(19)
(11) EP 2 810 848 A2

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
10.12.2014  Patentblatt  2014/50

(21) Anmeldenummer: 14157745.2

(22) Anmeldetag:  05.03.2014
(51) Internationale Patentklassifikation (IPC): 
B61L 3/12(2006.01)
B61L 1/20(2006.01)
(84) Benannte Vertragsstaaten:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
Benannte Erstreckungsstaaten:
BA ME

(30) Priorität: 06.06.2013 DE 102013210567

(71) Anmelder: DB Netz AG
60329 Frankfurt (DE)

(72) Erfinder:
  • Sütterlin, Johannes
    45131 Essen (DE)
  • Hopbach, Jens
    42327 Wuppertal (DE)

(74) Vertreter: Zinken-Sommer, Rainer 
Deutsche Bahn AG Patentabteilung Völckerstrasse 5
80939 München
80939 München (DE)

   


(54) Verfahren und Vorrichtung zum Überprüfen von Gleismagneten der induktiven Sicherung bei spurgebundenem Verkehr


(57) Die Erfindung betrifft eine Vorrichtung sowie Verfahren zum Überprüfen von Gleismagneten der induktiven Sicherung bei spurgebundenem Verkehr.
Durch die Verwendung mehrerer durchstimmbarer Frequenzgeneratoren in einem Gleismagnete-Prüfgerät und eine geschickte Kombination unterschiedlicher Phasenlagen von Signalen gleicher Prüffrequenzen kann die Güte von Gleismagneten effizient ermittelt werden. Hierfür werden Prüf- und Referenzsignale erzeugt, deren Phasenlage zueinander dem Phasenunterschied zwischen Strom und Spannung bei einem Gleismagnetenschwingkreis bei der Resonanzfrequenz sowie bei der oberen und unteren Grenzfrequenz entsprechen. Die Frequenzen, bei denen der Phasenunterschied zwischen den geeignet gewählten Prüf- und Referenzsignalen minimal wird, stellen die gesuchten Resonanz- und Grenzfrequenzen dar, aus denen die Güte berechnet wird.
Durch eine Mischung zweier Frequenzen können außerdem auch Schaltmagnete von modernen Geschwindigkeitsprüfeinrichtungen überprüft werden.




Beschreibung


[0001] Die Erfindung betrifft eine Vorrichtung sowie Verfahren zum Überprüfen von Gleismagneten der induktiven Sicherung bei spurgebundenem Verkehr.

[0002] Bei der Punktförmigen Zugbeeinflussung (PZB) werden durch elektromagnetisch induzierte Signale zwischen Streckenpunkten am Gleis und Schienenfahrzeugen Informationen zur Sicherung des spurgeführten Verkehrs ausgetauscht. Streckenseitig sind an sicherheitsrelevanten Stellen sogenannte Gleismagnete am Gleis angebracht, die den Zustand von Haupt-/ und Vorsignalen oder sonstigen zu sichernden Einrichtungen wie z.B. Bahnübergängen induktiv an das Schienenfahrzeug übermitteln. Im Schienennetz der DB AG werden hierfür im Wesentlichen drei unterschiedliche Gleismagnettypen eingesetzt, die anhand der Nennfrequenz der übertragenen elektromagnetischen Signale klassifiziert werden zu 500 Hz, 1000 Hz und 2000 Hz-Gleismagneten. Die 1000 Hz-Gleismagnete befinden sich am Standort von Vorsignalen, die 2000 Hz-Gleismagnete am Standort von Hauptsignalen, die 500 Hz-Gleismagnete 150 bis 250 Meter vor den Hauptsignalen. Abhängig von den betrieblichen Rahmenbedingungen sind die Gleismagnete ein- oder ausgeschaltet. Schienenfahrzeuge, die mit einem PZB-Empfänger ausgerüstet sind, empfangen bei der Überfahrt über eingeschaltete Gleismagnete deren Signale und werten diese aus. Dadurch kann das Schienenfahrzeug durch die PZB sicherungstechnisch beeinflusst werden, bis hin zur automatischen Zwangsbremsung bei überfahrenem Halt zeigenden Signal.

[0003] Für einen sicheren Bahnbetrieb ist ein Funktionieren der Gleismagnete eine unabdingbare Voraussetzung. Daher wurden entsprechende Prüfungsverfahren und -vorrichtungen für die Gleismagnete entwickelt. Die DE 703 573 und DE 703 621 beschreiben jeweils Prüfgeräte zur Messung von Resonanzfrequenz und Dämpfung der Gleismagnete. Die DE 545 101 beschreibt ein Prüfgerät, welches die fahrzeugseitige Komponente der induktiven Zugsicherung simuliert.
Die genannten Dokumente stellen den Stand der Technik in den dreißiger und vierziger Jahren des 20. Jahrhunderts dar.

[0004] Im heutigen Stand der Technik verfügbare Gleismagnetprüfgeräte wie z.B. das Quante GMP 900, verfügen über einen Frequenzgenerator zum Erzeugen einer Prüffrequenz, die an eine steuerbare Konstantstromquelle angeschlossen ist, welche galvanisch mit dem Gleismagneten verbunden ist. Durch Variation der Generatorfrequenz wird die Resonanzfrequenz des Gleismagneten ermittelt, indem die Phasendifferenz zwischen Strom und Spannung am Gleismagneten ermittelt wird. Die Phasendifferenz wird dabei mithilfe eines Phasenmessers ermittelt. Bei einer Phasendifferenz von Null, ist die Resonanzfrequenz erreicht. Zur Gütebestimmung werden nacheinander die Frequenzen ermittelt, bei denen die Phasendifferenz zwischen Strom und Spannung am Gleismagneten +/- 45° betragen. Hierzu variiert der Frequenzgenerator die an die steuerbare Konstantstromquelle angelegte Prüffrequenz.
Die so ermittelten Frequenzen stellen die obere und untere Grenzfrequenz des Gleismagneten dar. Die Güte des Gleismagneten ergibt sich dann als Quotient von Resonanzfrequenz und der Differenz der Grenzfrequenzen.
Ein Nachteil dieses Verfahrens liegt u.a. darin, dass es neben Strom- und Spannungsmessgeräten eines zusätzlichen Phasenmessers bedarf, der drei verschiedene Phasenlagen messen muss. Außerdem ist es mit diesem Gerät nicht möglich, die Schaltmagnete neuerer Geschwindigkeitsprüfeinrichtungen zu prüfen, da diese durch eine einzige Frequenz nicht mehr geschaltet werden können.

[0005] Aufgabe der vorliegenden Erfindung ist es, ein Verfahren und eine Vorrichtung bereitzustellen, mit denen es möglich ist, Gleismagnete möglichst effizient und genau zu prüfen, wobei auch die neuen Schaltmagnete von Geschwindigkeitsprüfeinrichtungen geschaltet werden können sollen.

[0006] Diese Aufgaben werden durch die erfindungsgemäße Vorrichtung und das erfindungsgemäße Verfahren nach den unabhängigen Ansprüchen 1 bzw. 10 gelöst. Weiterhin werden in Anspruch 12 ein Verfahren zur Prüfung von Schaltmagneten von Geschwindigkeitsprüfeinrichtungen sowie in Anspruch 13 ein Verfahren zu einer schnellen Grobprüfung von Gleismagneten zur Verfügung gestellt.

[0007] Vorteilhafte Weiterbildungen sind Gegenstände der abhängigen Ansprüche.

[0008] Der zentrale Erfindungsgedanke für die in Anspruch 1 beschriebene Vorrichtung liegt in der Verwendung mehrerer Frequenzgeneratoren in einem Gleismagnete-Prüfgerät. Durch eine geschickte Kombination unterschiedlicher Phasenlagen von Signalen gleicher Prüffrequenzen bzw. einer Mischung von unterschiedlichen Frequenzen kann eine solche Vorrichtung die vielfältigen Messund Prüfaufgaben effizient durchführen. Hierzu müssen die Frequenzgeneratoren sowohl getrennt als auch synchron angesteuert werden können.
Die Vorrichtung ist weiterhin in der Lage, die Prüffrequenz kontinuierlich durchzustimmen, wobei die Phasenlage zwischen den Signalen zweier unterschiedlicher Frequenzgeneratoren stabil bleibt, wenn diese synchron angesteuert werden. Der Durchstimmbereich von 400 Hz bis 2400 Hz enthält die relevanten Gleismagnetfrequenzen von 500 Hz, 1000 Hz und 2000 Hz.
Die Prüffrequenz eines Frequenzgenerators ist auf eine Konstantstromquelle geschaltet. Am Ausgang der Konstantstromquelle liegt somit ein mit der Prüffrequenz modulierter Ausgangsstrom vor, welcher über eine Verbindungsvorrichtung, z.B. über Kabel, an den Schwingkreis des zu prüfenden streckenseitigen Gleismagneten angelegt werden kann. Mithilfe von Messgeräten lassen sich Spannung und Strom und deren relative Phasenlage am Gleismagneten messen. Aufgrund der Durchstimmbarkeit der Prüffrequenz kann mit der Vorrichtung die Phasenverschiebung in Abhängigkeit der Frequenz ermittelt werden.
Die Messergebnisse lassen sich nicht nur an einem Display anzeigen, sondern teilweise auch auf den Gleismagneten bezogen speichern und analysieren.

[0009] Da die Phasenlage vorteilhaft zwischen den Signalen mehrerer Frequenzgeneratoren unterschiedlich wählbar ist, ergeben sich elegante Möglichkeiten zur Bestimmung der Resonanzfrequenz und der Güte des Schwingkreises im Gleismagneten mit demselben Messverfahren.

[0010] Besonders vorteilhaft ist es, wenn die Frequenzgeneratoren so einstellbar sind, dass der Phasenunterschied zwischen dem als Referenz dienenden Ausgangssignal des einen Frequenzgenerators und dem des einen weiteren Frequenzgenerators +45° und zwischen dem Referenzsignal und dem des zweiten weiteren Frequenzgenerators -45° beträgt. Somit erhält man drei Signale gleicher Frequenz, mit den relativen Phasenlagen -45°, 0° und +45° zueinander. Wenn das Referenzsignal mit der als 0° definierten Phasenlage auf den Gleismagneten eingespeist wird, lässt sich das am Gleismagneten abgreifbare Signal des angeregten Parallelschwingkreises jeweils mit dem Referenzsignal und den Signalen mit der Phasenlage +45° sowie -45° vergleichen.
Der Phasenunterschied zwischen Strom und Spannung am erregten Parallelschwingkreis im Gleismagneten ist null, bzw. minimal, bei Erreichen der Resonanzfrequenz. Bei Erreichen der oberen bzw. unteren Grenzfrequenz ist der Phasenunterschied +45° bzw. -45°. Somit lassen sich durch Vergleich des Messsignals mit den drei erzeugten Signalen die zugehörigen Frequenzen besonders effizient ermitteln.

[0011] Eine vorteilhafte Möglichkeit, eine Frequenz mit minimalem Phasenunterschied zwischen zwei sinusförmigen Signalen zu bestimmen, wird durch die Verwendung zweier Komparatoren realisiert, deren Ausgänge in einem Exklusiv-Oder-Glied zusammengeführt sind. Jedes Signal wird dabei in einem eigenen Komparator zu einem Rechtecksignal umgewandelt. Durch die Zusammenführung in einem Exklusiv-Oder-Glied liefert die Schaltung an dessen Ausgang ein Rechtecksignal, dessen Breite bzw. Impulslänge abhängig vom Phasenunterschied der Signale ist.

[0012] Als Frequenzgeneratoren werden vorteilhaft DDS-Chips (Direct Digital Synthesis) eingesetzt. Solche bewährten Standard-Bauteile sind kostengünstig, präzise und gut verfügbar. Sie lassen sich mithilfe von Mikrocontrollern steuern und somit auch mit geringem schaltungstechnischen Aufwand miteinander synchronisieren und ermöglichen es, konstante Phasenunterschiede zwischen DDS-Chips gleicher Frequenz zu realisieren.

[0013] Vorteilhaft ist es weiterhin, wenn den Frequenzgeneratoren steilflankige Filter nachgeschaltet sind. Mithilfe der Filter werden höhere Frequenzen herausgefiltert. Dies ist erforderlich, um keine nennenswerten Abweichungen von den eingestellten Phasenlagen zu erhalten. Mit einem wirksamen Filter wird auch der Systemtakt der DDS-Chips herausgefiltert. Außerdem entfernt der Filter den Gleichanteil des Signals, da das Prüfsignal nach dem DDS-Chip zur weiteren Verarbeitung noch verstärkt wird.

[0014] Um die Parallelschwingkreise in den Gleismagneten induktiv erregen zu können, verfügt die Gleismagnete-Prüfvorrichtung vorteilhaft über mindestens eine eigene Erregerspule zum Abstrahlen eines elektromagnetischen Signals, die von der Konstantstromquelle ansteuerbar ist. Somit kann durch bloße Näherung der Prüfvorrichtung an den Gleismagneten der Schwingkreis im Gleismagneten zu Schwingungen angeregt werden. Dies kann beispielsweise im Rahmen einer einfachen Schnellprüfung der Gleismagnete erfolgen. Anhand der gemessenen Spannung, die sich an der Erregerspule bei unterschiedlichen Frequenzen (500 Hz, 1000 Hz und 2000 Hz) einstellt, wenn der Schwingkreis im Gleismagneten durch die Erregerspule erregt wird, kann auf die Nennfrequenz des Gleismagneten geschlossen werden, bzw. dessen Nichtwirksamkeit erfasst werden.

[0015] Besonders vorteilhaft ist es, wenn die Signale von mindestens zwei Frequenzgeneratoren vor der Konstantstromquelle zusammenschaltbar sind, sodass das Summensignal auf die Erregerspule schaltbar ist. Dadurch liegt nach der Konstantstromquelle ein Strom-Signal vor, das eine Mischung aus zwei Signalen mit zwei gleichen oder unterschiedlichen Frequenzen darstellt. Mit einer derart ausgestalteten Vorrichtung lassen sich auch die Schaltmagnete der neuen Geschwindigkeitsprüfeinrichtungen (GPE) ein- bzw. ausschalten. Während es bei herkömmlichen GPE älterer Bauart möglich ist, die Schaltmagnete mit einer einzigen Frequenz von 1000 Hz zu schalten, so verfügen neuere GPE-Schaltmagnete über Filterbaugruppen, die aus Sicherheitsgründen störende Einflüsse von Fahrzeugkomponenten ausfiltern. Bei solchen GPE-Schaltmagneten ist es erforderlich, dass mindestens zwei der drei Gleismagnetfrequenzen gleichzeitig vorhanden sind, um einen GPE-Schaltmagneten zu schalten. Wenn beispielsweise ein DDS-Chip ein 1000 Hz-Signal und ein anderer ein 2000 Hz-Signal erzeugt und beide Signale als Summensignal auf die Konstantstromquelle gelegt werden, so kann das von der Erregerspule emittierte Signal die Voraussetzungen an ein Schaltsignal für die neuen GPE-Schaltmagneten erfüllen.

[0016] Besonders vorteilhaft ist es, wenn ein programmierbarer, integrierter elektronischer Schaltkreis die Vorrichtung steuert und überwacht und die Messwerte analysiert und zumindest teilweise abspeichert. Hierfür eignen sich insbesondere auch Mikroprozessoren. Ein Mikroprozessor steuert die Frequenzgeneratoren an und stellt somit die zu erzeugenden Frequenzen und deren Phasenlagen ein. Weiterhin empfängt er die Messsignale der Messgeräte und wertet diese automatisiert zum Regeln der Frequenzgeneratoren, zum Schalten der je nach Messaufgabe erforderlichen Komponenten und zum Gewinnen der Prüfergebnisse entsprechend aus.
Anstelle eines Mikroprozessors können auch andere programmierbare Schaltkreise verwendet werden, ohne die Erfindung zu verlassen, z.B. FPGA, externe CPU, etc.

[0017] Ein Verfahren zum Überprüfen der Resonanzfrequenz und der Güte von Gleismagneten der induktiven Sicherung ist in Anspruch 10 beschrieben. Das Verfahren verwendet eine Prüfvorrichtung, die über drei Frequenzgeneratoren verfügt, wie sie in den Vorrichtungsansprüchen dargelegt sind.
Aufgrund einer festgelegten Phasendifferenz zwischen Prüf- und Referenzsignal lassen sich mithilfe des Verfahrens sowohl die Resonanzfrequenz als auch die Güte des Parallelschwingkreises im zu untersuchenden Gleismagneten für spurgebundenen Verkehr mit dem gleichen Messverfahren effizient bestimmen. Die Reihenfolge der Bestimmung von Resonanzfrequenz und den Grenzfrequenzen ist dabei im Prinzip unerheblich.
Bei der Beschreibung des Verfahrens wird hier lediglich aus Gründen der Anschaulichkeit zuerst auf die Bestimmung der Resonanzfrequenz eingegangen.
Die Resonanzfrequenz eines Parallelschwingkreises lässt sich ermitteln, indem die Phasenverschiebung zwischen Strom und Spannung am Schwingkreis gemessen wird. Bei der Resonanzfrequenz verschwindet theoretisch die Phasenverschiebung, bzw. wird praktisch gesehen minimal. Die Resonanzfrequenz lässt sich daher ermitteln, indem der Phasenunterschied zwischen einem in den Schwingkreis eingebrachten Wechselstrom und einer mit der gleichen Frequenz und Phasenlage erzeugten Wechselspannung in Abhängigkeit von der Frequenz untersucht wird.
Die Frequenz, bei der dieser Phasenunterschied null, bzw. minimal wird, ist die gesuchte Resonanzfrequenz.
Hierfür wird von einem Frequenzgenerator ein kontinuierliches Signal mit einer definierten Frequenz erzeugt. Ein Teil des Signals wird als Referenzsignal in Form einer Wechselspannung verwendet. Ein weiterer Teil des Signals wird als Prüfsignal in eine Konstantstromquelle eingespeist, deren Ausgangssignal als Wechselstrom in den zu untersuchenden Schwingkreis eingespeist wird. Das am Schwingkreis abgegriffene, sinusförmige Stromsignal ist nun im Allgemeinen phasenverschoben zum Referenzsignal. Diese Phasenverschiebung ändert sich mit der Frequenz. Durch Durchstimmen der Frequenz wird diejenige Frequenz ermittelt, bei der ein minimaler Phasenunterschied zwischen Prüf- und Referenzsignal auftritt.
Die Vorrichtung analysiert die Messwerte automatisch und speichert die Resonanzfrequenz des zugehörigen Gleismagneten.

[0018] Nachdem nun die Resonanzfrequenz fR ermittelt wurde, müssen noch die obere und untere Grenzfrequenz fO, fU bestimmt werden. Die Güte Q des Schwingkreises ergibt sich dann zu Q = fR / (fO - fU). Es ist bekannt, dass bei Erreichen einer Grenzfrequenz der Phasenunterschied zwischen Strom und Spannung am Schwingkreis +45° bzw. -45° beträgt.
Da drei Frequenzgeneratoren, die synchronisiert zueinander getaktet werden können, vorhanden sind, kann das bei der Messung der Resonanzfrequenz verwendete Verfahren in abgewandelter Form auch zur Bestimmung der Grenzfrequenzen verwendet werden. Dazu wird das in den Gleismagneten eingespeiste Prüfsignal mit entsprechend phasenverschobenen Referenzsignalen verglichen.
Von den anderen Frequenzgeneratoren werden die zum Prüfsignal um +45° bzw. -45° phasenverschobenen Referenzsignale gleicher Frequenz erzeugt und die Frequenz wieder kontinuierlich durchgestimmt.
Da die zu treffende Phasenlage zwischen den Signalen bereits passend gewählt wurde, wird hier, wie bei der Bestimmung der Resonanzfrequenz nur noch untersucht, bei welcher Frequenz der Phasenunterschied null, bzw. minimal wird. Sobald der Phasenunterschied zwischen Referenz- und Prüfsignal minimal wird, ist die zugehörige Grenzfrequenz gefunden und wird entsprechend gespeichert. Nachdem so die zu ermittelnden Frequenzen gemessen und gespeichert wurden, wird die Güte des Schwingkreises berechnet und gespeichert. Weiterhin werden die Daten analysiert, ob sie zu den in der Vorrichtung in einem Datenspeicher gespeicherten Toleranzwerten kompatibel sind. Wenn ja, wird der Gleismagnet als funktionsfähig bewertet.
Da im Gerät die auf dem Streckenabschnitt zu untersuchenden Gleismagnete in einer Art Arbeitsliste aufgeführt sind, können die Ergebnisse der Prüfung den Gleismagneten auf der Liste direkt zugeordnet werden, was die Auswertung der Daten und die Planung sowie Durchführung von Wartungs- oder Instandsetzungsarbeiten erleichtert.

[0019] Bei Verwendung einer Vorrichtung gemäß Anspruch 4 kann ein sehr effizientes Verfahren gemäß Anspruch 11 zur Bestimmung der Frequenzen mit minimalem Phasenunterschied verwendet werden.
Hierfür werden Prüf- und Referenzsignal jeweils an einen Eingang eines eigenen Komparators gelegt. Die sinusförmigen Signale werden dabei in Rechtecksignale umgewandelt. Beide Rechtecksignale werden in einem ExklusivOder-Glied zusammengeführt und dadurch logisch analysiert. Am Ausgang des Exklusiv-Oder-Glieds liegt schließlich ein Rechtecksignal vor, dessen Breite vom Phasenunterschied der Rechtecksignale abhängt. Je schmaler das Rechtecksignal ist, desto geringer ist der Phasenunterschied. Beim kontinuierlichen Durchstimmen der Frequenz des vom Frequenzgenerator erzeugten Signals verändert sich demnach auch frequenzabhängig die Breite des Rechtecksignals nach dem Exklusiv-Oder-Glied. Als Resonanzfrequenz des zugehörigen Gleismagneten gilt die Frequenz, die bei Einspeisung von phasengleichen Prüf- und Referenzsignalen nach dem Exklusiv-Oder-Glied ein Rechtecksignal mit minimaler Breite aufweist.
Die Grenzfrequenzen werden durch Vergleich des in den Gleismagneten eingespeisten Prüfsignals mit entsprechend +45° bzw. -45° phasenverschobenen Referenzsignalen bestimmt, indem Prüf- und Referenzsignale wie zuvor jeweils auf eigene Komparatoren eingespeist werden.
Beide Rechtecksignale werden in einem Exklusiv-Oder-Glied zusammengeführt und dadurch wie oben beschrieben logisch analysiert. Am Ausgang des Exklusiv-Oder-Glieds liegt schließlich ein Rechtecksignal vor, dessen Breite vom Phasenunterschied der Rechtecksignale abhängt. Als obere und untere Grenzfrequenzen des zugehörigen Gleismagneten gelten die Frequenzen, die bei Einspeisung von entsprechend phasenverschobenen Prüf- und Referenzsignalen nach dem Exklusiv-Oder-Glied ein Rechtecksignal mit minimaler Breite aufweisen.

[0020] Besonders vorteilhaft kann das Vorhandensein von mindestens zwei Frequenzgeneratoren genutzt werden, um gemäß Anspruch 12 zu prüfen, ob eine Geschwindigkeitsprüfeinrichtung (GPE) korrekt ein- bzw. ausgeschaltet werden kann oder nicht. Wie bereits im beschreibenden Teil zur Vorrichtung dargelegt wurde, verfügen neuere GPE-Schaltmagnete über Filterbaugruppen, die aus Sicherheitsgründen störende Einflüsse von Fahrzeugkomponenten ausfiltern. Bei solchen GPE-Schaltmagneten ist es erforderlich, dass mindestens zwei der drei Gleismagnetfrequenzen gleichzeitig vorhanden sind, um einen GPE-Schaltmagneten zu schalten.
Es ist also besonders vorteilhaft, wenn von mindestens zwei Frequenzgeneratoren jeweils unterschiedliche Frequenzen (500 Hz, 1000 Hz oder 2000 Hz) erzeugt werden und diese beiden Signale als Summensignal auf die Konstantstromquelle gelegt werden. Somit wird von der Erregerspule ein Signal emittiert, welches die entsprechenden Signalanteile enthält, so dass die Voraussetzungen an ein Schaltsignal für die neuen GPE-Schaltmagneten erfüllt werden. Danach wird vom Instandhalter beobachtet, ob die Statusanzeigen der GPE den gewünschten Schaltzustand anzeigen und somit geprüft, ob die GPE wie gewünscht ein- bzw. ausgeschaltet wurde.

[0021] Eine einfache induktive Schnellprüfung der Gleismagnete ist gemäß Anspruch 13 zusätzlich möglich, wenn die Vorrichtung noch über eigene Prüfschwingkreise mit Resonanzfrequenzen 500 Hz, 1000 Hz und 2000 Hz verfügt, die induktiv mit dem Gleismagnetenschwingkreis wechselwirken können. Wenn die Vorrichtung in die Nähe des Gleismagnetenschwingkreises gebracht wird, lässt sich anhand der an der Erregerspule gemessenen Spannung feststellen, ob das vom Prüfschwingkreis abgestrahlte Signal die Resonanzfrequenz des Gleismagneten trifft oder nicht. Da sich die Spannungswerte an der Erregerspule auch bei nicht aktiven Gleismagneten von denen bei aktiven Gleismagneten unterscheiden, kann eine vollständige Schnellprüfung des Gleismagneten erfolgen.
Für jeden der drei unterschiedlichen Gleismagnettypen werden hierfür jeweils Spannungsschwellwerte Us festgelegt, welche mit den an der Erregerspule gemessenen Spannungen verglichen werden. Sobald eine gemessene Erregerspulenspannung für eine der drei Frequenzen einen solchen Schwellwert überschreitet und die anderen beiden Messwerte bei den anderen Frequenzen unter ihrem jeweiligen Schwellwert liegen, entspricht die Frequenz des Gleismagneten der Frequenz des Prüfschwingkreises, die eine Schwellwertüberschreitung bewirkt hat. Bleibt die Spannung an der Erregerspule bei allen drei Frequenzen unterhalb der Schwellwerte Us, wird der Gleismagnet als inaktiv gewertet.

[0022] Die Erfindung wird im Folgenden anhand eines Ausführungsbeispiels, das durch zwei Figuren dargestellt wird, näher erläutert.

[0023] Das punktförmige Zugsicherungssystem PZB 90, welches bei der Deutschen Bahn eingesetzt wird, muss in regelmäßigen Abständen inspiziert werden. Das System besteht aus Einrichtungen, die sich auf der Fahrzeugseite befinden und den dazugehörigen Streckeinrichtungen.
Streckenseitig befinden sich so genannte Gleismagnete am Schienenweg, die sowohl Signalinformationen von der Strecke an das Fahrzeug übermitteln als auch Geschwindigkeitsüberwachungen realisieren.
Aus elektrischer Sicht stellen Gleismagnete Parallelschwingkreise dar, die mit 500 Hz, 1000 Hz und 2000 Hz Nennfrequenz eingesetzt werden. Im Rahmen der Inspektion müssen die elektrischen Parameter dieser Magnete überprüft werden.
Dazu gehören folgende Werte:
  • Resonanzfrequenz
  • Güte
  • Isolationswiderstand
  • Parallelwiderstand


[0024] Fig. 1 zeigt ein Blockschaltbild einer beispielhaften Prüfvorrichtung mit drei Frequenzgeneratoren, die mithilfe von drei DDS-Chips realisiert sind. Den Frequenzgeneratoren sind jeweils steilflankige Tiefpassfilter und Verstärker nachgeschaltet. Der mittlere Frequenzgenerator erzeugt ein Signal, dessen Phasenlage als 0° definiert wird und das in eine Konstantstromquelle (KSQ) eingespeist wird. Über einen Umschalter können alle drei Signale als Referenzsignale verwendet werden. Dazu misst man die abfallende Spannung und vergleicht die Phasenlagen zwischen dem am Gleismagneten (GM) eingespeisten Prüfstrom und der Spannung des Referenzsignals mithilfe von Komparatoren und einem Exklusiv-Oder-Gatter. Ein Mikrokontroller steuert den Vorgang und wertet die Messergebnisse aus. Der Mikrokontroller kann über eine Tastatur bedient werden. Ein vom Controller gesteuertes Display zeigt dem Benutzer die erforderlichen Informationen an.
Über den RMS/DC-Wandler wird am Messpunkt RP die Spannung am Gleismagneten abgegriffen und in den Mikrocontroller eingelesen. Damit lässt sich auch der Parallelwiderstand des Gleismagneten messen sowie die Konstantstromquelle in einem vorgegebenen Bereich regeln.
Zur Vorrichtung gehört auch eine Erregerspule, die ebenfalls von der KSQ angesteuert wird.

[0025] Außerdem verfügt die Vorrichtung noch über drei mittels Relais anschaltbare Reihenschwingkreise zum induktiven Erregen der Gleismagnete bei Frequenzen 500 Hz, 1000 Hz und 2000 Hz.
Das Digitalpotentiometer vor der KSQ dient zum Einstellen des Signalpegels.

[0026] Der Mikrocontroller verfügt weiterhin über zwei EEPROM-Speicherbausteine zum Abspeichern der Messdaten sowie zum Abspeichern der Referenz- bzw. Grenzwerte zur Analyse der Messergebnisse. Die Messdaten werden dabei mit der aktuellen Uhrzeit versehen gespeichert. Zudem besteht die Möglichkeit eines Datenaustausches mit einem PC über eine Schnittstelle.

[0027] Figur 2 zeigt ein beispielhaftes Blockschaltbild des Regelkreises zum Ermitteln der Zielimpulslänge, d.h. der Breite des Rechtecksignals nach dem ExklusivOder-Glied. Der Mikrocontroller (µC) erzeugt mithilfe der DDS-Chips die Mess- und Prüfsignale mit bestimmter Frequenz. Über das digitale Potentiometer werden die passenden Spannungswerte zum Steuern der KSQ eingestellt und mithilfe zweier RMS/DC-Wandler an den Messpunkten RP' und RP auf den µC als Regler zurückgeführt und somit die Einhaltung der zulässigen Toleranzbereiche überwacht. In einem zweiten Kreis wird die Impulslänge gemessen und an den µC übermittelt, der daraufhin die Ansteuerung der DDS-Chips weiterführt.

[0028] Damit die Frequenzausgabe aller drei DDS-Chips synchron erfolgt, müssen diese gleichzeitig angesteuert werden. Zu diesem Zweck wird der Steuer-Takt nicht nur auf die Takteingänge der DDS-Chips gegeben, sondern auch auf ein D-Flip-Flop, zusammen mit der Steuerleitung vom µC. Damit wird gewährleistet, dass die entsprechenden Eingänge der DDS-Chips immer synchron mit dem Takt sind.

[0029] Die DDS-Chips erzeugen als Ausgangssignal ein Sinussignal mit einer Auflösung von 10 Bit und einer Amplitude von 1,2 VS. Da das Signal zur weiteren Verarbeitung noch verstärkt wird und noch einen Gleichanteil enthält, muss es gefiltert werden. Dies übernehmen die Filter an den Ausgängen der DDS-Chips. Die Grenzfrequenz der Filter liegt bei ca. 1,2 MHz, um die Phasendrehung des Signals so gering wie möglich zu halten (< 1°). Damit wird gewährleistet, dass es keine nennenswerten Abweichungen von den erforderlichen Phasenverschiebungen gibt.

[0030] Ein weiterer Aspekt für den Einsatz eines steilflankigen Filters ist die Tatsache, dass die DDS-Chips mit 10 MHz getaktet sind und der Systemtakt aus dem Nutzsignal entfernt werden muss.
Der Gleichanteil wird in den Filtern ebenfalls eliminiert.
Dadurch stellt sich am Ausgang des Filters eine Spannung von 0,6 VS ein. Anschließend werden alle drei Signale durch einen nicht invertierenden Operationsverstärker um den Faktor 20 verstärkt.
Das Ausgangssignal des Verstärkers wird auf ein digitales Potentiometer geführt, der über einen SPI-Bus angesteuert wird.
Anschließend wird das Signal auf die steuerbare Konstantstromquelle gegeben. Von dort kann das Signal auf den Gleismagneten geschaltet werden.

[0031] Um Messfehler zu vermeiden müssen Gleismagnete mit einer bestimmten Spannung gemessen werden. Die Messspannung beträgt ca. 70 VS. Da die Messspannung nicht direkt auf einen AD-Wandler des Mikrocontrollers gegeben werden kann, muss sie gleichgerichtet und vom Pegel her angepasst werden.

[0032] Weiterhin sind zwei DDS-Chips über ein digitales Potentiometer zusammenschaltbar, sodass deren Signale auch mit unterschiedlichen Frequenzen zu einem Summensignal gemischt werden können. Im Anschluss daran kann das Summensignal über die spannungsgesteuerte Konstantstromquelle auf die Erregerspule geschaltet werden.

[0033] Um Gleismagnete induktiv zu messen, enthält die Vorrichtung eine Spule mit Ferritkern und drei Anzapfungen. In Verbindung mit entsprechenden Schaltrelais sowie Kondensatoren werden Reihenschwingkreise mit verschiedenen Resonanzfrequenzen (500 Hz, 1000 Hz, 2000 Hz) gebildet.

[0034] Mit dieser Vorrichtung lässt sich nun das Verfahren zur Überprüfung eines Gleismagneten effizient durchführen.

[0035] Das Messverfahren für die Resonanzfrequenz beruht darauf, dass ein DDS-Chip das Signal mit einer Phasenverschiebung von 0° über ein elektronisches Potentiometer auf die steuerbare Konstantstromquelle gibt. An dieser ist der Gleismagnet angeschlossen.

[0036] Der Gleismagnet besteht aus einem Parallelschwingkreis, welcher bei Resonanz seinen höchsten Widerstand hat. Wird nun die Frequenz variiert, ändert sich auch die Phasenverschiebung zwischen Spannung und Strom am Gleismagneten. Wird die Phasenverschiebung zu null, ist die Resonanzfrequenz gefunden. Die Frequenzen bei denen eine Phasenverschiebung von -45° bzw. +45° zwischen Strom und Spannung vorliegt, stellen die 3 dB-Grenzfrequenzen dar.
Zur Bestimmung der Güte des Schwingkreises im Gleismagneten werden nun alle drei DDS-Chips mit der gleichen Frequenz, aber unterschiedlichen Phasenlagen programmiert.
Wird die Phasenlage des mittleren DDS-Chips in Fig. 1 als 0° definiert, ergeben sich für die anderen DDS-Chips die Phasenlagen +45° bzw. -45°.

[0037] Um die gesuchten Parameter zu ermitteln wird der Gleismagnet mit einem Frequenzsweep zwischen 400 Hz und 2400 Hz beaufschlagt, der über den Mikrokontroller gesteuert wird.
Es ist sinnvoll im ersten Mess-Schritt eine passende Startfrequenz zu ermitteln, die abhängig von der Nennfrequenz (500 Hz, 1000 Hz bzw. 2000 Hz) des zu untersuchenden Gleismagneten ist.
Der Mikrocontroller erzeugt zur Ermittlung der Nennfrequenz mit Hilfe der DDS-Chips eine Frequenz von 2300 Hz. Das digitale Potentiometer wird dabei auf einen konstanten Wert eingestellt und auch gehalten. Von dem Mikrocontroller werden dann die Spannungswerte vom RMS/DC-Wandler eingelesen und ausgewertet. Entsprechend der Werte wird erkannt, ob überhaupt ein Gleismagnet angeschlossen ist oder ob die Leitung kurzgeschlossen ist. Im Fehlerfall wird die Messung abgebrochen und alle Ausgaben werden auf null gesetzt.
Wenn ein Gleismagnet angeschlossen ist, wird die Frequenz in 8 Hz-Schritten verringert, bis der angeschlossene Parallelschwingkreis des Gleismagneten einen bestimmten Widerstandswert aufweist.
Dieser ist erreicht, sobald vom RMS/DC-Wandler eine Spannung von mindestens 30 V am Messpunkt RP ermittelt wird. Die gefundene Frequenz wird als Startfrequenz für das weitere Verfahren verwendet.
In Abhängigkeit der gefundenen Startfrequenz wird ein entsprechender Parametersatz für den Messalgorithmus geladen.

[0038] Die Schrittweite der Frequenzsprünge ist abhängig von der Nennfrequenz und dem Inhalt des Parametersatzes.

[0039] In diesem Beispiel wird zunächst die obere Grenzfrequenz bestimmt, dann die Resonanzfrequenz und dann die untere Grenzfrequenz. Daraus wird dann die Güte des Gleismagneten berechnet.
Zunächst wird also auf den einen Komparator das +45°-Signal geschaltet und auf den anderen das Signal, welches vom 0°-DDS-Chip-Signal über die Konstantstromquelle galvanisch an den Gleismagneten gebracht und dort abgegriffen wird.
Die Ausgänge der beiden Komparatoren werden dann in einem Exklusiv-Oder-Gatter zusammengeführt und dem Mikrocontroller zugeführt. Dieser variiert die Frequenz, wobei das Rechtecksignal, d.h. dessen Impulslänge, am Ausgang des Exklusiv-Oder-Gatters immer schmaler wird, je näher man der oberen Grenzfrequenz kommt, bis sich ein Minimum einstellt.
Beim Erreichen des Minimums ist die erste Grenzfrequenz gefunden.

[0040] Das Minimum ist in der Regel nicht nahezu null, sondern beträgt wenige Mikrosekunden. Dies liegt an den Signallaufzeiten durch das Digitalpotentiometer und die KSQ, welche das Messsignal immer auf ca. 45-50 Veff am Gleismagneten nachregeln. Dabei entstehen unvermeidbare Signallaufzeiten, die bei der Impulslängenermittlung berücksichtigt werden müssen. Aus diesem Grund wird bei jedem Einschalten des Gerätes eine Selbstkalibrierung durchgeführt. Bei dieser wird nicht der Gleismagnet gemessen, sondern ein interner ohmscher Widerstand. Die Impulslänge, die bei dieser Messung ermittelt wird, wird als Kalibrier-Impulslänge im Gerät hinterlegt. Dadurch werden zusätzlich auch Temperatureinflüsse und Bauteilalterungen ausgeglichen.
Prinzipbedingt ergibt sich der Nachteil, dass sich beim Ermitteln der Impulslänge zwei identische Zielwerte messen lassen. Hierbei ist nur einer der tatsächliche Wert, während der andere ein fiktiver Wert ist. Aus diesem Grund wird die Frequenz in vorgegebener Weise ausgehend von der Startfrequenz nur in eine Richtung verändert. Während des Ermittelns der Impulslänge wird durch den Mikrocontroller über den RMS/DC-Wandler am Messpunkt RP' ständig das Übersteuern der Stromquelle überwacht und auf einen Pegel von max. 51,4 Veff begrenzt. Zusätzlich wird die Stromquelle so geregelt, dass am Gleismagneten eine Spannung zwischen 45,5 Veff und 48,5 Veff anliegt.

[0041] Um die Resonanzfrequenz zu bestimmen, wird dann das 0°-Signal auf beide Komparatoren geschaltet. Dann wird wieder die Frequenz variiert, bis das Rechtecksignal sein Minimum erreicht.

[0042] Um die zweite Grenzfrequenz zu bestimmen, wird das -45° Signal auf den einen Komparator geschaltet und das obige Verfahren erneut angewendet. Mit den Messwerten, die auf diese Weise ermittelt wurden, wird mithilfe der Beziehung Q = fR / (fo - fu) die Güte Q des Gleismagneten bestimmt.

[0043] Eine weitere Aufgabe der Erregerspule ist das Einkoppeln eines ausreichend starken Signals in einen Schaltmagneten, um die daran angeschlossene Geschwindigkeitsprüfeinrichtung (GPE) ein- bzw. auszuschalten. Bei den herkömmlichen GPE ist es ausreichend, die Erregerspule mit 1000 Hz zu erregen. Aufgrund der durch den ICE3 und den ICE T auftretenden Störsignale waren die Hersteller der GPE dazu gezwungen, ihre Auswerteeinheiten neu zu gestalten. Um die GPE sicher ein- bzw. ausschalten zu können, müssen von den drei Frequenzen mindestens zwei gleichzeitig vorhanden sein.

[0044] In diesem Beispiel werden daher von zwei DDS-Chips unterschiedliche Frequenzen erzeugt, nämlich 1000 Hz und 2000 Hz. Nach anschließender Filterung werden die beiden Frequenzen auf ein digitales Potentiometer gegeben, wo sie zu einem Summensignal gemischt werden. Im Anschluss daran kann das Summensignal über die spannungsgesteuerte Konstantstromquelle auf die Erregerspule geschaltet werden.
Um auch jene GPE-Schaltmagnete schalten zu können, die aus dem Standby-Betrieb mit einem bestimmten Mindestpegel aufgeweckt werden müssen, wird zu Beginn der Messung durch zwei DDS-Chips jeweils eine Frequenz von 1000 Hz erzeugt. Diese werden linear durch das Digitalpotentiometer hochgeregelt und auf einen Maximalwert, der bei der Kalibrierung im Werk ermittelt wird, eingestellt.
Erst nach Erreichen dieses Wertes wird ein DDS-Chip auf 2000 Hz umgeschaltet und beide Frequenzen zusammengeführt. Wenn das Summensignal auf die Erregerspule geschaltet wird, liegt es über einen Zeitraum von insgesamt 3 Sekunden an der Erregerspule an, um ein sicheres Ein- bzw. Ausschalten zu gewährleisten. Der Instandhalter prüft nun anhand der Statusanzeigen der GPE, ob die Schaltvorgänge tatsächlich wie vorgegeben abgelaufen sind oder nicht.

[0045] Zuletzt wird beispielhaft die Induktive Schnellprüfung erläutert. Sie dient zur Ermittlung des Gleismagnetentyps. Dabei wird das Gleismagnete-Prüfgerät auf den Gleismagneten gestellt und die Messung der Nennfrequenz wird über eine Induktive Kopplung ermittelt. Zusätzlich wird ermittelt, ob sich der Gleismagnet in einem wirksamen oder unwirksamen Zustand befindet.
Das Gleismagnete-Prüfgerät verfügt über eigene Prüfschwingkreise mit Resonanzfrequenzen 500 Hz, 1000 Hz und 2000 Hz, die induktiv mit dem Gleismagnetenschwingkreis wechselwirken können. Durch das Aufsetzen des Gleismagnete-Prüfgerät auf den Gleismagneten, lässt sich anhand der an der Erregerspule bei jeder der drei Frequenzen im Prüfgerät gemessenen Spannung feststellen, ob das vom Prüfschwingkreis abgestrahlte Signal die Resonanzfrequenz des Gleismagneten trifft oder nicht. Hierfür werden Schwellwerte Us definiert. Wenn die an der Erregerspule gemessene Spannung den Schwellwert Us bei einer Frequenz überschreitet, während sie bei den beiden anderen Frequenzen unter dem jeweiligen Schwert Us bleibt, wird die Frequenz, bei der der Schwellwert Us überschritten wurde, als Nennfrequenz des Gleismagneten gewertet.

[0046] In diesem Beispiel werden folgende Schwellwerte verwendet:

Us (500 Hz) = 8 V, Us (1000 Hz) = 8 V und Us (2000 Hz) = 13 V



[0047] Auf einem Gleismagneten werden beispielsweise folgende Spannungen an der Erregerspule in Abhängigkeit von der am Prüfgerät eingestellten Erregerfrequenz gemessen:
f[Hz] Erregerspulenspannung
500 5,1 V
1000 6,4 V
2000 18,3 V


[0048] Die Werte der Erregerspulenspannung bleiben für 500 Hz und 1000 Hz jeweils unter dem zugehörigen Schwellwert Us(f), während der Messwert für 2000 Hz über dem zugehörigen Schwellwert Us(f) liegt. Der Gleismagnet wurde daher als aktiver 2000 Hz-Gleismagnet geprüft.

[0049] Bleibt die Spannung an der Erregerspule bei allen drei Frequenzen unterhalb der von der Frequenz abhängigen Grenzwerte Us(f) für aktive Gleismagnete, wird der Gleismagnet als inaktiv gewertet. Wenn in diesem Beispiel also ein 500 Hz-Gleismagnet bei einer Erregerspulenfrequenz von 500 Hz und 1000 Hz eine Erregerspulenspannung von unter 8 V und bei einer Erregerspulenfrequenz von 2000 Hz eine Erregerspulenspannung von unter 13 V aufweist, wird er als inaktiv gewertet.


Ansprüche

1. Vorrichtung zum Überprüfen von Gleismagneten der induktiven Sicherung bei spurgebundenem Verkehr, wobei die Vorrichtung über mindestens ein Modul zum Erzeugen eines elektromagnetischen Signals mit einer Prüffrequenz verfügt, die zum Ansteuern einer Konstantstromquelle dient, wobei die Prüffrequenz in einem Frequenzbereich von 400 Hz bis 2400 Hz kontinuierlich durchstimmbar ist, wobei der mit der Prüffrequenz modulierte Ausgangsstrom der Konstantstromquelle über eine Verbindungsvorrichtung an den streckenseitigen Gleismagneten anschließbar ist und den Schwingkreis des Gleismagneten erregt, und die Vorrichtung über Messeinheiten zum Messen der Phasenverschiebung zwischen Strom und Spannung am Gleismagneten verfügt, dadurch gekennzeichnet, dass die Vorrichtung über mindestens drei Frequenzgeneratoren verfügt, die getrennt oder synchron ansteuerbar sind.
 
2. Vorrichtung zum Überprüfen von Gleismagneten der induktiven Sicherung bei spurgebundenem Verkehr gemäß Anspruch 1, wobei alle Frequenzgeneratoren bei synchroner Ansteuerung Signale mit gleicher Frequenz erzeugen, die sich hinsichtlich ihrer Phasenlage unterscheiden können.
 
3. Vorrichtung zum Überprüfen von Gleismagneten der induktiven Sicherung bei spurgebundenem Verkehr gemäß Anspruch 2, wobei der Phasenunterschied so einstellbar ist, dass er zwischen dem als Referenz dienenden Ausgangssignal des einen Frequenzgenerators und dem des einen weiteren Frequenzgenerators +45° und zwischen dem Referenzsignal und dem des zweiten weiteren Frequenzgenerators -45° beträgt.
 
4. Vorrichtung zum Überprüfen von Gleismagneten der induktiven Sicherung bei spurgebundenem Verkehr gemäß Anspruch 2 oder 3, wobei die Vorrichtung zwei Komparatoren enthält, deren Ausgänge in einem Exklusiv-Oder-Glied zusammengeführt sind, wobei in jeden Komparator ein eigenes Signal einspeisbar ist.
 
5. Vorrichtung zum Überprüfen von Gleismagneten der induktiven Sicherung bei spurgebundenem Verkehr gemäß mindestens einem der zuvor genannten Ansprüche, wobei die Frequenzgeneratoren mittels DDS-Chips realisiert sind.
 
6. Vorrichtung zum Überprüfen von Gleismagneten der induktiven Sicherung bei spurgebundenem Verkehr gemäß mindestens einem der zuvor genannten Ansprüche, wobei den Frequenzgeneratoren steilflankige Filter nachgeschaltet sind, welche höhere Frequenzen herausfiltern.
 
7. Vorrichtung zum Überprüfen von Gleismagneten der induktiven Sicherung bei spurgebundenem Verkehr gemäß mindestens einem der zuvor genannten Ansprüche, wobei die Vorrichtung über mindestens eine eigene Erregerspule zum Abstrahlen eines elektromagnetischen Signals verfügt, die von der Konstantstromquelle ansteuerbar ist.
 
8. Vorrichtung zum Überprüfen von Schaltmagneten der induktiven Sicherung bei spurgebundenem Verkehr gemäß Anspruch 7, wobei die Signale von mindestens zwei Frequenzgeneratoren vor der Konstantstromquelle zusammenschaltbar sind, sodass das Summensignal auf die Erregerspule schaltbar ist.
 
9. Vorrichtung zum Überprüfen von Gleismagneten der induktiven Sicherung bei spurgebundenem Verkehr gemäß mindestens einem der zuvor genannten Ansprüche, wobei ein programmierbarer, integrierter elektronischer Schaltkreis die Vorrichtung steuert und überwacht und die Messwerte analysiert und zumindest teilweise abspeichert.
 
10. Verfahren zum Überprüfen der Resonanzfrequenz und der Güte von Gleismagneten der induktiven Sicherung bei spurgebundenem Verkehr, dadurch gekennzeichnet, dass

a. die Resonanzfrequenz eines Gleismagneten bestimmt wird, indem mithilfe eines Frequenzgenerators ein kontinuierliches Signal generiert wird, welches in einen Prüf- und einen Referenzteil aufgespalten wird, wobei der Prüfanteil des Signals in den Gleismagneten eingespeist wird, und das am Gleismagneten anstehende, resultierende Signal mit dem Referenzanteil hinsichtlich ihres Phasenunterschieds verglichen wird, wobei die Frequenz des Signals kontinuierlich durchgestimmt wird, und analysiert wird, bei welcher Frequenz der Phasenunterschied minimal wird, und diese Frequenz als Resonanzfrequenz abgespeichert wird,

b. mithilfe von drei synchronisiert getakteten Frequenzgeneratoren die oberen und unteren Grenzfrequenzen des Gleismagneten ermittelt werden, indem das von einem Frequenzgenerator erzeugte Prüfsignal in den Gleismagneten eingespeist wird, und die von den beiden anderen Frequenzgeneratoren erzeugten, jeweils zum Prüfsignal um +45° bzw. -45° phasenverschobenen Referenzsignale gleicher Frequenz nacheinander mit dem am Gleismagneten anstehenden, resultierenden Signal hinsichtlich ihres Phasenunterschieds verglichen werden, wobei die Frequenz des Signals jeweils kontinuierlich durchgestimmt wird, und jeweils analysiert wird, bei welchen Frequenzen der Phasenunterschied jeweils minimal wird, und diese beiden Frequenzen als obere bzw. untere Grenzfrequenzen abgespeichert werden,

c. die Güte des Gleismagneten berechnet wird, indem das Verhältnis der Resonanzfrequenz zur Differenz der Grenzfrequenzen gebildet wird,

d. die bestimmten Daten zu Güte und Resonanzfrequenz gespeichert und hinsichtlich der erlaubten Toleranzwerte analysiert werden und in einer Arbeitsliste dem untersuchten Gleismagneten eindeutig zugeordnet werden.


 
11. Verfahren zum Überprüfen der Resonanzfrequenz und der Güte von Gleismagneten der induktiven Sicherung bei spurgebundenem Verkehr gemäß Anspruch 10 wobei das Minimum des Phasenunterschieds zwischen Prüf- und Referenzsignal bestimmt wird, indem die Prüf- und Referenzsignale jeweils einen eigenen Komparator durchlaufen, deren Ausgänge in einem Exklusiv-Oder-Glied zusammengeführt werden, und das nach dem Exklusiv- Oder-Glied vorliegende Rechtecksignal daraufhin analysiert wird, bei welcher Frequenz es eine minimale Breite aufweist, und diese Frequenz als Frequenz mit minimalem Phasenunterschied zwischen Prüf- und Referenzsignal abgespeichert wird.
 
12. Verfahren zum Überprüfen der Geschwindigkeitsprüfeinrichtung mittels Schaltmagneten der induktiven Sicherung bei spurgebundenem Verkehr, dadurch gekennzeichnet, dass

a. von mindestens zwei Frequenzgeneratoren jeweils unterschiedliche Frequenzen (500 Hz, 1000 Hz oder 2000 Hz) erzeugt werden,

b. die unterschiedlichen Frequenzen zu einem Summensignal zusammengeführt werden,

c. mithilfe einer Erregerspule das Summensignal auf die Spule des Schaltmagneten eingekoppelt wird,

d. mithilfe der Statusanzeigen der Geschwindigkeitsprüfeinrichtung überprüft wird, ob die Geschwindigkeitsprüfeinrichtung korrekt ein- bzw. ausgeschaltet wurde oder nicht.


 
13. Verfahren zur induktiven Schnellprüfung von Gleismagneten der induktiven Sicherung bei spurgebundenem Verkehr, dadurch gekennzeichnet, dass ein Gleismagnet mithilfe einer am Gleismagneten platzierten Erregerspule induktiv von außen nacheinander bei allen drei Gleismagnetfrequenzen 500 Hz, 1000 Hz und 2000 Hz angeregt wird, wobei

a. für jeden der drei unterschiedlichen Gleismagnettypen jeweils Spannungsschwellwerte Us für die an der Erregerspule abzugreifende Spannung festgelegt werden,

b. die beim Platzieren der aktiven Erregerspule am Gleismagneten an der Erregerspule gemessene Spannung für jede der drei Frequenzen mit den zugehörigen Spannungsschwellwerten Us verglichen wird,

c. falls eine gemessene Erregerspulenspannung für eine der drei Frequenzen einen zugehörigen Schwellwert Us überschreitet und die anderen beiden Messwerte bei den anderen beiden Frequenzen unter ihrem jeweiligen Schwellwert Us liegen, die Frequenz des Gleismagneten gleich jener Frequenz des Erregerkreises gesetzt wird, die eine Schwellwertüberschreitung bewirkt hat,

d. Falls die Spannung an der Erregerspule bei allen drei Frequenzen unterhalb der Schwellwerte Us liegt, der Gleismagnet als inaktiv gewertet wird.


 




Zeichnung











Angeführte Verweise

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE



Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente