(19)
(11) EP 2 357 545 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
23.03.2016 Bulletin 2016/12

(21) Application number: 09827170.3

(22) Date of filing: 16.11.2009
(51) International Patent Classification (IPC): 
F01P 9/02(2006.01)
G01M 17/007(2006.01)
G05D 23/20(2006.01)
F01P 7/16(2006.01)
G05B 23/00(2006.01)
(86) International application number:
PCT/CN2009/074955
(87) International publication number:
WO 2010/057421 (27.05.2010 Gazette 2010/21)

(54)

COOLING SYSTEM FOR TESTING LIFETIME OF HYBRID POWER VEHICLE CONTROLLER

KÜHLSYSTEM ZUM TESTEN DER LEBENSDAUER EINER HYBRIDFAHRZEUGSTEUERUNG

SYSTÈME DE REFROIDISSEMENT POUR TESTER LA DURÉE DE VIE D'UN ORGANE DE COMMANDE DE VÉHICULE À ÉNERGIE HYBRIDE


(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

(30) Priority: 18.11.2008 CN 200810219185

(43) Date of publication of application:
17.08.2011 Bulletin 2011/33

(73) Proprietor: Chery Automobile Co., Ltd.
Wuhu, Anhui 241009 (CN)

(72) Inventor:
  • WANG, Dong
    Wuhu Anhui 241009 (CN)

(74) Representative: Müller Schupfner & Partner Patent- und Rechtsanwaltspartnerschaft mbB 
Bavariaring 11
80336 München
80336 München (DE)


(56) References cited: : 
EP-A2- 1 284 345
CN-A- 101 419 475
CN-Y- 2 827 781
US-A- 5 876 256
US-A1- 2007 144 464
CN-A- 101 261 190
CN-Y- 2 704 836
CN-Y- 200 953 042
US-A1- 2005 028 756
US-B1- 6 810 838
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Field of the Invention



    [0001] The present invention relates to a testing system for a hybrid power vehicle, in particular to a cooling system for testing lifetime of hybrid power vehicle controller.

    Description of the Prior art



    [0002] With energy crisis aggravating and people's environmental consciousness improved, new energy-based vehicles featuring low energy consumption, environment friendliness and high efficiency have become a new trend in the development of automobile industry. Having both the advantage of an electric vehicle in terms of low emission and the advantage of an internal combustion engine vehicle in terms of high energy density, HEV (Hybrid Electric Vehicle) is receiving increasing attention.

    [0003] The hybrid electric vehicle involved in the present invention refers to an intermediate level hybrid (ISG, integrated starter and generator) vehicle. In addition to having the regular configuration of a conventional automobile, an ISG vehicle also comprises core components such as a hybrid power vehicle controller, a hybrid power motor (an ISG motor, a motor integrating the functions of startling and power generation) mounted between the engine and the transmission gear box and a high voltage power battery. The hybrid electric vehicle related in this invention has such the critical functions as, automatic starting/stopping of the motor, auxiliary driving and energy recovery, etc., therefore the hybrid electric vehicle features reduced oil consumption of the engine. The performance of such core components as the hybrid power vehicle controller and the hybrid power motor has direct influence on the performance of the hybrid vehicle as a whole and the fuel cost economy, and the lifetime of these core components also produce direct influence on the service life of the hybrid power vehicle. Therefore, a testing lifetime system, which simulates the operating characteristics of a hybrid power vehicle In an accelerated aging process, Is needed to test or verify the potential life of the hybrid power vehicle controller during the design and production stages, so as to find a potential malfunction and a risk In advance and thus reduce the operating risks of the hybrid power vehicle.

    [0004] The accelerated testing lifetime is a common testing lifetime method. In the process of accelerated testing lifetime, the hybrid power vehicle controller and the motor are placed in an environment of high humidity, where the temperature fluctuates cyclically within an extensive range, and where so do the load and the power supply voltage of the vehicle. Thus, the operation temperature of both the hybrid power vehicle controller and the hybrid power motor is Instable. Once their actual operating temperature exceeds the normal temperature range, both the controller and the motor can be burned down, resulting in failure of the testing and damage to the whole testing lifetime system. Therefore, in the testing lifetime system for the hybrid power vehicle controller, a cooling system must be provided to ensure that the critical components, such as the hybrid power vehicle controller and the motor are operating within normal temperature range. On the other hand, since the motor and the hybrid power vehicle controller require different temperature range in the process of testing, this cooling system must be able to provide different cooling capacities for different components, so that each of these components is operating within its specific temperature range required for the testing and thus the requirement for testing is met.

    [0005] EP 1 284 345 A2 discloses an internal combustion engine coolant device with a primary and a secondary flow of coolant which is injected into the primary flow of coolant wherein the circulation of coolant passes through passage ways in the engine body. Furthermore, US 5,876,256 discloses a liquid cooling system for an internal combustion engine including a pump for delivering a coolant to one or more coolant passages in the engine. At least one thermostat is provided for controlling the flow of coolant through the engine through one or more return lines.

    [0006] In US 6,810,838 B1 discloses a coolant system for multiple cylinders in an internal combustion engine wherein coolant from a pump is let through a plurality of individual coolant flow passages extending along the cylinders.

    [0007] US 2005/0028756 A1 discloses an engine cooling system having a diverter valve to selectively control the flow of coolant through an internal combustion engine. A controller controls the diverter valve and a water pump to provide adequate coolant flow through a cylinder head and a cylinder block of the internal combustion engine as needed to maintain optimal operating temperatures.

    [0008] However, none of the prior art devices is capable of controlling and regulating the intensity of the cooling operation along individual coolant flow passages.

    Summary of the invention



    [0009] In view of the defects of prior art, the technical object of the present invention is to provide a cooling system for use in testing the lifetime of hybrid power vehicle controller, such that each critical component of the hybrid power vehicle, such as the controller and the motor, can operate within its specific temperature range required for the testing lifetime.

    [0010] The technical object of the present invention is realized by a cooling system as defined in claim 1. Embodiments of the inventive cooling system are defined in the appending sub claims wherein a cooling method is defined in claim 8.

    [0011] A cooling system for use in testing the lifetime of hybrid power vehicle controller comprises a control unit, a flow control valve, a water pump, a diverter, a condenser, a water tank and a cooling bench with temperature sensor; the control unit receives temperature signals from the temperature sensors of the cooling benches and sends control signals to the water pump, the flow control valves and to the diverter such as to control the operation of the water pump, the flow control valves and the diverter; the cooling water that is pumped from the water tank by the water pump is split and carried to the flow control valves and the cooling benches that are communicated with the flow control valves; the cooling water flowing through the cooling benches is converged into the diverter , and is then fed back to the water tank after flowing through one or several condensers.

    [0012] In the process of testing, the components to be cooled including the hybrid power vehicle controller and the motor are placed on the cooling benches, good contact between the components to be cooled and the cooling benches ensured. After the vehicle controller and the motor start operating, their temperatures gradually rise. The control unit receives temperature signals from the temperature sensors of the cooling benches and controls the operation of the water pump, the flow control valves and the diverter corresponding to the received temperature signals. When the temperature of a cooling bench exceeds the predetermined temperature range, the control unit issues signal to instruct the flow control valve communicated with this cooling bench to increase flow amount and the flow rate of cooling water in this cooling bench so that heat dissipation and temperature reduction of the components to be cooled on this cooling bench can be accelerated. When the temperatures of multiple or all the cooling benches exceed the predetermined temperature ranges, the control unit issues signal to instruct the water pump to increase power and increase the circulation speed of cooling water in the cooling system. The control unit also issues signal to instruct the diverter to divert the cooling water in the diverter to the multiple condensers for cooling and thus increase the heat dissipation. When the temperature of any cooling bench is lower than the predetermined temperature range, the control unit will instruct the diverter cease flow division, so that the cooling water from the diverter may only flow into one condenser for cooling. In such cases, the control unit could also reduce the flow of the corresponding flow control valve or the power of the water pump or even close the corresponding flow control valve, so that the temperature of each cooling bench can be maintained within respective predetermined range.

    [0013] The components to be cooled on different cooling benches are operated in different conditions, so that the cooling water for these different components are different in temperature and flow rate. The cooling water directly flow into the condenser without being thoroughly mixed, and the unstable temperature of the cooling water is unfavorable to the working of the condensers. Therefore, a heat exchanger controlled by the control unit is provided in the cooling system so that the cooling water flowing out of the cooling benches is firstly converged into the heat exchanger, and is then fed back to flow into the diverter. In this way, when there are major temperature differences among the cooling water of different cooling benches, the control unit may send control signal to accelerate the heat exchange rate of the cooling water in the heat exchanger, so that the temperature of the cooling water flowing out of the heat exchanger may remain reasonably stable as the system allows; that is, the temperature will fluctuate slowly and slightly instead of rapidly and intensively.

    [0014] An alternative configuration for accelerating heat exchange of the cooling water may be as such: the cooling system also includes a heat exchanger controlled by the control unit; the cooling water flowing out of the cooling benches is firstly flowed through heat exchanger after being flowed through the condenser, and is then fed back to the water tank.

    [0015] The cooling system of the present invention comprises at least two flow control valves and two condensers. After the motor and the vehicle controller are placed on the cooling bench, they can operate within their respective appropriate temperature range. And depending on actual situation, more flow control valves and condensers may be provided in the cooling system.

    [0016] The control unit is a singlechip or a computer.

    [0017] The heat exchanger is a container provided with a plurality of water inlets and one water outlet, and a stirring device is provided in the container, As long as the stirring rate is increased, the mixing speed of the cooling water in the container can be increased and the temperature become even.

    [0018] The cooling bench is made of mutually communicating hollow metal pipes, and the cooling bench is provided with a water inlet and a water outlet at its two ends; the cooling bench is a hollow bench made of metal plates and provided with a concave cavity, and the cooling bench is provided with a water inlet and a water outlet at its two ends. The cooling water enters from the water inlet, flows through the bench and finally flows out from the water outlet. The metal material of the cooling bench should have good heat conductivity, and it should be appropriate for manufacturing. Since the cooling bench has a concave cavity, and the components to be cooled are placed in the concave cavity, the contact area between the cooling bench and the components to be cooled can be increased so that the cooling effect can be improved.

    [0019] The cooling system for testing lifetime of hybrid power vehicle controller of the present invention is based on water circulation cooling method, featuring simple structure and low manufacturing cost. The control unit has reliable temperature control means for each of the cooling benches, so as to ensure that each of the components such as the vehicle controller and the motor to be cooled, , can operate within the temperature range required for their respective test. Therefore, the cooling system provided in the present invention is appropriate for the testing lifetime of a hybrid power vehicle controller.

    Brief Description of the Drawings



    [0020] 

    Fig. 1 is the structural diagram of the cooling system of embodiment 1 ;

    Fig. 2 is the structure diagram of the cooling system of embodiment 2.


    Detailed Description of the Preferred Embodiment



    [0021] The technical solution of the present invention is described in details with reference to the attached drawings and the specific embodiments.

    Embodiment 1 :



    [0022] Fig. 1 is the structural diagram of the cooling system of embodiment 1. As shown in Fig. 1, a cooling system for testing lifetime of hybrid power vehicle controller is provided comprises one control unit 8, four flow control valves 1, one water pump 4, one diverter 2, two condensers 3, one water tank 5 and four cooling benches 6 with temperature sensors. The control unit 8 is connected with other components such as the temperature sensors of the cooling benches 6, the water pump 4, the flow control valves 1 and the diverter2 with communication cables (The communication cables are represented in dotted line in Fig. 1).

    [0023] The water pump 4 is connected with the water tank 5 via pipelines. The cooling water that is pumped from the water tank 5 by the water pump 4 is split and carried to the flow control valves 1. Each of the flow control valves 1 is communicated with one hollow cooling bench 6 in which components to be cooled are placed. After being regulated by the flow control valves 1, the cooling water flowing out of the flow control valves 1 is flowed to the corresponding cooling benches 6 in order to cool down the components to be cooled on the cooling benches 6. The cooling water flowing out of the cooling benches 6 is converged into a heat exchanger 7. After being stirred and being mixed thoroughly in the heat exchanger 7, the cooling water is flowed into the diverter 2, whereby the cooling water is split and carried to one or two condensers 3 corresponding to the instruction of the control unit 8, and then the cooling water is fed back to the water tank 5.

    [0024] After the cooling system for testing lifetime of hybrid power vehicle controller starts operating, the control unit 8 acquires the temperature data of the cooling benches 6 through temperature sensors. When the temperature of the cooling benches 6 rises to a certain value, the control unit 8 outputs instruction to the water pump 4 such that the water pump 4 rotates at a fixed speed and drives the cooling water to circulate in the cooling system, so that the cooling system starts to work. When the temperature of a cooling bench 6 needs to be mildly decreased, the control unit 8 increases the water circulation flow rate and flow amount of this cooling bench 6 by regulating the flow control valve 1 corresponding to this cooling bench 6, in this way the operating temperature of this cooling bench 6 is mildly decreased. When the temperature of a cooling bench 6 needs to be reduced quickly and in great measure, the control unit 8 further increases the rotate speed of the water pump 4 and instructs the diverter 2 to split and divert the cooling water to flow through two condensers 3 for cooling so as to accelerate the cooling, in addition to using the flow control valve 1 to increase the flow rate and flow amount of water circulation. When the testing need is to test the lifetime of a vehicle controller working continuously in high temperature environment, the control unit 8 can decrease or switch off the flow of the flow control valve 1 corresponding to the vehicle controller so as to control its cooling capability, and so that the temperature of the vehicle controller will rise due to its self-heating. Based on the above working process, the control unit realizes the temperature control over the components to be cooled such as the vehicle controller and the motor, so as to ensure that these components to be cooled such as the vehicle controller and the motor can operate within the temperature range required for testing.

    Embodiment 2 :



    [0025] Fig. 2 is the structural diagram of the cooling system of embodiment 2. As shown in Fig. 2, this embodiment differs from embodiment 1 in that the heat exchanger 7 in embodiment 2 is placed between the condenser 3 and the water tank 5. The cooling waters flowing through the cooling benches 6 is firstly flowed through the heat exchanger 7 after being flowed through the condenser 3, and is then fed back to the water tank 5. In this way, it is also feasible to accelerate the heat exchange of cooling water in the case that there is major difference in the lengths of the cooling water circulation paths where the condensers 3 are located in the testing system of some vehicle models.


    Claims

    1. A cooling system for use in testing the lifetime of a hybrid power vehicle controller comprising a control unit (8), at least two flow control valves (1), a water pump (4), a diverter (2), at least two condensers (3), a water tank (5) and multiple cooling benches (6) with temperature sensors, wherein the control unit (8) is adapted to receive temperature signals from the temperature sensors of the cooling benches (6) and send control signals to the water pump (4), the flow control valves (1) and to the diverter (2) so as to control the operation of the water pump (4), the flow control valves (1) and the diverter (2); the cooling system is adapted to split the cooling water that is pumped from the water tank (5) by the water pump (4) and carry it to the flow control valves (1) and the cooling benches (6), each of said cooling benches (6) communicates with one of the flow control valves (1); the cooling system is adapted to merge the cooling water flowing through each of the cooling benches (6) into the diverter (2) to divert it to the at least two condensers (3), and then feed it back to the water tank (5) after it has flown through said condensers (3); the cooling system also comprises a heat exchanger (7) controlled by the control unit (8); the heat exchanger (7) is a water container provided with a plurality of water inlets and one water outlet, and a stirring device is provided in the container.
     
    2. The cooling system of claim 1, wherein the cooling water flowing out of each of the cooling benches (6) merges into the heat exchanger (7), and is then fed back to the diverter (2).
     
    3. The cooling system of claim 1, wherein the cooling water flowing out of each of the cooling benches (6) flows through the heat exchanger (7) after flowing through the condensers (3), and is then fed back to the water tank (5).
     
    4. The cooling system of any of claim 1 or 2 or 3, wherein the cooling system is provided with two flow control valves (1) and two condensers (3).
     
    5. The cooling system of claim 4, wherein the control unit (8) is a computer.
     
    6. The cooling system of claim 4, wherein each of the cooling benches (6) is made of hollow metal pipes, which are in fluid communication with each other, and each of the cooling benches (6) has a water inlet and a water outlet.
     
    7. The cooling system of claim 4, wherein each of the cooling benches (6) is a hollow bench made of metal plates and provided with a concave cavity, and each of the cooling benches (6) has a water inlet and a water outlet.
     
    8. A cooling method for being used in a process for testing the lifetime of hybrid power vehicle controller, with a cooling system comprising a control unit (8), at least two flow control valves (1), a water pump (4), a diverter (2), at least two condensers (3), a water tank (5) and multiple cooling benches (6) with temperature sensors; wherein

    (i) the control unit (8) controls the operation of the water pump (4), the flow control valves (1) and the diverter (2) by receiving temperature signals from the temperature sensors of the cooling benches (6) and sending control signals to the water pump (4), the flow control valves (1) and to the diverter (2), and

    (ii) the control unit (8) controls a heat exchanger (7) which is a water container provided with a plurality of water inlets and one water outlet, and a stirring device is provided in the container.

    (iii) the cooling water is pumped from the water tank (5) by the water pump (4) and is split and carried to the flow control valves (1) and the cooling benches (6), wherein each of said cooling benches (6) communicates with one of the flow control valves (1);

    (iv) the cooling water flowing through the cooling benches (6), is merged into the diverter (2) and diverted to the at least two condensers (3), and then fed back to the water tank (5) after flowing through said condensers (3).


     


    Ansprüche

    1. Kühlsystem zur Verwendung beim Testen der Lebensdauer einer Steuerung eines Fahrzeugs mit Hybridantrieb, das eine Steuereinheit (8), mindestens zwei Flussregelventile (1), eine Wasserpumpe (4), einen Umlenker (2), mindestens zwei Kondensatoren (3), einen Wassertank (5) und viele Kühlbänke (6) mit Temperaturfühlern enthält, wobei die Steuereinheit (8) geeignet ist, Temperatursignale von den Temperaturfühlern der Kühlbänke (6) zu empfangen und Steuersignale an die Wasserpumpe (4), die Flussregelventile (1) und den Umlenker (2) zu senden, um den Betrieb der Wasserpumpe (4), der Flussregelventile (1) und des Umlenkers (2) zu steuern; das Kühlsystem geeignet ist, das vom Wassertank (5) durch die Wasserpumpe (4) gepumpte Kühlwasser aufzuteilen und es zu den Flussregelventilen (1) und zu den Kühlbänken (6) zu transportieren, jede der Kühlbänke (6) mit einem der Flussregelventile (1) in Verbindung steht; das Kühlsystem geeignet ist, das durch jede der Kühlbänke (6) fließende Kühlwasser in den Umlenker (2) übergehen zu lassen, um es zu den mindestens zwei Kondensatoren (3) umzulenken, und es dann wieder in den Wassertank (5) zurückzuführen, nachdem es durch die Kondensatoren (3) geflossen ist; das Kühlsystem auch einen von der Steuereinheit (8) gesteuerten Wärmetauscher (7) enthält; der Wärmetauscher (7) ein Wasserbehälter ist, der mit einer Vielzahl von Wassereinlässen und einem Wasserauslass versehen ist, und ein Rührwerk im Behälter vorgesehen ist.
     
    2. Kühlsystem nach Anspruch 1, wobei das aus jeder der Kühlbänke (6) fließende Kühlwasser in den Wärmetauscher (7) übergeht und dann zum Umlenker (2) zurückgeführt wird.
     
    3. Kühlsystem nach Anspruch 1, wobei das aus jeder der Kühlbänke (6) fließende Kühlwasser durch den Wärmetauscher (7) fließt, nachdem es durch die Kondensatoren (3) geflossen ist, und dann zum Wassertank (5) zurückgeführt wird.
     
    4. Kühlsystem nach einem der Ansprüche 1 oder 2 oder 3, wobei das Kühlsystem mit zwei Flussregelventilen (1) und zwei Kondensatoren (3) versehen ist.
     
    5. Kühlsystem nach Anspruch 4, wobei die Steuereinheit (8) ein Computer ist.
     
    6. Kühlsystem nach Anspruch 4, wobei jede der Kühlbänke (6) aus hohlen Metallrohren besteht, die miteinander in Fluidverbindung stehen, und jede der Kühlbänke (6) einen Wassereinlass und einen Wasserauslass hat.
     
    7. Kühlsystem nach Anspruch 4, wobei jede der Kühlbänke (6) eine hohle Bank aus Metallplatten ist und mit einem konkaven Hohlraum versehen ist, und jede der Kühlbänke (6) einen Wassereinlass und einen Wasserauslass hat.
     
    8. Kühlverfahren zur Verwendung bei einem Vorgang zum Testen der Lebensdauer einer Steuerung eines Fahrzeugs mit Hybridantrieb, mit einem Kühlsystem, das eine Steuereinheit (8), mindestens zwei Flussregelventile (1), eine Wasserpumpe (4), einen Umlenker (2), mindestens zwei Kondensatoren (3), einen Wassertank (5) und viele Kühlbänke (6) mit Temperaturfühlern enthält; wobei

    (i) die Steuereinheit (8) den Betrieb der Wasserpumpe (4), der Flussregelventile (1) und des Umlenkers (2) steuert, indem sie Temperatursignale vom Temperaturfühler der Kühlbänke (6) empfängt und Steuersignale an die Wasserpumpe (4), die Flussregelventile (1) und den Umlenker (2) sendet, und

    (ii) die Steuereinheit (8) einen Wärmetauscher (7) steuert, der ein Wasserbehälter ist, welcher mit einer Vielzahl von Wassereinlässen und einem Wasserauslass versehen ist, und ein Rührwerk im Behälter vorgesehen ist,

    (iii) das Kühlwasser durch die Wasserpumpe (4) vom Wassertank (5) gepumpt und aufgeteilt und zu den Flussregelventilen (1) und den Kühlbänken (6) transportiert wird, wobei jede der Kühlbänke (6) mit einem der Flussregelventile (1) in Verbindung steht;

    (iv) das durch die Kühlbänke (6) fließende Kühlwasser in den Umlenker (2) übergeht und zu den mindestens zwei Kondensatoren (3) umgelenkt und dann zum Wassertank (5) zurückgeführt wird, nachdem es durch die Kondensatoren (3) geflossen ist.


     


    Revendications

    1. Système de refroidissement à utiliser pour tester la durée de vie d'un dispositif de commande pour véhicule à entraînement hybride, comprenant une unité de commande (8), au moins deux valves de commande d'écoulement (a), une pompe à eau (4), un dérivateur (2), au moins deux condenseurs (3), un réservoir d'eau (5) et une multiplicité de bancs de refroidissement (6) avec des capteurs de température, dans lequel l'unité de commande (8) est adaptée à recevoir des signaux de température depuis les capteurs de température des bancs de refroidissement (6) et à envoyer des signaux de commande à la pompe à eau (4), aux valves de commande d'écoulement (1) et au dérivateur (2), le système de refroidissement étant adapté à subdiviser l'eau de refroidissement qui est pompée depuis le réservoir d'eau (5) par la pompe à eau (4) et à la transporter aux valves de commande d'écoulement (1) et au banc de refroidissement (6), chacun desdits bancs de refroidissement (6) communique avec l'une des valves de commande d'écoulement (1) ; le système de refroidissement étant adapté à rassembler l'eau de refroidissement qui s'écoule à travers chacun des bancs de refroidissement (6) vers le dérivateur (2) pour la dériver vers lesdits au moins deux condenseurs (3), et ensuite à la ramener au réservoir d'eau (5) après qu'elle se soit écoulée à travers lesdits condenseurs (3) ; le système de refroidissement comprenant également un échangeur de chaleur (7) commandé par l'unité de commande (8) ; l'échangeur de chaleur (7) étant un conteneur à eau équipé d'une pluralité d'entrées d'eau et d'une sortie d'eau, et un dispositif agitateur est prévu dans le conteneur.
     
    2. Système de refroidissement selon la revendication 1, dans lequel l'eau de refroidissement qui s'écoule hors de chacun des bancs de refroidissement (6) se rassemble dans l'échangeur de chaleur (7), et est ensuite ramenée au dérivateur (2).
     
    3. Système de refroidissement selon la revendication 1, dans lequel l'eau de refroidissement qui s'écoule hors de chacun des bancs de refroidissement (6) s'écoule à travers l'échangeur de chaleur (7) après s'être écoulée à travers les condenseurs (3), et est ensuite ramenée au réservoir d'eau (5).
     
    4. Système de refroidissement selon l'une quelconque des revendications 1 ou 2 ou 3, dans lequel le système de refroidissement est doté de quatre valves de commande d'écoulement (1) et de deux condenseurs (3).
     
    5. Système de refroidissement selon la revendication 4, dans lequel l'unité de commande (8) est un ordinateur.
     
    6. Système de refroidissement selon la revendication 4, dans lequel chacun des bancs de refroidissement (6) est réalisé avec des tubes métalliques creux, qui sont en communication fluidique les uns avec les autres, et chacun des bancs de refroidissement (6) a une entrée d'eau et une sortie d'eau.
     
    7. Système de refroidissement selon la revendication 4, dans lequel chacun des bancs de refroidissement (6) est un banc creux constitué de plaques métalliques et doté d'une cavité concave, et chacun des bancs de refroidissement (6) a une entrée d'eau et une sortie d'eau.
     
    8. Procédé de refroidissement destiné à être utilisé dans un processus pour tester la durée de vie d'un organe de commande pour véhicule à entraînement hybride, avec un système de refroidissement comprenant une unité de commande (8), au moins deux valves de commande d'écoulement (1), une pompe à eau (4), un dérivateur (2), au moins deux condenseurs (3), un réservoir d'eau (5) et une multiplicité de bancs de refroidissement (6) avec des capteurs de température ; dans lequel

    (i) l'unité de commande (8) commande le fonctionnement de la pompe à eau (4), des valves de commande d'écoulement (1) et du dérivateur (2) en recevant des signaux de température depuis les capteurs de température des bancs de refroidissement (6) et en envoyant des signaux de commande à la pompe à eau (4), aux valves de commande d'écoulement (1) et au dérivateur (2), et

    (ii) l'unité de commande (8) commande un échangeur de chaleur (7) qui est un conteneur à eau équipé d'une pluralité d'entrées d'eau et d'une sortie d'eau, et un dispositif agitateur est prévu dans le conteneur,

    (iii) l'eau de refroidissement est pompée depuis le réservoir d'eau (5) par la pompe à eau (4) et est subdivisée et transportée aux valves de commande d'écoulement (1) et aux bancs de refroidissement (6), dans lequel chacun desdits bancs de refroidissement (6) communique avec l'une des valves de commande d'écoulement (1) ;

    (iv) l'eau de refroidissement qui s'écoule à travers les bancs de refroidissement (6) est rassemblée dans le dérivateur (2) et elle est dérivée vers lesdits au moins deux condenseurs (3), et elle est ensuite ramenée au réservoir d'eau (5) après s'être écoulée à travers lesdits condenseurs (3).


     




    Drawing











    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description