(19)
(11) EP 2 810 719 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
10.12.2014  Patentblatt  2014/50

(21) Anmeldenummer: 14002527.1

(22) Anmeldetag:  06.10.2006
(51) Internationale Patentklassifikation (IPC): 
B05B 5/16(2006.01)
B05B 13/04(2006.01)
B05B 12/08(2006.01)
B05B 12/14(2006.01)
(84) Benannte Vertragsstaaten:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

(30) Priorität: 07.10.2005 DE 102005048223
20.12.2005 DE 102005060959

(62) Anmeldenummer der früheren Anmeldung nach Art. 76 EPÜ:
06021045.7 / 1772194

(71) Anmelder: Dürr Systems GmbH
74321 Bietigheim-Bissingen (DE)

(72) Erfinder:
  • Melcher, Rainer
    71720 Oberstenfeld (DE)
  • Erlik, Semih
    24149 Kiel (DE)
  • Herre, Frank
    71739 Oberriexingen (DE)
  • Michelfelder, Manfred
    71711 Steinheim (DE)
  • Baumann, Michael
    74223 Flein (DE)
  • Martin, Herbert
    71384 Weinstadt (DE)
  • Seiz, Bernhard
    74348 Lauffen (DE)

(74) Vertreter: Beier, Ralph 
V. Bezold & Partner Patentanwälte - PartG mbB Akademiestraße 7
80799 München
80799 München (DE)

 
Bemerkungen:
Diese Anmeldung ist am 21-07-2014 als Teilanmeldung zu der unter INID-Code 62 erwähnten Anmeldung eingereicht worden.
 


(54) Beschichtungsmittel-Versorgungseinrichtung und zugehöriges Betriebsverfahren


(57) Die Erfindung betrifft Beschichtungsmittel-Versorgungseinrichtung, insbesondere für eine Lackieranlage, mit einem Beschichtungsmittel-Dosierer (1), der ein zu applizierendes Beschichtungsmittel zu einem Applikationsgerät dosiert, sowie mit einem Beschichtungsmittel-Speicherbehälter (6) zur vorübergehenden Aufnahme des Beschichtungsmittels und zur Versorgung des Beschichtungsmittel-Dosierers (1) mit dem Beschichtungsmittel, wobei der Beschichtungsmittel-Speicherbehälter (6) stromaufwärts vor dem Beschichtungsmittel-Dosierer (1) angeordnet und ausgangsseitig mit dem Beschichtungsmittel-Dosierer (1) verbunden ist.




Beschreibung


[0001] Die Erfindung betrifft eine Beschichtungsmittel-Versorgungseinrichtung, insbesondere für eine Lackieranlage, sowie ein zugehöriges Betriebsverfahren gemäß dem Oberbegriff der nebengeordneten Ansprüche.

[0002] Aus WO 2004/037436 A1 ist ein mehrachsiger Lackierroboter bekannt, der als Applikationsgerät einen Rotationszerstäuber aufweist und beispielsweise zur Lackierung von Kraftfahrzeugkarosserieteilen eingesetzt werden kann. Die Zuführung des zu applizierenden Lacks erfolgt hierbei durch einen Kolbendosierer, der auf einem Arm des Lackierroboters angebracht ist und im Betrieb auf einem Hochspannungspotential liegt, so dass der von dem Rotationszerstäuber applizierte Lack elektrisch aufgeladen ist, was zu einem guten Auftragswirkungsgrad gegenüber den elektrisch geerdeten Kraftfahrzeugkarosserieteilen oder den sonstigen zu lackierenden Bauteilen führt. Auf demselben Roboterarm ist weiterhin ein Farbwechsler angeordnet, der über zahlreiche Farbzuleitungen mit Lacken unterschiedlicher Farben versorgt wird, wobei der Farbwechsler die Auswahl der gewünschten Farbe ermöglicht und den Kolbendosierer mit dem zugehörigen Lack versorgt. Im Betrieb liegt der Farbwechsler auf einem elektrischen Massepotential, so dass die zahlreichen Farbzuleitungen nicht elektrisch isolierend ausgeführt sein müssen. Die Verbindung zwischen dem Farbwechsler und dem Kolbendosierer erfolgt jedoch durch einen Isolationsschlauch, der eine elektrische Isolation zwischen dem auf Erdpotential liegenden Farbwechsler und dem zum Lackieren auf Hochspannungspotential liegenden Kolbendosierer sicherstellt. Die elektrische Potentialtrennung zwischen dem Farbwechsler und dem Kolbendosierer wird hierbei durch Spülen und Reinigen des Isolationsschlauchs erreicht.

[0003] Nachteilig an diesem bekannten Lackierroboter ist zum einen die relativ lange Farbwechseldauer, was insbesondere bei häufigen Farbwechseln zu einer Verlangsamung der Lackierprozesse führt.

[0004] Zum anderen muss der Kolbendosierer auch ohne einen Farbwechsel wieder befüllt werden, wenn das gesamte Füllungsvolumen des Kolbendosierers von dem Rotationszerstäuber appliziert worden ist. Die Wiederbefüllung des Kolbendosierers durch den Farbwechsler ist hierbei jedoch ebenfalls relativ zeitaufwändig, was die Lackierprozesse verlangsamt.

[0005] Aus DE 699 17 411 T2 ist ebenfalls ein Lackierroboter bekannt, bei dem eine Dosierpumpe und ein Farbwechsler gemeinsam in einem Roboterarm des Lackierroboters angeordnet sind, was mit den vorstehend erwähnten Nachteilen verbunden ist.

[0006] Weiterhin ist aus DE 697 14 886 T2 eine Lackiereinrichtung mit einem Zerstäuber und zwei Kolbendosierern bekannt, wobei der Zerstäuber wahlweise mit einem der beiden Kolbendosierer verbunden werden kann, während der andere Kolbendosierer befüllt wird. Die Auswahl des gewünschten Kolbendosierers erfolgt hierbei durch einen aufwändigen Drehmechanismus.

[0007] Aus DE 691 09 823 T2 und DE 690 01 744 T2 ist eine elektrostatische Farbspritzanlage mit zwei Beschichtungsmitteltanks bekannt, die in Strömungsrichtung hintereinander angeordnet sind und durch eine Isolierstrecke voneinander getrennt werden. Die Trennung der beiden Beschichtungsmitteltanks durch die Isolierstrecke ermöglicht es, den stromabwärts gelegenen Beschichtungsmitteltank während der Lackapplikation an Hochspannungspotential zu legen, während der stromaufwärts gelegene Beschichtungsmitteltank auf Erdpotential liegt und deshalb in einfacher Weise mit Lack befüllt werden kann.

[0008] Weitere Beschichtungseinrichtungen sind bekannt aus DE 691 09 949 T2, DE 195 24 853 C2, DE 201 18 531 U1, DE 199 61 270 A1 und DE 692 28 249 T2.

[0009] Der Erfindung liegt deshalb die Aufgabe zugrunde, den eingangs beschriebenen bekannten Lackierroboter entsprechend zu verbessern.

[0010] Diese Aufgabe wird durch eine Beschichtungsmittel-Versorgungseinrichtung und durch ein zugehöriges Betriebsverfahren gemäß den nebengeordneten Ansprüchen gelöst.

[0011] Die Erfindung umfasst die allgemeine technische Lehre, den Beschichtungsmittel-Dosierer (z.B. einen Kolbendosierer) nicht direkt von dem Farbwechsler zu befüllen, sondern indirekt über einen dazwischen befindlichen Beschichtungsmittel-Speicherbehälter. Dies bietet die Möglichkeit, dass der Beschichtungsmittel-Speicherbehälter bereits während des Lackierens mit Beschichtungsmittel befüllt wird und nicht erst in den Farbwechselzeiten, was zu einer Reduzierung der Farbwechselzeiten beiträgt. Das Umfüllen von dem Beschichtungsmittel-Speicherbehälter in den Beschichtungsmittel-Dosierer kann aufgrund der kurzen und direkten Verbindung mit sehr großen Volumenstrom erfolgen. Die kontinuierliche Befüllung des Beschichtungsmittel-Speicherbehälters während des Lackierens bietet auch den Vorteil, dass aufgrund der zur Verfügung stehenden Zeit für die Befüllung relativ kleine Lackvolumenströme in den Versorgungsleitungen (z.B. Farb-Ringleitungen und Sonder-Farbversorgung) ausreichen, so dass die zugehörigen Leitungen einen kleineren Leitungsquerschnitt aufweisen können, wodurch die Installations-Aufwendungen gesenkt werden.

[0012] Der im Rahmen der Erfindung verwendete Begriff eines Beschichtungsmittel-Dosierers bzw. Dosierers bezeichnet vorzugsweise eine Einrichtung, mit der während der Beschichtung die dem Applikationsgerät zuzuführende Beschichtungsmittelmenge (Momentandurchfluss) bedarfsabhängig, etwa in Abhängigkeit von dem jeweiligen Werkstückbereich und sonstigen Parametern geändert werden kann, wie z.B. in EP 1 314 483 A2 oder DE 691 03 218 T2 erläutert ist. Diese Möglichkeit besteht nicht bei bekannten Systemen, bei denen lediglich durch gesteuerte Verstellung eines Kolbens das Füllvolumen eines Behälters eingestellt wird, wie beispielsweise bei DE 690 01 744 T2.

[0013] Vorzugsweise liegt der Beschichtungsmittel-Dosierer hierbei zum Lackieren auf einem Hochspannungspotential, während der Beschichtungsmittel-Speicherbehälter auf einem erdnahen Potential (vorzugsweise Massepotential) liegt, wobei der Beschichtungsmittel-Speicherbehälter über eine Isolierstrecke mit dem Beschichtungsmittel-Dosierer verbunden ist, um den auf Hochspannungspotential liegenden Beschichtungsmittel-Dosierer gegenüber dem geerdeten Beschichtungsmittel-Speicherbehälter zu isolieren. Die elektrischen Potentiale des Beschichtungsmittel-Dosierers und des Beschichtungsmittel-Speicherbehälters sind jedoch vorzugsweise schaltbar, so dass der Beschichtungsmittel-Dosierer nur zum Lackieren auf Hochspannungspotential gebracht wird, wohingegen die Hochspannung zum Befüllen des Beschichtungsmittel-Dosierers abgeschaltet werden kann.

[0014] Die Isolierstrecke kann hierbei aus einem Isolationsschlauch bestehen, in dem ein Abstreifer (z.B. ein Abstreifkolben oder ein Dichtkopf) verschiebbar ist, um Beschichtungsmittelreste von der Innenwand der Isolierstrecke zu entfernen. Zum einen verhindert diese Reinigung der Isolierstrecke, dass das Isolationsvermögen der Isolierstrecke durch Beschichtungsmittelreste beeinträchtigt wird, die in der Isolierstrecke verblieben sind. Zum anderen wird durch die Reinigung der Isolierstrecke eine Verunreinigung durch die in der Isolierstrecke verbliebenen Beschichtungsmittelreste vermieden, was insbesondere bei einem Farbwechsel wichtig ist.

[0015] In einer Variante der Erfindung erfolgt die Bewegung des Abstreifers in der Isolierstrecke in einer Richtung oder in beiden Richtungen durch eine Kolbenstange, die beispielsweise elektrisch, pneumatisch oder hydraulisch angetrieben werden kann. Die Kolbenstange besteht hierbei vorzugsweise aus einem elektrisch isolierenden Material, um die gewünschte Isolationswirkung zu erzielen. Als Material für die Kolbenstange eignet sich besonders Keramik, da Keramik über ein gutes elektrisches Isolationsvermögen verfügt und zusätzlich eine hohe mechanische Starrheit aufweist, was für die Dosiergenauigkeit wichtig ist. Darüber hinaus weist Keramik eine hohe Abrieb- und Verschleißfestigkeit auf. Standardmäßig wird die Kolbenstange jedoch aus Stahl gefertigt. In diesem Fall muss der Abstreifer mit der Kolbenstange zur Potenzialtrennung zurück gefahren werden.

[0016] In einer andere Variante der Erfindung ist der Abstreifer nicht fest mit der Kolbenstange verbunden, sondern in der Isolierstrecke frei beweglich. Der Abstreifer kann hierbei in der Isolierstrecke von der Kolbenstange nur geschoben werden. Die Bewegung des Abstreifers in die andere Richtung erfolgt dagegen durch eine einseitige Druckluftbeaufschlagung des Abstreifers.

[0017] Ferner besteht auch die Möglichkeit, dass der Abstreifer in der Isolierstrecke völlig frei beweglich ist, so dass auf eine Kolbenstange zum Antrieb des Abstreifers verzichtet wird. Die Bewegung des Abstreifers erfolgt hierbei ebenfalls durch eine einseitige Druckluftbeaufschlagung des Abstreifers auf der gewünschten Seite. In dieser Variante der Erfindung kann der Abstreifer also beidseitig mit Druckluft beaufschlagt werden.

[0018] In einer weiteren Variante der Erfindung wird der Abstreifer in der einen Richtung hin zu dem Beschichtungsmittel-Dosierer mittels Druckluft bewegt, während der Abstreifer mit dem verbliebenen Beschichtungsmittel von dem Beschichtungsmittel-Dosierer zurückgeschoben wird.

[0019] In einer anderen Variante erfolgt die Verbindung zwischen dem Beschichtungsmittel-Speicherbehälter und dem Beschichtungsmittel-Dosierer dagegen nicht permanent durch einen Isolationsschlauch, sondern durch eine lösbare Andock-Schnittstelle. Bei der Befüllung des Beschichtungsmittel-Speicherbehälters liegt dieser dann getrennt von der Andock-Schnittstelle auf einem erdnahen Potential und wird dann zur Befüllung des Beschichtungsmittel-Dosierers von der Beschichtungsmittelzuleitung abgetrennt und mit der Andock-Schnittstelle verbunden, wobei sich der Beschichtungsmittel-Speicherbehälter dann auf demselben Hochspannungspotential befindet wie der Beschichtungsmittel-Dosierer. Der Beschichtungsmittel-Speicherbehälter ist in dieser Variante der Erfindung also zwischen dem Hochspannungspotential des Beschichtungsmittel-Dosierers und dem erdnahen Potential der Beschichtungsmittel-Zuleitung verfahrbar.

[0020] Der Beschichtungsmittel-Speicherbehälter kann auch direkt mit der Beschichtungsmittel-Zuleitung verbunden sein und/oder auf der Achse 7 des Lackierroboters mitfahrend montiert sein. In diesem Fall wird der Zerstäuber nach dem Lackieren (im Fall mit Hochspannung) geerdet und am zwischenzeitlich gefüllten Beschichtungsmittel-Speicherbehälter zur Befüllung angedockt. Nach Abschluss des Befüllvorgangs wird abgedockt. Nun kann lackiert werden (ggf. mit HS).

[0021] Weiterhin besteht die Möglichkeit, dass die Verbindungsleitung zwischen dem Beschichtungsmittel-Speicherbehälter und dem Beschichtungsmittel-Dosierer aus einem molchbaren Schlauch besteht, der nach dem Umfüllvorgang (Beschichtungsmittel-Speicherbehälter → Beschichtungsmittel-Dosierer) mittels eines Molchs entleert wird. Damit findet auch die Potenzialtrennung statt.

[0022] Die Andock-Schnittstelle für die Verbindung des Beschichtungsmittel-Dosierers mit dem Beschichtungsmittel-Speicherbehälter kann hierbei in dem Lackierroboter angebracht sein, beispielsweise in einem Roboterarm, so dass die Andock-Schnittstelle mit dem Lackierroboter beweglich ist. Zusätzlich zu der Andock-Schnittstelle kann hierbei auch ein Farbwechsler in dem Lackierroboter angeordnet sein.

[0023] Es besteht jedoch alternativ auch die Möglichkeit, dass die Andock-Schnittstelle außerhalb des Lackierroboters stationär angeordnet ist. Bei dieser Anordnung der Andock-Schnittstelle besteht die Möglichkeit, dass die Andock-Schnittstelle mit dem Lackierroboter mitfährt, indem die Andock-Schnittstelle beispielsweise auf der Achse 7 des Lackierroboters angebracht ist.

[0024] In dem bevorzugten Ausführungsbeispiel der Erfindung weist der Beschichtungsmittel-Speicherbehälter ein einstellbares Speichervolumen auf, wobei das Speichervolumen beispielsweise durch einen druckluftbetätigten Kolben einstellbar ist. Dies bietet bei einem Farbwechsel die Möglichkeit, dass das in dem Beschichtungsmittel-Speicherbehälter nach der Befüllung des Beschichtungsmittel-Dosierers verbliebene neue Beschichtungsmittel wieder aus dem Beschichtungsmittel-Speicherbehälter zurück in die Beschichtungsmittel-Zuleitung gedrückt wird, was auch als "Reflow" bezeichnet wird. Zum einen wird durch diesen "Reflow" der Beschichtungsmittelverbrauch gesenkt, da das in dem Beschichtungsmittel-Speicherbehälter nach der Befüllung des Beschichtungsmittel-Dosierers verbliebene neue Beschichtungsmittel weiter genutzt werden kann. Zum anderen wird dadurch die Reinigung des Beschichtungsmittel-Speicherbehälters erleichtert, so dass weniger Spülmittel benötigt wird.

[0025] Vorzugsweise handelt es sich bei dem Beschichtungsmittel-Dosierer um einen Kolbendosierer, wie er beispielsweise in der eingangs erwähnten Druckschrift WO 2004/037436 A1 beschrieben ist. Der Inhalt dieser Druckschrift ist deshalb der vorliegenden Beschreibung hinsichtlich des Aufbaus und der Funktionsweise eines Kolbendosierers. Die Erfindung ist jedoch hinsichtlich des Typs des Beschichtungsmittel-Dosierers nicht auf Kolbendosierer beschränkt, sondern grundsätzlich auch mit anderen Typen von Dosierern realisierbar.

[0026] Bei dem Beschichtungsmittel-Speicherbehälter handelt es sich vorzugsweise um einen Zylinder mit einem Speicherkolben, der in dem Zylinder verschiebbar angeordnet ist, wobei der Antrieb des Speicherkolbens beispielsweise elektromotorisch, hydraulisch oder pneumatisch erfolgen kann. Die Stellung des Speicherkolbens bestimmt dann das Speichervolumen des Beschichtungsmittel-Speicherbehälters.

[0027] In einer vorteilhaften Variante der Erfindung sind der Beschichtungsmittel-Dosierer und der Beschichtungsmittel-Speicherbehälter in einem gemeinsamen Zylinder integriert.

[0028] In einem Ausführungsbeispiel dieser Variante ist der gemeinsame Zylinder durch eine mittig in dem Zylinder angeordnete Trennwand in zwei Teilzylinder getrennt, wobei in dem einen Teilzylinder der Dosierkolben des Beschichtungsmittel-Dosierers verschiebbar ist, während in dem anderen Teilzylinder der Speicherkolben des Beschichtungsmittel-Speicherbehälters verschiebbar ist. Der Antrieb des Dosierkolbens erfolgt hierbei vorzugsweise durch eine Kolbenstange, während der Antrieb des Speicherkolbens vorzugsweise pneumatisch erfolgt.

[0029] In einem anderen Ausführungsbeispiel dieser Variante mit einem gemeinsamen Zylinder für den Beschichtungsmittel-Dosierer und den Beschichtungsmittel-Speicherbehälter ist dagegen keine Trennwand in dem gemeinsamen Zylinder angeordnet. Das Speichervolumen des Beschichtungsmittel-Speicherbehälters befindet sich hierbei auf der Rückseite des Dosierkolbens, wobei in diesem Speichervolumen des gemeinsamen Zylinders der Speicherkolben verschiebbar angeordnet ist, wobei der Antrieb des Speicherkolbens vorzugsweise pneumatisch erfolgt. Der Pneumatikdruck zum Antrieb des Speicherkolbens wirkt dann jedoch nicht nur auf den Speicherkolben, sondern auch auf die Rückseite des Dosierkolbens, so dass der Antrieb des Dosierkolbens mechanisch hinreichend starr sein sollte und deshalb vorzugsweise durch eine Kolbenstange erfolgt.

[0030] In einer anderen Variante der Erfindung wird der Beschichtungsmittel-Speicherbehälter durch einen Abschnitt einer Ringleitung gebildet. Derartige Ringleitungen sind in Lackieranlagen an sich bekannt und beispielsweise in Pavel Svejda: "Prozesse und Applikationsverfahren" (Vincentz Verlag), Seite 106 ff. beschrieben. Hinsichtlich des konstruktiven Aufbaus von Ringleitungssystemen wird deshalb zur Vermeidung von Wiederholungen auf die vorstehende Veröffentlichung verwiesen, deren Inhalt der vorliegenden Beschreibung in vollen Umfang zuzurechnen ist.

[0031] Die Ringleitung weist in dieser Variante der Erfindung mindestens zwei Absperrventile auf, die in der Ringleitung in Strömungsrichtung hintereinander angeordnet sind und im geschlossenen Zustand einen Abschnitt der Ringleitung zwischen den beiden Absperrventilen von dem Rest der Ringleitung trennen können. Die Absperrventile sind hierbei so angeordnet, dass sich in der Ringleitung zwischen den beiden Absperrventilen eine Entnahmestelle befindet, über die das Beschichtungsmittel aus der Ringleitung entnommen werden kann. Derartige Entnahmestellen können beispielsweise als T-Abgänge ausgebildet sein, die mit einem Kugelhahn verschlossen werden können. Es ist jedoch alternativ auch möglich, dass die Entnahmestellen jeweils ein automatisch arbeitendes Andockventil aufweisen, das beim Andocken einer Entnahmeleitung automatisch öffnet und ansonsten geschlossen ist.

[0032] In einem Ausführungsbeispiel dieser Variante besteht ein Abschnitt zwischen den beiden Absperrventilen in der Ringleitung aus einem sogenannten "Squeeze-Out-Schlauch" wie er an sich aus WO 03/086671 A1 und DE 10 2004 016 951 A1 beschrieben ist, so dass der Inhalt dieser beiden Druckschriften der vorliegenden Beschreibung hinsichtlich der konstruktiven Gestaltung des "Squeeze-Out-Schlauchs" in vollem Umfang zuzurechnen ist.

[0033] Der "Squeeze-Out-Schlauch" weist einen flexiblen Innenschlauch auf, durch den das Beschichtungsmittel strömt. Weiterhin weist der "Squeeze-Out-Schlauch" einen starren Außenmantel auf, der den flexiblen Innenschlauch außen umgibt, wobei sich zwischen dem Außenmantel und dem Innenschlauch ein abgedichteter Ringraum befindet. Weiterhin weist der "Squeeze-Out-Schlauch" einen Einlass auf, der in den Ringraum zwischen dem starren Außenmantel und dem flexiblen Innenschlauch mündet und über den ein Druckmedium in den Ringraum eingeführt werden kann, um den flexiblen Innenschlauch zu komprimieren. Vorzugsweise ist ferner ein Auslass vorgesehen, der von dem Ringraum zwischen dem starren Außenmantel und dem flexiblen Innenschlauch abzweigt und eine Ableitung des Druckmediums aus dem Ringraum ermöglicht, um den Druck in dem Ringraum und damit die gewünschte Komprimierung des flexiblen Innenschlauchs einstellen zu können. Durch eine geeignete Zuleitung bzw. Ableitung des Druckmediums in den Ringraum lässt sich der flexible Innenschlauch nahezu beliebig komprimieren, um das in dem Innenschlauch befindliche Beschichtungsmittel über die Entnahmestelle auszudrücken. Der "Squeeze-Out-Schlauch" bildet hierbei also einen Beschichtungsmittel-Speicherbehälter, aus dem das zwischengespeicherte Beschichtungsmittel über die Entnahmestelle in den Beschichtungsmittel-Dosierer gedrückt werden kann, wenn dieser an die Entnahmestelle angedockt ist.

[0034] Die Erfindung eignet sich besonders vorteilhaft zur Applikation von Wasserlack, jedoch ist die Erfindung hinsichtlich des zu applizierenden Beschichtungsmittels nicht auf Wasserlack beschränkt, sondern grundsätzlich auch mit anderen Beschichtungsmitteltypen realisierbar.

[0035] Ferner umfasst die Erfindung nicht nur die vorstehend beschriebene erfindungsgemäße Beschichtungsmittel-Versorgungseinrichtung, sondern auch einen kompletten Lackierroboter mit einer derartigen Beschichtungsmittel-Versorgungseinrichtung. In diesem Fall sind der Beschichtungsmittel-Dosierer und der Beschichtungsmittel-Speicherbehälter vorzugsweise in oder auf einem oder mehreren Roboterarmen des Lackierroboters angeordnet.

[0036] Schließlich umfasst die Erfindung auch ein entsprechendes Betriebsverfahren, wie sich bereits aus der vorliegenden Beschreibung der erfindungsgemäßen Beschichtungsmittel-Versorgungseinrichtung ergibt.

[0037] Andere vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet oder werden nachstehend zusammen mit der Beschreibung der bevorzugten Ausführungsbeispiele der Erfindung anhand der Figuren näher erläutert. Es zeigen:
Figur 1
eine vereinfachte Darstellung einer erfindungsgemäßen Beschichtungsmittel-Versorgungseinrichtung für einen Lackierroboter, wobei ein Beschichtungsmittel-Speicherbehälter über eine Isolierstrecke mit einem Beschichtungsmittel-Dosierer verbunden ist,
Figuren 2A, 2B
ein alternatives Ausführungsbeispiel einer erfindungsgemäßen Beschichtungsmittel-Versorgungseinrichtung, bei dem der Beschichtungsmittel-Speicherbehälter zwischen einem Massepotential und einem Hochspannungspotential verfahrbar ist und über eine Andock-Schnittstelle vorübergehend mit dem Beschichtungsmittel-Dosierer verbunden wird,
Figur 3
ein weiteres alternatives Ausführungsbeispiel einer erfindungsgemäßen Beschichtungsmittel-Versorgungseinrichtung, bei der der Beschichtungsmittel-Speicherbehälter zusammen mit dem Beschichtungsmittel-Dosierer in einem gemeinsamen Zylinder integriert ist, wobei sich in dem gemeinsamen Zylinder eine Trennwand befindet,
Figur 4
eine Abwandlung des Ausführungsbeispiels gemäß Figur 3 ohne eine Trennwand in dem gemeinsamen Zylinder,
Figuren 5A-5J
eine Lackieranlage mit einem Farbwechsler, einem Beschichtungsmittel-Speicherbehälter, einer Isolierstrecke, einem Beschichtungsmittel-Dosierer und einem Rotationszerstäuber, wobei verschiedene Phasen während eines Farbwechsels dargestellt sind,
Figur 6
ein Flussdiagramm zur Verdeutlichung der in den Figuren 5A-5J dargestellten verschiedenen Phasen während eines Farbwechsels,
Figur 7
ein Flussdiagramm eines alternativen Betriebsverfahrens mit einer Direktaufladung von Wasserlack, jedoch ohne "Reflow" aus dem Beschichtungsmittel-Speicherbehälter,
Figur 8
ein Flussdiagramm eines alternativen Betriebsverfahrens mit einer Außenaufladung von Wasserlack und mit "Reflow" aus dem Beschichtungsmittel-Speicherbehälter,
Figur 9
ein Flussdiagramm eines alternativen Betriebsverfahrens mit einer Außenaufladung von Wasserlack, jedoch ohne "Reflow" aus dem Beschichtungsmittel-Speicherbehälter,
Figur 10
eine vereinfachte Darstellung eines Lackierroboters mit einem beweglich geführten Beschichtungsmittel-Dosierer und einem ortfest montierten Beschichtungsmittel-Speicherbehälter,
Figur 11
eine vereinfachte Darstellung eines Lackierroboters zur Applikation eines hochohmigen 1-Komponenten-Lösemittellacks mit Direktaufladung,
Figur 12
eine vereinfachte Darstellung eines Lackierroboters zur Applikation eines hochohmigen 2-Komponenten-Lösemittellacks mit Direktaufladung,
Figur 13
eine vereinfachte Darstellung der Isolierstrecke mit einem Abstreifkolben, der durch eine Kolbenstange zwangsgeführt wird,
Figur 14
ein alternatives Ausführungsbeispiel einer Isolierstrecke, bei der der Abstreifkolben nur in eine Richtung von der Kolbenstange geschoben und in die andere Richtung durch Druckluftbeauschlagung bewegt wird,
Figur 15
ein weiteres Ausführungsbeispiel einer Isolierstrecke, bei der der Abstreifkolben in beide Richtungen durch Druckluftbeaufschlagung bewegt wird, sowie
Figuren 16A-B
ein weiteres Ausführungsbeispiel einer erfindungsgemäßen Lackieranlage mit einer Ringleitung, wobei ein Abschnitt der Ringleitung einen Beschichtungsmittel-Speicherbehälter bildet.


[0038] Im Folgenden wird zunächst das in Figur 1 dargestellte Ausführungsbeispiel einer erfindungsgemäßen Beschichtungsmittel-Versorgungseinrichtung beschrieben, das beispielsweise auf einem Roboterarm eines Lackierroboters angeordnet sein kann, wie es in der bereits eingangs erwähnten Druckschrift WO 2004/037436 A1 für eine herkömmliche Beschichtungsmittel-Versorgungseinrichtung beschrieben ist, so dass der Inhalt dieser Druckschrift hinsichtlich des Aufbaus und der Funktionsweise des Lackierroboters und der sonstigen Komponenten der vorliegenden Beschreibung in vollem Umfang zuzurechnen ist.

[0039] Die dargestellte Beschichtungsmittel-Versorgungseinrichtung weist einen Beschichtungsmittel-Dosierer 1 auf, wobei es sich in diesem Ausführungsbeispiel um einen Kolbendosierer handelt. Der Beschichtungsmittel-Dosierer 1 weist einen Zylinder 2 und einen in dem Zylinder 2 in Pfeilrichtung verschiebbaren Dosierkolben 3 auf, wobei der Antrieb des Dosierkolbens 3 mechanisch durch eine Schubstange 4 erfolgt, die beispielsweise elektromotorisch, pneumatisch oder hydraulisch angetrieben werden kann. In dem Zylinder 2 des Beschichtungsmittel-Dosierers 1 befindet sich an der Vorderseite des Dosierkolbens 3 ein Dosiervolumen 5, das durch eine Verschiebung des Dosierkolbens 3 in dem Zylinder 2 einstellbar ist. Das Dosiervolumen 5 mit dem darin befindlichen Beschichtungsmittel (z.B. Wasserlack) befindet sich im Betrieb auf einem Hochspannungspotential, wie durch das dargestellte Hochspannungszeichen symbolisiert wird. Das von der Beschichtungsmittel-Versorgungseinrichtung abgegebene Beschichtungsmittel liegt deshalb ebenfalls auf einem Hochspannungspotential, was bei einer elektrostatischen Lackierung zu einem guten Auftragswirkungsgrad beiträgt. Die dem Dosiervolumen 5 gegenüberliegende Seite des Zylinders 2 und der Schubstange 4 liegt dagegen auf einem Massepotential, wie durch das ebenfalls dargestellte Erdungszeichen symbolisiert ist. Zur elektrischen Potentialtrennung bestehen der Zylinder 2 und die Schubstange 4 deshalb aus einem elektrisch isolierenden Material. Das Material des Zylinders 2 und der Schubstange 4 muss jedoch andererseits hinreichend starr sein, um eine ausreichende Dosiergenauigkeit zu erreichen. Die zur Potentialtrennung erforderlichen Materialien und konstruktiven Einzelheiten sind beispielsweise in der Druckschrift DE 102 33 633 A1 beschrieben, so dass der Inhalt dieser Druckschrift hinsichtlich des Aufbaus und der Funktionsweise des Beschichtungsmittel-Dosierers 1 der vorliegenden Beschreibung in vollem Umfang zuzurechnen ist.

[0040] Weiterhin weist die erfindungsgemäße Beschichtungsmittel-Versorgungseinrichtung in diesem Ausführungsbeispiel einen Beschichtungsmittel-Speicherbehälter 6 auf, der im Wesentlichen aus einem Zylinder 7 und einem in dem Zylinder 7 verschiebbaren Speicherkolben 8 besteht, wobei der Speicherkolben 8 über eine Druckluftleitung 9 pneumatisch angetrieben wird und somit ein einstellbares Speichervolumen 10 in dem Zylinder 7 einschließt. Der gesamte Beschichtungsmittel-Speicherbehälter 6 befindet sich hierbei auf einem Massepotential, wie durch das Erdungszeichen symbolisch dargestellt wird.

[0041] Die Versorgung des Beschichtungsmittel-Speicherbehälters 6 erfolgt durch eine Beschichtungsmittel-Zuleitung 11, die in das Speichervolumen 10 mündet und beispielsweise von einem herkömmlichen Farbwechsler oder einer Ringleitung ausgeht.

[0042] Bei der Befüllung des Beschichtungsmittel-Speicherbehälters 6 ist es wünschenswert, dass aus der Ringleitung ein konstant niedriger Volumenstrom entnommen wird. Dies ist sinnvoll, weil eine Entnahme mit einem plötzlich ansteigenden Volumenstrom zu einem Druckabfall in der Ringleitung führen würde, wodurch druckempfindliche Entnahmestationen (z.B. Handspritzer) an der Ringleitung gestört würden. Zur Vermeidung derartiger Druckeinbrüche in der Ringleitung kann der Speicherkolben 8 über die Druckluftleitung 9 mit einem Gegendruck beaufschlagt werden, der so eingestellt wird, dass die Entnahme aus der Ringleitung mit dem gewünschten Volumenstrom erfolgt.

[0043] Hierbei ist zu berücksichtigen, dass der entnommene Volumenstrom auch von der Viskosität des entnommenen Beschichtungsmittels abhängt. So führt eine geringe Viskosität des Beschichtungsmittels zu einem relativ großen Volumenstrom aus der Ringleitung. Eine hohe Viskosität des Beschichtungsmittels führt dagegen zu einem entsprechend geringen Volumenstrom bei der Entnahme. Bei der Einstellung des pneumatischen Gegendrucks auf den Speicherkolben 8 wird deshalb vorzugsweise die Viskosität des Beschichtungsmittels berücksichtigt, so dass die Befüllung des Beschichtungsmittel-Speicherbehälters 6 unabhängig von der Viskosität des Beschichtungsmittels stets mit einem konstant niedrigen Volumenstrom erfolgt. Die Befüllung des Beschichtungsmittel-Speicherbehälters 6 erfolgt hierbei vorzugsweise so lange, bis der Speicherkolben 8 an einen vorgegeben Anschlag stößt, wodurch die Einhaltung einer definierten Füllmenge sichergestellt wird.

[0044] Alternativ zu der vorstehend beschriebenen Gegendruckregelung besteht die Möglichkeit, dass der pneumatische Gegendruck auf den Speicherkolben 8 zu Beginn einer Entnahme auf einen vorgegebenen Wert eingestellt und anschließend nicht geregelt wird. Bei der anschließenden Befüllung des Beschichtungs-Speicherbehälters 6 wird der Gegendruck dann nicht geregelt, sondern nimmt mit zunehmender Befüllung des Beschichtungsmittel-Speicherbehälters 6 entsprechend zu, so dass der Gegendruck ein Maß für den Füllungsgrad des Beschichtungsmittel-Speicherbehälters 6 ist. Während der Befüllung des Beschichtungsmittel-Speicherbehälters 6 wird deshalb laufend der Gegendruck gemessen. Nach Erreichen eines vorgegebenen Sollwerts für den Gegendruck wird dann die Befüllung des Beschichtungsmittel-Speicherbehälters 6 beendet. Bei einem definierten anfänglichen Volumenstrom zu Beginn der Befüllung wird der Beschichtungsmittel-Speicherbehälter 6 auf diese Weise mit einer definierten Menge des Beschichtungsmittels befüllt.

[0045] Aus dem Speichervolumen 10 des Beschichtungsmittel-Speicherbehälters 6 zweigt weiterhin ein Isolationsschlauch 12 ab, der in das Dosiervolumen 5 des Beschichtungsmittel-Dosierers 1 mündet, wobei der Isolationsschlauch 12 im entleerten und gereinigten Zustand den Beschichtungsmittel-Speicherbehälter 6 gegenüber dem Beschichtungsmittel-Dosierer 1 elektrisch isoliert, was an sich aus der bereits eingangs erwähnten Druckschrift WO 2004/037436 A1 bekannt ist, so dass deren Inhalt hinsichtlich des Aufbaus und der Funktionsweise des Isolationsschlauchs 12 der vorliegenden Beschreibung in vollem Umfang zuzurechnen ist.

[0046] Der Isolationsschlauch 12 weist jedoch einen größeren Leitungsquerschnitt auf als die Beschichtungszuleitung 11, damit der Beschichtungsmittel-Dosierer 1 möglichst schnell aus dem Beschichtungsmittel-Speicherbehälter 6 befüllt werden kann, wie noch detailliert beschrieben wird. Der geringere Leitungsquerschnitt der Beschichtungsmittelzuleitung 11 ist dagegen unschädlich, da die Befüllung des Beschichtungsmittel-Speicherbehälters 6 während des Lackierens erfolgt, so dass für die Befüllung des Beschichtungsmittel-Speicherbehälters 6 genügend Zeit zur Verfügung steht. Vorteilhaft an dem geringeren Leitungsquerschnitt der Beschichtungsmittelzuleitung 11 sind dagegen die geringeren Kosten, da kleinere Leitungen verwendet werden können.

[0047] Zu diesem Ausführungsbeispiel und zu den folgenden Ausführungsbeispielen ist ferner zu erwähnen, dass vor und hinter dem Beschichtungsmittel-Speicherbehälter 6 und dem Beschichtungsmittel-Dosierer 1 weitere Bauelemente angeordnet sein können, wie beispielsweise steuerbare Ventile, die jedoch in der Zeichnung zur Vereinfachung nicht dargestellt sind.

[0048] Die Figuren 2A und 2B zeigen ein alternatives Ausführungsbeispiel einer erfindungsgemäßen Beschichtungsmittel-Versorgungseinrichtung, das weitgehend mit dem vorstehend beschriebenen und in Figur 1 dargestellten Ausführungsbeispiel übereinstimmt, so dass zur Vermeidung von Wiederholungen auf die vorstehende Beschreibung zu Figur 1 verwiesen wird.

[0049] Eine Besonderheit dieses Ausführungsbeispiels besteht darin, dass der Beschichtungsmittel-Speicherbehälter 6 hierbei nicht permanent über den Isolationsschlauch 12 mit dem Beschichtungsmittel-Dosierer 1 verbunden ist. Stattdessen ist der Beschichtungsmittel-Speicherbehälter 6 zwischen zwei Stellungen verfahrbar, die in den Figuren 2A und 2B dargestellt sind.

[0050] In der in Figur 2A gezeigten Stellung ist der Beschichtungsmittel-Speicherbehälter 6 mit der Beschichtungsmittel-Zuleitung 11 verbunden, aber von dem Beschichtungsmittel-Dosierer 1 getrennt und liegt dann auf einem elektrischen Massepotential. In dieser Stellung erfolgt die Befüllung des Beschichtungsmittel-Speicherbehälters 6 über die Beschichtungsmittelzuleitung 11.

[0051] In der in Figur 2B gezeigten Stellung ist der Beschichtungsmittel-Speicherbehälter 6 dagegen über eine Andock-Schnittstelle 13 mit dem Beschichtungsmittel-Dosierer 1 verbunden, aber von der Beschichtungsmittel-Zuleitung 11 getrennt und liegt dann auf demselben Hochspannungspotential wie der Beschichtungsmittel-Dosierer 1. In dieser Stellung erfolgt die Umfüllung des Beschichtungsmittels aus dem Beschichtungsmittel-Speicherbehälter 6 in den Beschichtungsmittel-Dosierer 1.

[0052] Für einen Farbwechsel wird hierbei also zunächst der Beschichtungsmittel-Speicherbehälter 6 über die Beschichtungsmittel-Zuleitung 11 mit dem neuen Beschichtungsmittel befüllt, wobei der Beschichtungsmittel-Speicherbehälter 6 von der Andock-Schnittstelle 13 abgetrennt ist, wie in Figur 2A dargestellt ist. Während dieser Befüllung des Beschichtungsmittel-Speicherbehälters 6 kann der Beschichtungsmittel-Dosierer 1 weiterhin das alte Beschichtungsmittel dosieren, so dass für die Befüllen des Beschichtungsmittel-Speicherbehälters 6 keine Unterbrechung des Lackiervorgangs erforderlich ist und deshalb genügend Zeit für die Befüllung zur Verfügung steht.

[0053] Nach der Befüllung des Beschichtungsmittel-Speicherbehälters 6 wird der Beschichtungsmittel-Speicherbehälter 6 dann nach weiteren Zwischenschritten mit der Andockschnittstelle 13 verbunden, was in Figur 2B dargestellt ist. Nach der Herstellung der Verbindung mit der Andock-Schnittstelle 13 kann dann das in dem Speichervolumen 7 enthaltene neue Beschichtungsmittel in das Dosiervolumen 5 des Beschichtungsmittel-Dosierers 1 überführt werden.

[0054] Figur 3 zeigt ein weiteres Ausführungsbeispiel einer erfindungsgemäßen Beschichtungsmittel-Versorgungseinrichtung, das teilweise mit dem vorstehend beschriebenen und in Figur 1 gezeigten Ausführungsbeispiel übereinstimmt, so dass zur Vermeidung von Wiederholungen teilweise auf die vorstehende Beschreibung zu Figur 1 verwiesen wird.

[0055] Eine Besonderheit dieses Ausführungsbeispiels besteht darin, dass der Beschichtungsmittel-Speicherbehälter 6 in den Zylinder 2 des Beschichtungsmittel-Dosierers 1 auf der Rückseite des Dosierkolbens 3 integriert ist. Hierzu ist in dem Zylinder 2 eine Trennwand 14 angeordnet, die den Zylinder 2 in zwei Teilzylinder trennt, wobei in dem in der Zeichnung rechts befindlichen Teilzylinder der Speicherkolben 8 druckluftbetätigt verschiebbar ist.

[0056] Figur 4 zeigt eine Abwandlung des Ausführungsbeispiels gemäß Figur 3, so dass zur Vermeidung von Wiederholungen weitgehend auf die vorstehende Beschreibung zu Figur 3 verwiesen wird.

[0057] Eine Besonderheit dieses Ausführungsbeispiels besteht darin, dass auf die Trennwand 14 zur Abtrennung der beiden Teilzylinder verzichtet wird. Die Druckluft zum Antrieb des Speicherkolbens 8 wirkt hierbei also auch auf die Rückseite des Dosierkolbens 3, was einen mechanisch hinreichend starren Antrieb des Dosierkolbens 3 voraussetzt.

[0058] Die Figuren 5A bis 5J zeigen eine Lackieranlage mit einer erfindungsgemäßen Beschichtungsmittel-Versorgungseinrichtung in verschiedenen Phasen eines Farbwechsels, wobei der Farbwechselablauf in dem Flussdiagramm in Figur 6 dargestellt ist und später noch detailliert beschrieben wird.

[0059] Die in den Figuren 5A bis 5J dargestellte Lackieranlage weist den Beschichtungsmittel-Speicherbehälter 6 und den Beschichtungsmittel-Dosierer 1 auf, wobei deren Aufbau und Funktionsweise vorstehend unter Bezugnahme auf Figur 1 beschrieben wurde.

[0060] Eingangsseitig ist der Beschichtungsmittel-Speicherbehälter 6 über eine Ventilanordnung 15 mit einem Farbwechsler 16 verbunden, wobei der Farbwechsler 16 herkömmlich ausgeführt sein kann, wie es beispielsweise in der Druckschrift DE 103 35 358 A1 beschrieben ist, so dass der Inhalt dieser Druckschrift der vorliegenden Beschreibung in vollem Umfang zuzurechnen ist.

[0061] Ausgangsseitig ist der Beschichtungsmittel-Dosierer 1 über eine weitere Ventilanordnung 17 mit einem Rotationszerstäuber 18 verbunden, wobei von dem Rotationszerstäuber 18 eine Rückführleitung 19 abgeht, über die restliches Beschichtungsmittel ausgespült werden kann.

[0062] Eine weitere Rückführleitung 20 geht von der Ventilanordnung 15 ab, wobei über die Rückführleitung 20 ebenfalls verbliebenes Beschichtungsmittel abgeführt werden kann.

[0063] Im Folgenden werden nun die in den Figuren 5A bis 5J dargestellten einzelnen Phasen während eines Farbwechsels beschrieben, wobei die fluidführenden Leitungen in den Zeichnungen jeweils fett dargestellt sind.

[0064] Figur 5A zeigt zunächst den normalen Lackierbetrieb, wenn der Beschichtungsmittel-Dosierer 1 noch mit dem alten Beschichtungsmittel gefüllt ist und dieses zu dem Rotationszerstäuber 18 dosiert. Der Rotationszerstäuber 18 und der Beschichtungsmittel-Dosierer 1 liegen dann auf einem Hochspannungspotential, um eine elektrostatische Bauteilbeschichtung zu ermöglichen. Zur elektrischen Isolierung des Beschichtungsmittel-Dosierers 1 gegenüber dem Beschichtungsmittel-Speicherbehälter 6 ist der Isolationsschlauch dann gereinigt und entleert, was eine Potentialtrennung bewirkt. Der Beschichtungsmittel-Speicherbehälter 6 ist dagegen zunächst noch leer, wobei über die Druckluftleitung 9 nur ein relativ geringer Druck von 2 bar an den Speicherkolben 8 angelegt wird. Über den Farbwechsler 16 und die Ventilanordnung 15 wird der Beschichtungsmittel-Speicherbehälter 6 deshalb bereits während des Lackiervorgangs mit dem neuen Beschichtungsmittel gefüllt.

[0065] Nach dem Beenden des Lackierens mit der alten Farbe wird dann die Hochspannung an dem Rotationszerstäuber 18 und dem Beschichtungsmittel-Dosierer 1 abgeschaltet und die in dem Beschichtungsmittel-Dosierer 1 verbliebene alte Farbe wird über die Rückführleitung 19 ausgedrückt, was in Figur 5B gezeigt ist.

[0066] Nach dem Ausdrücken der in dem Beschichtungsmittel-Dosierer 1 verbliebenen alten Farbe wird dann der Beschichtungsmittel-Dosierer 1 zusammen mit dem Rotationszerstäuber 18 und dem Isolationsschlauch 12 gespült, was in Figur 5C gezeigt ist.

[0067] In der nächsten Phase gemäß Figur 5D öffnet die Ventilanordnung 15 dann die Verbindung zwischen dem Beschichtungsmittel-Speicherbehälter 6 und dem Beschichtungsmittel-Dosierer 1, so dass der Beschichtungsmittel-Dosierer 1 und die Hauptleitung mit der neuen Farbe angedrückt werden.

[0068] Anschließend wird dann in der in Figur 5E gezeigten Betriebsphase der Beschichtungsmittel-Dosierer 1 aus dem Beschichtungsmittel-Speicherbehälter 6 über den Isolationsschlauch 12 und die Ventilanordnung 17 mit der neuen Farbe befüllt.

[0069] Nach der Befüllung des Beschichtungsmittel-Dosierers 1 wird dann die noch in dem Isolationsschlauch 12 befindliche Farbe in den Beschichtungsmittel-Dosierer 1 aufgenommen, was in Figur 5F dargestellt ist. Diese Entleerung des Isolationsschlauchs 12 ist wichtig, damit der Isolationsschlauch 12 anschließend während des Lackierbetriebs den dann auf Hochspannungspotential liegenden Beschichtungsmittel-Dosierer 1 elektrisch gegenüber dem Beschichtungsmittel-Speicherbehälter 6 isolieren kann.

[0070] Nach dieser Entleerung des Isolationsschlauchs 12 wird dann in der in Figur 5G dargestellte Phase die Hochspannung für den Rotationszerstäuber 18 und den Beschichtungsmittel-Dosierer 1 eingeschaltet, wobei der Isolationsschlauch 12 dann den Beschichtungsmittel-Dosierer 12 gegenüber dem Beschichtungsmittel-Speicherbehälter 6 elektrisch isoliert.

[0071] In der in Figur 5H dargestellten nächsten Betriebsphase wird dann die Hauptnadel des Rotationszerstäubers 18 mit der neuen Farbe angedrückt und der Lackiervorgang beginnt, was in Figur 5H dargestellt ist.

[0072] In der in Figur 5I dargestellten Betriebsphase wird dann die in dem Beschichtungsmittel-Speicherbehälter 6 verbliebene neue Farbe über die Ventilanordnung 15 und den Farbwechsler 16 wieder in die Beschichtungsmittelzuleitung 11 zurück gedrückt, was auch als "Reflow" bezeichnet wird.

[0073] In der letzten Betriebsphase eines Farbwechsels gemäß Figur 5J wird dann der Beschichtungsmittel-Speicherbehälter 6 zusammen mit der Ventilanordnung 15 und dem Farbwechsler 16 gespült, um anschließend ohne Verunreinigungen durch Farbreste eine Befüllung mit einer neuen Farbe zu ermöglichen.

[0074] Figur 7 zeigt ein alternatives Ausführungsbeispiel eines erfindungsgemäßen Betriebsverfahrens, das weitgehend mit dem vorstehend beschriebenen und in Figur 6 dargestellten Ausführungsbeispiel übereinstimmt, so dass zur Vermeidung von Wiederholungen auf die vorstehende Beschreibung Bezug genommen wird.

[0075] Eine Besonderheit dieses Ausführungsbeispiels besteht darin, dass der sogenannte "Reflow" gemäß Figur 5I entfällt. Es wird also aus dem Beschichtungsmittel-Speicherbehälter 6 kein Beschichtungsmittel zurück in die Beschichtungsmittelzuleitung 11 gedrückt. Dies wird dadurch ermöglicht, dass bei der Befüllung des Beschichtungsmittel-Speicherbehälters 6 gemäß Figur 5A exakt die benötigte Farbmenge eingefüllt wird, was durch einen Sensor überprüft werden kann.

[0076] Dieses Ausführungsbeispiel eignet sich insbesondere für die Lackierung mit Wasserlack und Direktaufladung.

[0077] Figur 8 zeigt ein alternatives Ausführungsbeispiel eines erfindungsgemäßen Betriebsverfahrens, das weitgehend mit dem vorstehend beschriebenen und in Figur 6 dargestellten Ausführungsbeispiel übereinstimmt, so dass zur Vermeidung von Wiederholungen auf die vorstehende Beschreibung Bezug genommen wird.

[0078] Hierbei erfolgt die Lackierung mit Wasserlack und Außenaufladung und "Reflow". Die Außenaufladung bietet gegenüber der Direktaufladung des Beschichtungsmittels den Vorteil, dass auf die Belüftung der Isolierstrecke 12 (vgl. Figur 5G) verzichtet werden kann, da das Isolationsvermögen der Isolierstrecke 12 nur bei einer Direktaufladung des Beschichtungsmittels erforderlich ist.

[0079] Figur 9 zeigt ein alternatives Ausführungsbeispiel eines erfindungsgemäßen Betriebsverfahrens, das weitgehend mit dem vorstehend beschriebenen und in Figur 6 dargestellten Ausführungsbeispiel übereinstimmt, so dass zur Vermeidung von Wiederholungen auf die vorstehende Beschreibung Bezug genommen wird.

[0080] Hierbei erfolgt eine Lackierung von Wasserlack mit Außenaufladung und ohne "Reflow", so dass die in den Figuren 5G und 5I dargestellten Betriebsphasen entfallen.

[0081] Figur 10 zeigt eine vereinfachte Darstellung eines Lackierroboters 21 mit einer erfindungsgemäßen Beschichtungsmittel-Versorgungseinrichtung, die weitgehend mit den vorstehend beschriebenen Beschichtungsmittel-Versorgungseinrichtungen übereinstimmt, so dass zur Vermeidung von Wiederholungen auf die vorstehende Beschreibung verwiesen wird.

[0082] Der Beschichtungsmittel-Dosierer 1 ist hierbei als Kolbendosierer ausgeführt und in einen Zerstäuber 22 integriert, der an einer Handachse 23 montiert ist und von einem hochbeweglichen Roboterarm 24 geführt wird.

[0083] Der Beschichtungsmittel-Speicherbehälter 6 ist dagegen außerhalb des Lackierroboters 21 ortsfest angeordnet und kann über die Andock-Schnittstelle 13 mit dem Beschichtungsmittel-Dosierer 1 verbunden werden. Hierzu bewegt der Lackierroboter 21 den Zerstäuber 22 so, dass die Andock-Schnittstelle 13 an dem Beschichtungsmittel-Speicherbehälter 6 andockt, woraufhin der Beschichtungsmittel-Dosierer 1 aus dem Beschichtungsmittel-Speicherbehälter 6 befüllt werden kann.

[0084] Weiterhin zeigt die Zeichnung eine alternative Variante, bei der der gestrichelt gezeichnete Beschichtungsmittel-Dosierer 1 in den Roboterarm 24 integriert ist.

[0085] Der in Figur 11 gezeigte Lackierroboter 21 stimmt teilweise mit dem vorstehend beschriebenen und in Figur 10 gezeigten Lackierroboter 21 überein, so dass zur Vermeidung von Wiederholungen auf die vorstehende Beschreibung verwiesen wird, wobei für entsprechende Bauteile dieselben Bezugszeichen verwendet werden.

[0086] Hierbei sind der Beschichtungsmittel-Dosierer 1, der Beschichtungsmittel-Speicherbehälter 6 und ein Farbwechsler 25 in den Roboterarm 24 integriert, wobei der Farbwechsler 25 ohne eine Isolierstrecke direkt vorne an den Beschichtungsmittel-Speicherbehälter 6 und den Beschichtungsmittel-Dosierer 1 angebaut ist.

[0087] Der Lackierroboter 21 dient in diesem Ausführungsbeispiel zur Applikation eines hochohmigen 1-Komponenten-Lösemittellacks mit einer elektrischen Direktaufladung des Lacks oder zum Lackieren ohne Hochspannung (reine Hochrotationszerstäubung).

[0088] Der in Figur 12 dargestellte Lackierroboter 21 stimmt weitgehend mit dem vorstehend beschriebenen und in Figur 11 gezeigten Lackierroboter 21 überein, so dass zur Vermeidung von Wiederholungen auf die vorstehende Beschreibung verwiesen wird, wobei für entsprechende Bauteile dieselben Bezugszeichen verwendet werden.

[0089] Eine Besonderheit des Lackierroboters 21 besteht darin, dass 2-Komponenten-Lösemittellack mit elektrischer Direktaufladung appliziert wird, wobei die eine Lackkomponente von dem Beschichtungsmittel-Dosierer 1 dosiert wird, während die andere Lackkomponente von einem Kolbendosierer 26 über eine Schlauchleitung 27 dosiert wird. Der zusätzliche Kolbendosierer 26 ist hierbei außerhalb des Lackierroboters 21 ortsfest angeordnet.

[0090] Figur 13 zeigt eine vereinfachte Darstellung einer Isolierstrecke 28, die anstelle des in den Figuren 5A-5J gezeigten Isolationsschlauchs 12 eingesetzt werden kann.

[0091] Die Isolierstrecke 28 besteht im Wesentlichen aus einem elektrisch nicht leitfähigen Rohr 29, das zwischen den beiden Ventilanordnungen 15 und 17 verläuft.

[0092] In dem Rohr 29 ist ein Abstreifkolben 30 linear verschiebbar, wobei der Antrieb des Abstreifkolbens 30 durch eine Kolbenstange 31 erfolgt, an deren Ende ein Antriebskolben 32 befestigt ist. Der Antriebskolben 32 ist in einem Druckzylinder 33 verschiebbar geführt, wobei in den Druckzylinder 33 beiderseits des Antriebskolbens 32 zwei Druckluftanschlüsse 34, 35 münden, über die der Antriebskolben 32 einseitig mit Druckluft beaufschlagt werden kann, um den Antriebskolben 32 mit der Kolbenstange 31 und dem Abstreifkolben 30 zu verschieben.

[0093] Zum einen dient die Verschiebung des Abstreifkolben 3 dazu, Beschichtungsmittelreste an der Innenwand des Rohrs 29 abzustreifen, um das gewünschte elektrische Isolationsvermögen der Isolierstrecke zu erreichen.

[0094] Zum anderen verhindert das Abstreifen der Farbreste von der Innenwand des Rohrs 29 bei einem Farbwechsel Verunreinigungen durch Restfarbe.

[0095] Das Beschichtungsmittel wird hierbei im geerdeten Zustand über einen Einlass A und einen Auslass B übergeleitet, wobei sich der Abstreifkolben 30 in seiner Ruheposition befindet, die in Figur 13 dargestellt ist.

[0096] Nach der Befüllung des Beschichtungsmittel-Dosierers 1 aus dem Beschichtungsmittel-Speicherbehälter 6 wird das in dem Rohr 29 verbliebene Beschichtungsmittel dann durch den vorfahrenden Abstreifkolben 30 aus dem Rohr 29 hinausgeschoben.

[0097] Falls die Kolbenstange 31 aus einem elektrisch leitfähigen Material besteht, wird die Kolbenstange 31 dann vor dem Einschalten der elektrischen Spannung für die Beschichtungsmittelaufladung wieder aus dem Rohr 29 herausgezogen.

[0098] Falls die Kolbenstange 31 dagegen aus einem elektrisch isolierenden Material besteht, bleibt die Kolbenstange 31 bei eingeschalteter Spannung in dem vorgeschobenen Zustand und wird erst nach dem Ausschalten der Spannung wird zurück gezogen. Dies ist vorteilhaft, weil das Zurückziehen des Abstreifkolbens 30 zu Schlieren an der Innenwand des Rohrs 29 führen kann, wodurch das Isolationsvermögen beeinträchtigt wird.

[0099] Figur 14 zeigt ein alternatives Ausführungsbeispiel einer Isolierstrecke, das weitgehend mit dem vorstehend beschriebenen und in Figur 13 dargestellten Ausführungsbeispiel übereinstimmt, so dass zur Vermeidung von Wiederholungen auf die vorstehende Beschreibung verwiesen wird, wobei für entsprechende Bauteile dieselben Bezugszeichen verwendet werden.

[0100] Eine Besonderheit dieses Ausführungsbeispiels besteht darin, dass der Abstreifkolben 30 nicht fest mit der Kolbenstange 31 verbunden ist, so dass die Kolbenstange 31 den Abstreifkolben 30 nur in eine Richtung schieben kann, d.h. in der Zeichnung nach links.

[0101] Die Bewegung des Abstreifkolbens 30 in die andere Richtung (d.h. in der Zeichnung nach rechts) erfolgt dagegen durch eine einseitige Druckluftbeaufschlagung des Abstreifkolbens 30 über einen weiteren Druckluftanschluss 36, der in das Rohr 29 mündet.

[0102] Figur 15 zeigt ein alternatives Ausführungsbeispiel einer Isolierstrecke, das weitgehend mit dem vorstehend beschriebenen und in Figur 14 dargestellten Ausführungsbeispiel übereinstimmt, so dass zur Vermeidung von Wiederholungen auf die vorstehende Beschreibung verwiesen wird, wobei für entsprechende Bauteile dieselben Bezugszeichen verwendet werden.

[0103] Eine Besonderheit dieses Ausführungsbeispiels besteht darin, dass der Abstreifkolben 30 in beiden Richtungen pneumatisch angetrieben wird, wozu ein zusätzlicher Druckluftanschluss 37 in das Rohr mündet, so dass der Antriebskolben 30 beidseitig mit Druckluft beaufschlagt werden kann. Dies bietet den Vorteil, dass auf die Kolbenstange 31 zum Antrieb des Abstreifkolbens 30 verzichtet werden kann.

[0104] Die Figuren 16A und 16B zeigen eine weitere Variante der Erfindung, die in einer Lackieranlage mit einem Ringleitungssystem eingesetzt werden kann, wie es beispielsweise aus Pavel Svejda: "Prozesse und Applikationsverfahren" (Vincentz Verlag), Seite 106 ff. bekannt ist, so dass im Folgenden auf eine detaillierte Beschreibung von Ringleitungssystemen verzichtet werden kann.

[0105] In einer Ringleitung 38 sind hierbei in Strömungsrichtung hintereinander zwei steuerbare Absperrventile 39, 40 angeordnet, die in geschlossenem Zustand einen Abschnitt der Ringleitung 38 zwischen den beiden Absperrventilen 39, 40 von dem Rest der Ringleitung 38 abtrennen, wobei der isolierte Abschnitt der Ringleitung 38 zwischen den beiden Absperrventilen 39, 40 einen Beschichtungsmittel-Speicherbehälter in dem erfindungsgemäßen Sinne bildet, wie noch detailliert beschrieben wird.

[0106] Zwischen den beiden Absperrventilen 39, 40 zweigt von der Ringleitung 38 eine Entnahmestelle 41 ab, über die Beschichtungsmittel aus der Ringleitung 38 entnommen werden kann, wobei die Entnahmestelle 41 ein automatisch arbeitendes Andockventil 42 aufweist.

[0107] An die Entnahmestelle 41 kann beispielsweise eine Lackiermaschine 43 andocken, wobei die Lackiermaschine 43 hier nur schematisch dargestellt ist und einen Beschichtungsmittel-Dosierer 44 enthält, der ebenfalls nur schematisch dargestellt ist, um das Prinzip der Erfindung in dieser Variante zu erläutern.

[0108] Das Andockventil 42 öffnet automatisch, wenn die Lackiermaschine 43 an die Entnahmestelle 41 angedockt ist, so dass die Lackiermaschine 43 das Beschichtungsmittel aus der Ringleitung 38 entnehmen kann.

[0109] Nach dem Abdocken der Lackiermaschine 43 von der Entnahmestelle 41 schließt das Andockventil 42 dagegen selbstständig, um zu verhindern, dass das Beschichtungsmittel aus der Ringleitung 38 entweicht.

[0110] Zwischen den beiden Absperrventilen 39, 34 wird die Ringleitung 38 durch einen sogenannten Squeeze-Out-Schlauch 45 gebildet, wobei der Aufbau und die Funktionsweise des Squeeze-Out-Schlauchs 45 beispielsweise in WO 03/086671 A1 und DE 10 2004 016 951 A1 beschrieben ist. Der Squeeze-Out-Schlauch 45 weist einen flexiblen Innenschlauch 46 auf, durch den das Beschichtungsmittel strömt. Der Innenschlauch 46 des Squeeze-Out-Schlauchs 45 ist außen von einem starren Außenmantel 47 umgeben, wobei sich zwischen dem Außenmantel 47 und dem flexiblen Innenschlauch 46 des Squeeze-Out-Schlauchs 45 ein abgedichteter Ringraum 48 befindet.

[0111] In den Ringraum 48 mündet über ein steuerbares Einlassventil 49 ein Einlass 50, über den Druckluft oder ein sonstiges Druckmedium in den Ringraum 48 zwischen dem Außenmantel 47 und dem flexiblen Innenschlauch 46 eingeleitet werden kann.

[0112] Weiterhin mündet aus dem Ringraum 48 über ein steuerbares Auslassventil 51 ein Auslass 52 aus, über den das Druckgas aus dem Ringraum 48 abgeleitet werden kann, um die Komprimierung des Innenschlauchs 46 zu beenden.

[0113] Im Folgenden wird nun der Betrieb der Variante gemäß den Figuren 16A und 16B beschrieben, wobei Figur 16A einen Zustand zeigt, in dem die Lackiermaschine 43 von der Entnahmestelle 41 abgedockt ist, während Figur 16B einen Zustand zeigt, in dem die Lackiermaschine 43 an der Entnahmestelle 41 angedockt ist und Beschichtungsmittel über die Entnahmestelle 41 in den Beschichtungsmittel-Dosierer 44 der Lackiermaschine 43 überführt wird.

[0114] In dem in Figur 16A gezeigten Zustand sind die beiden Absperrventile 39, 40 geöffnet, so dass das Beschichtungsmittel durch die Ringleitung 38 und den Squeeze-Out-Schlauch 45 strömen kann.

[0115] In diesem Zustand ist das Einlassventil 49 des Squeeze-Out-Schlauchs 45 geschlossen, während das Auslassventil 51 des Squeeze-Out-Schlauchs geöffnet ist. In dem Ringraum 48 zwischen dem Außenmantel 47 und dem flexiblen Innenschlauch 46 herrscht dann atmosphärischer Druck, so dass der Innenschlauch 46 nicht komprimiert wird und deshalb einen freien Strömungsquerschnitt aufweist.

[0116] Das Andockventil 42 der Entnahmestelle 41 ist in diesem Zustand ebenfalls geschlossen, da die Lackiermaschine 43 nicht an die Entnahmestelle 41 angedockt wird.

[0117] In einem nächsten Schritt werden dann die beiden Absperrventile 39, 40 der Ringleitung 38 geschlossen, so dass der Squeeze-Out-Schlauch 45 mit dem gefüllten Innenschlauch 46 von dem Rest der Ringleitung 38 isoliert wird.

[0118] Daraufhin kann dann die Lackiermaschine 43 an die Entnahmestelle 41 andocken, woraufhin das Andockventil 42 automatisch öffnet.

[0119] Nach dem Andocken der Lackiermaschine 43 an die Entnahmestelle 41 wird dann das Auslassventil 51 des Squeeze-Out-Schlauchs 45 geschlossen, während das Einlassventil 49 geöffnet wird. Dadurch wird Druckluft in den Ringraum 48 zwischen dem Außenmantel 47 und dem Innenschlauch 46 eingeleitet, wodurch der flexible Innenschlauch 46 in radialer Richtung zusammengepresst wird, wie in Figur 16B dargestellt ist. Die Zusammenpressung des Innenschlauchs 46 beginnt hierbei in der Zeichnung auf der rechten Seite und pflanzt sich in Form einer peristaltischen Bewegung in der Zeichnung nach links fort, so dass das in dem flexiblen Innenschlauch 46 befindliche Beschichtungsmittel über die Entnahmestelle 41 in den Beschichtungsmittel-Dosierer 44 gepumpt wird.

[0120] In dieser Variante der Erfindung bildet also der Squeeze-Out-Schlauch 45 den erfindungsgemäßen Beschichtungsmittel-Speicherbehälter.

[0121] Die Erfindung ist nicht auf die vorstehend beschriebenen bevorzugten Ausführungsbeispiele beschränkt. Vielmehr ist eine Vielzahl von Varianten und Abwandlungen möglich, die ebenfalls von dem Erfindungsgedanken Gebrauch machen und deshalb in den Schutzbereich fallen.

Bezugszeichenliste:



[0122] 
1
Beschichtungsmittel-Dosierer
2
Zylinder
3
Dosierkolben
4
Schubstange
5
Dosiervolumen
6
Beschichtungsmittel-Speicherbehälter
7
Zylinder
8
Speicherkolben
9
Druckluftleitung
10
Speichervolumen
11
Beschichtungsmittelzuleitung
12
Isolationsschlauch
13
Andock-Schnittstelle
14
Trennwand
15
Ventilanordnung
16
Farbwechsler
17
Ventilanordnung
18
Rotationszerstäuber
19
Rückführleitung
20
Rückführleitung
21
Lackierroboter
22
Zerstäuber
23
Handachse
24
Roboterarm
25
Farbwechsler
26
Kolbendosierer
27
Schlauchleitung
28
Isolierstrecke
29
Rohr
30
Abstreifkolben
31
Kolbenstange
32
Antriebskolben
33
Druckzylinder
34
Druckluftanschluss
35
Druckluftanschluss
36
Druckluftanschluss
37
Druckluftanschluss
38
Ringleitung
39
Absperrventil
40
Absperrventil
41
Entnahmestelle
42
Andockventil
43
Lackiermaschine
44
Beschichtungsmittel-Dosierer
45
Squeeze-Out-Schlauch
46
Innenschlauch
47
Außenmantel
48
Ringraum
49
Einlassventil
50
Einlass
51
Auslassventil
52
Auslass
A
Einlass
B
Auslass



Ansprüche

1. Beschichtungsmittel-Versorgungseinrichtung, insbesondere für eine Lackieranlage, mit

a) einem Beschichtungsmittel-Dosierer (1), der ein zu applizierendes Beschichtungsmittel zu einem Applikationsgerät dosiert, und

b) einem Beschichtungsmittel-Speicherbehälter (6) zur vorübergehenden Aufnahme des Beschichtungsmittels und zur Versorgung des Beschichtungsmittel-Dosierers (1) mit dem Beschichtungsmittel,

b1) wobei der Beschichtungsmittel-Speicherbehälter (6) stromaufwärts vor dem Beschichtungsmittel-Dosierer (1) angeordnet und ausgangsseitig mit dem Beschichtungsmittel-Dosierer (1) verbunden ist,

b2) wobei der Beschichtungsmittel-Speicherbehälter (6) ortsfest angeordnet ist,

dadurch gekennzeichnet,

c) dass der Beschichtungsmittel-Dosierer (1) über eine Andock-Schnittstelle (13) trennbar mit dem Beschichtungsmittel-Speicherbehälter (6) verbunden werden kann, und

d) dass der Beschichtungsmittel-Dosierer (1) in oder an dem Lackierroboter (21) oder in einem von dem Lackierroboter (21) geführten Zerstäuber (22) angeordnet ist und sich mit dem Lackierroboter (21) bewegt.


 
2. Beschichtungsmittel-Versorgungseinrichtung nach Anspruch 1, dadurch gekennzeichnet,

a) dass der Beschichtungsmittel-Dosierer (1) zumindest zeitweise auf einem Hochspannungspotential liegt, während der Beschichtungsmittel-Speicherbehälter (6) auf einem erdnahen Potential liegt, und/oder

b) dass der Beschichtungsmittel-Speicherbehälter (6) zwischen dem Hochspannungspotential und dem erdnahen Potential verfahrbar ist.


 
3. Beschichtungsmittel-Versorgungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,

a) dass der Beschichtungsmittel-Speicherbehälter (6) ein einstellbares Speichervolumen (10) aufweist, und/oder

b) dass das Speichervolumen (10) des Beschichtungsmittel-Speicherbehälters (6) durch einen Kolben (8) einstellbar ist, und/oder

c) dass der Kolben (8) des Beschichtungsmittel-Speicherbehälters (6) elektromotorisch, druckluftbetätigt oder hydraulisch angetrieben ist.


 
4. Beschichtungsmittel-Versorgungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Beschichtungsmittel-Dosierer (1) ein Kolbendosierer ist, der einen Zylinder (2) und einen in dem Zylinder (2) verschieblichen Dosierkolben (3) aufweist.
 
5. Beschichtungsmittel-Versorgungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,

a) dass der Beschichtungsmittel-Speicherbehälter (6) eine Zuleitung (11) mit einem kleineren Leitungsquerschnitt aufweist als der Beschichtungsmittel-Dosierer (1), und/oder

b) dass das Beschichtungsmittel ein Wasserlack oder ein lösemittelbasierter Lack ist.


 
6. Lackieranlage mit einer Beschichtungsmittel-Versorgungseinrichtung nach einem der vorhergehenden Ansprüche.
 
7. Betriebsverfahren für eine Beschichtungsmittel-Versorgungseinrichtung mit den folgenden Schritten:

a) Dosierung eines Beschichtungsmittels durch einen Beschichtungsmittel-Dosierer (1) zu einem Applikationsgerät (18),

b) Versorgung des Beschichtungsmittel-Dosierers (1) mit dem Beschichtungsmittel über einen Beschichtungsmittel-Speicherbehälter (6), der stromaufwärts vor dem Beschichtungsmittel-Dosierer (1) angeordnet und ausgangsseitig mit dem Beschichtungsmittel-Dosierer (1) verbunden ist,
gekennzeichnet durch folgende Schritte zum Befüllen des Beschichtungsmittel-Dosierers:

c) Befüllung des Beschichtungsmittel-Speicherbehälters über eine Beschichtungsmittel-Zuleitung mit dem Beschichtungsmittel, wobei der Beschichtungsmittel-Speicherbehälter fest mit der Beschichtungsmittel-Zuleitung verbunden ist,

d) Elektrische Erdung des Applikationsgeräts nach einem Applikationsvorgang,

e) Andocken des geerdeten Applikationsgeräts mit dem Beschichtungsmittel-Dosierer an dem Beschichtungsmittel-Speicherbehälter mittels eines Applikationsroboters, wobei der Applikationsroboter das Applikationsgerät hochbeweglich führt,

f) Umfüllen des Beschichtungsmittels aus dem Beschichtungsmittel-Speicherbehälter in den Beschichtungsmittel-Dosierer, wenn der Beschichtungsmittel-Dosierer an den Beschichtungsmittel-Speicherbehälter angedockt ist,

g) Abdocken des Applikationsgeräts mit dem Beschichtungsmittel-Dosierer von dem Beschichtungsmittel-Speicherbehälter nach dem Umfüllen,

h) Applikation des Beschichtungsmittels.


 
8. Betriebsverfahren nach Anspruch 7,
gekennzeichnet durch folgende Schritte:

a) Elektrische Isolation des Beschichtungsmittel-Speicherbehälters (6) gegenüber dem Beschichtungsmittel-Dosierer (1) durch eine Isolierstrecke (12, 28),

b) Anlegen eines Hochspannungspotentials an den Beschichtungsmittel-Dosierer (1),

c) Anlegen eines erdnahen Potentials an den Beschichtungsmittel-Speicherbehälter (6).


 
9. Betriebsverfahren nach einem der Ansprüche 7 bis 8, gekennzeichnet durch folgende Schritte bei einem Farbwechsel von einem alten Beschichtungsmittel zu einem neuen Beschichtungsmittel:

a) Befüllung des Beschichtungsmittel-Speicherbehälters (6) mit dem neuen Beschichtungsmittel aus einer Beschichtungsmittel-Zuleitung (11) während der Dosierung des alten Beschichtungsmittels durch den Beschichtungsmittel-Dosierer (1),

b) Beenden der Dosierung des alten Beschichtungsmittels durch den Beschichtungsmittel-Dosierer (1),

c) Befüllung des Beschichtungsmittel-Dosierers (1) mit dem neuen Beschichtungsmittel aus dem Beschichtungsmittel-Speicherbehälter (6),

d) Beginn der Dosierung des neuen Beschichtungsmittels durch den Beschichtungsmittel-Dosierer (1).


 
10. Betriebsverfahren nach Anspruch 9,
gekennzeichnet durch folgende Schritte:

- Entleerung des verbliebenen alten Beschichtungsmittels aus dem Beschichtungsmittel-Dosierer (1) nach dem Beenden der Dosierung des alten Beschichtungsmittels und vor der Befüllung des Beschichtungsmittel-Dosierers (1) mit dem neuen Beschichtungsmittel, und/oder

- Spülen des Beschichtungsmittel-Dosierers (1) mit einem Spülmittel nach der Entleerung des alten Beschichtungsmittels aus dem Beschichtungsmittel-Dosierer (1) und vor der Befüllung des Beschichtungsmittel-Dosierers (1) mit dem neuen Beschichtungsmittel, und/oder

- Rückführung des in dem Beschichtungsmittel-Speicherbehälters (6) nach der Befüllung des Beschichtungsmittel-Dosierers (1) verbliebenen restlichen neuen Beschichtungsmittels in die Beschichtungsmittel-Zuleitung (11), und/oder

- Spülen des Beschichtungsmittel-Speicherbehälters (6) mit einer Spülflüssigkeit nach der Rückführung des darin verbliebenen neuen Beschichtungsmittels in die Beschichtungsmittel-Zuleitung (11).


 
11. Betriebsverfahren nach einem der Ansprüche 7 bis 10, gekennzeichnet durch folgenden Schritt:

Anlegen eines Hochspannungspotenzials an den Beschichtungsmittel-Dosierer und das Applikationsgerät.


 
12. Betriebsverfahren nach einem der Ansprüche 7 bis 11, dadurch gekennzeichnet,

a) dass die Befüllung des Beschichtungsmittel-Speicherbehälters (6) mit einem kleineren Beschichtungsmittelstrom erfolgt als die Dosierung des Beschichtungsmittels durch den Beschichtungsmittel-Dosierer (1) und/oder als die Befüllung des Beschichtungsmittel-Dosierers (1), und/oder

b) dass der Beschichtungsmittel-Speicherbehälter (6) ein Speichervolumen (10) aufweist, das durch einen verschiebbaren Kolben (8) einstellbar ist, wobei der Kolben (8) pneumatisch mit einem Gegendruck beaufschlagt wird, der von der Viskosität des Beschichtungsmittels abhängig ist, und/oder

c) dass der Gegendruck so eingestellt wird, dass der Volumenstrom beim Befüllen des Beschichtungsmittel-Speicherbehälters (6) unabhängig von der Viskosität des Beschichtungsmittels ist.


 




Zeichnung





















































































Recherchenbericht









Recherchenbericht




Angeführte Verweise

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE



Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente