (1) nach einem der vorangehenden Ansprüche 1 - 4, dadurch gekennzeichnet, dass die Temperatur des ersten Prozessluftstroms (B) aus der Kühleinheit (4) zwischen 0 °C und 12 °C liegt, besonders bevorzugt zwischen 1 °C und 8 °C, ganz besonders bevorzugt zwischen 2 °C und 4 °C.
 
6. Eine Trockenvorrichtung (1) nach einem der vorangehenden Ansprüche 2 - 5, dadurch gekennzeichnet, dass die Trockenvorrichtung (1) weiter ein zweites Mittel (14) zum Transportieren von Luft aufweist, die Wärme von dem Kühlmittel (8) in dem Kondensor (10) abführt, wobei die Leistung des zweiten Mittels (14) mittels eines dritten Frequenzwandlers (17) geregelt wird.
 
7. Eine Trockenvorrichtung (1) nach einem der vorangehenden Ansprüche 1 - 6, dadurch gekennzeichnet, dass ein drittes Mittel (3) zum Fördern von Luft zwischen der Kühleinheit (4) und dem Entfeuchter (6) angeordnet ist.
 
8. Eine Trockenvorrichtung (1) nach einem der vorangehenden Ansprüche 1 - 7, dadurch gekennzeichnet, dass die Leistung des ersten Mittels zum Transportieren von Luft zwischen 800 m3 pro Stunde und 10.000 m3 pro Stunde beträgt, bevorzugt zwischen 1.500 m3 pro Stunde und 8.000 m3 pro Stunde und besonders bevorzugt zwischen 2.000 m3 pro Stunde und 6.000 m3 pro Stunde.
 
9. Eine Trockenvorrichtung (1) nach einem der vorangehenden Ansprüche 1 - 8, dadurch gekennzeichnet, dass das erste Mittel (3) zum Fördern von Luft einen maximalen Differenzdruck von 0,01 bar bis 7 bar, bevorzugt 0,02 bar bis 3 bar und besonders bevorzugt 0,03 bar bis 1,3 bar zwischen dem Auslass und dem Einlass des ersten Mittels (3) zum Fördern der Luft erzeugt.
 
10. Eine Trockenvorrichtung (1) nach einem der vorangehenden Ansprüche 1 - 9, dadurch gekennzeichnet, dass die Trockenvorrichtung (1) weiter einen Generator (15) aufweist.
 
11. Eine Trockenvorrichtung (1) nach einem der vorangehenden Ansprüche 1 - 10, dadurch gekennzeichnet, dass die Trockenvorrichtung (1) in einer einzigen Kammer integriert ist, vorzugsweise einer transportablen einzigen Kammer und besonders bevorzugt einem Frachtcontainer.
 
12. Ein Verfahren zum Trocknen einer Rohrleitung unter Verwendung einer Trockenvorrichtung (1) nach einem der vorangehenden Ansprüche 1 - 11, wobei, mit den folgenden Schritten:

- Bewirken einer fluidischen Kommunikation zwischen der Trockenvorrichtung (1) und der Rohrleitung zum Liefern getrockneter Luft zu der Rohrleitung (1),

- kontinuierliches Regeln der Leistung des ersten Mittels (3) zum Fördern von Luft mittels des ersten Frequenzwandlers (12) und

- kontinuierliches Regeln der Leistung der Kühleinheit (4) mittels des zweiten Frequenzwandlers (13).


 
13. Ein Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass das Verfahren weiter die folgenden Schritte aufweist:

- kontinuierliches Regeln der Arbeitsleistung des zweiten Mittels (14) zum Transportieren von Luft mittels des dritten Frequenzwandlers (17).


 
14. Ein Verfahren nach einem der vorangehenden Ansprüche 12 oder 13, dadurch gekennzeichnet, dass das Verfahren weiter den Schritt des Vortrocknens der Rohrleitung vor oder in Verbindung mit der Verwendung der Vorrichtung (1) aufweist.
 


Revendications

1. Appareil de séchage (1) pour sécher une canalisation, ledit appareil (1) comprenant :

- un premier moyen (3) pour transporter un écoulement d'air d'aspiration (A) à travers l'appareil (1) pour sécher la canalisation ;

- une unité de réfrigération (4) pour l'élimination initiale d'humidité à partir de l'écoulement d'air d'aspiration (A), pour ainsi définir un premier écoulement d'air de processus (B) ;

- un déshumidificateur (6) pour l'élimination ultérieure d'humidité à partir du premier écoulement d'air de processus (B) pour obtenir un deuxième écoulement d'air de processus (C) possédant une teneur réduite en humidité, le déshumidificateur étant arrangé pour obtenir un point de rosée du deuxième écoulement d'air de processus (C) d'environ -30 °C ou moins ;

- un premier transformateur de fréquence (12) pour réguler la quantité de l'écoulement d'air d'aspiration (A) en réglant la performance du premier moyen (3) ; et

- un deuxième transformateur de fréquence (13) pour réguler la performance de l'unité de réfrigération (4), la régulation via le deuxième transformateur de fréquence (13) se basant sur des données qui sont représentatives de l'humidité et/ou de la température du premier écoulement d'air de processus.


 
2. Appareil de séchage (1) selon la revendication 1, caractérisé en ce que l'unité de réfrigération (4) est un système de réfrigération par compression de vapeur du type comprenant un ou plusieurs éléments choisis parmi le groupe comprenant un évaporateur (7), un compresseur (9), un détendeur (11), un agent de réfrigération (8) et un condenseur (10).
 
3. Appareil de séchage (1) selon la revendication 1 ou 2, caractérisé en ce que la régulation par le premier transformateur de fréquence (12) se base sur une ou plusieurs données choisies parmi le groupe comprenant la pression de l'écoulement d'air de sortie à partir de l'appareil de séchage, la température de l'écoulement d'air de sortie à partir de l'appareil de séchage, le point de rosée du deuxième écoulement d'air de processus et la quantité de l'écoulement d'air d'aspiration.
 
4. Appareil de séchage (1) selon la revendication 2 ou 3, caractérisé en ce que le deuxième transformateur de fréquence (13) régule la pression de l'agent de réfrigération (8) dans l'évaporateur (7) en réglant la performance du compresseur (9), la régulation se basant sur des données qui représentent l'humidité et/ou la température du premier écoulement d'air de processus.
 
5. Appareil de séchage (1) selon l'une quelconque des revendications précédentes 1 à 4, caractérisé en ce que la température du premier écoulement d'air de processus (B) à partir de l'unité de réfrigération (4) se situe entre 0 °C et 12 °C, de manière plus préférée entre 1 °C et 8 °C, et de manière de loin préférée entre 2 °C et 4 °C.
 
6. Appareil de séchage (1) selon l'une quelconque des revendications précédentes 2 à 5, caractérisé en ce que l'appareil de séchage (1) comprend en outre un deuxième moyen (14) pour transporter de l'air qui élimine la chaleur à partir de l'agent de réfrigération (8) dans le condenseur (10), la performance du deuxième moyen (14) étant régulée au moyen d'un troisième transformateur de fréquence (17).
 
7. Appareil de séchage (1) selon l'une quelconque des revendications précédentes 1 à 6, caractérisé en ce qu'un troisième moyen (3) pour transporter de l'air est monté entre l'unité de réfrigération (4) et le déshumidificateur (6).
 
8. Appareil de séchage (1) selon l'une quelconque des revendications précédentes 1 à 7, caractérisé en ce que la performance du premier moyen (3) pour transporter de l'air se situe entre 800 m3 par heure et 10.000 m3 par heure, de manière plus préférée entre 1.500 m3 par heure et 8.000 m3 par heure, et de manière de loin préférée entre 2.000 m3 par heure et 6.000 m3 par heure,
 
9. Appareil de séchage (1) selon l'une quelconque des revendications précédentes 1 à 8, caractérisé en ce que le premier moyen (3) pour transporter de l'air fournit une pression différentielle maximale de 0,01 bar à 7 bar, de manière plus préférée de 0,02 bar à 3 bar, et de manière de loin préférée de 0,03 bar à 1,3 bar entre la sortie et l'entrée du premier moyen (3) pour transporter de l'air.
 
10. Appareil de séchage (1) selon l'une quelconque des revendications précédentes 1 à 9, caractérisé en ce que l'appareil de séchage (1) comprend en outre un générateur (15).
 
11. Appareil de séchage (1) selon l'une quelconque des revendications précédentes 1 à 10, caractérisé en ce que l'appareil de séchage (1) est intégré dans un seul compartiment, de manière plus préférée un seul compartiment mobile, et de manière de loin préférée, un conteneur de fret.
 
12. Procédé pour sécher une canalisation en utilisant l'appareil de séchage (1) selon l'une quelconque des revendications 1 à 11, dans lequel le procédé comprend les étapes consistant à :

- établir une communication par fluide entre l'appareil de séchage (1) et la canalisation pour fournir de l'air séché à la canalisation ;

- réguler en continu la performance du premier moyen (3) pour transporter de l'air au moyen du premier transformateur de fréquence (12) ; et

- réguler en continu la performance de l'unité de réfrigération (4) au moyen du deuxième transformateur de fréquence (13).


 
13. Procédé selon la revendication 12, caractérisé en ce que le procédé comprend en outre l'étape consistant à :

- réguler en continu la performance de fonctionnement du deuxième moyen (14) pour transporter de l'air au moyen du troisième transformateur de fréquence (17).


 
14. Procédé selon l'une quelconque des revendications précédentes 12 ou 13, caractérisé en ce que le procédé comprend en outre l'étape consistant à soumettre la canalisation à un séchage préalable avant ou conjointement à l'utilisation de l'appareil (1).
 




Drawing

















Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description