(19)
(11) EP 2 325 476 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
13.04.2016 Bulletin 2016/15

(21) Application number: 09176699.8

(22) Date of filing: 20.11.2009
(51) International Patent Classification (IPC): 
F02P 3/04(2006.01)
F02P 3/055(2006.01)
F02P 15/10(2006.01)

(54)

Coupled multi-charge ignition system with an intelligent controlling circuit

Gekoppeltes Mehrzündsystem mit einem intelligenten Steuerkreis

Système d'allumage couplé à charges multiples doté d'un circuit de contrôle intelligent


(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

(43) Date of publication of application:
25.05.2011 Bulletin 2011/21

(73) Proprietor: Delphi Technologies, Inc.
Troy, MI 48007 (US)

(72) Inventors:
  • Lorenz, Frank
    56828 Alflen (DE)
  • Loenarz, Marco
    4874 Lamadelaine (LU)

(74) Representative: Delphi France SAS 
Patent Department 22, avenue des Nations CS 65059 Villepinte
95972 Roissy CDG Cedex
95972 Roissy CDG Cedex (FR)


(56) References cited: : 
EP-A1- 1 046 814
JP-A- 54 017 433
US-A- 5 193 515
DE-A1- 10 231 511
US-A- 4 228 779
US-A1- 2007 181 110
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present invention relates to an ignition system and particularly, to an AC ignition system which is able to create and maintain a continuous spark.

    BACKGROUND OF THE INVENTION



    [0002] The automotive industries have developed gasoline engines that use very lean air-fuel mixtures, that is, having a higher air component, to reduce fuel consumption and emissions. Common combustion principles are either homogeneous lean mixtures or stratified direct injection. To get a safe ignition it is necessary to have a high energy ignition source.

    [0003] Prior art solutions are generally large, high energy, single spark ignition coils, which have a limited spark duration and energy output. To overcome this limitation and also to reduce the size of the ignition system multi-charge Ignition systems have been developed. Multi-charge systems produce a fast sequence of individual sparks, so that the output is a long quasi-continuous spark. Multi-charge ignition methods have the disadvantage that the spark is interrupted during the recharge periods, which has negative effects, particularly noticeable when high turbulences are present in the combustion chamber. For example this can lead to misfire, resulting in higher fuel consumption and higher emissions. Otherwise, prior solutions such as simple AC ignition systems have also the disadvantage that the primary side is directly coupled to the secondary side of the transformer during the firing, so the transferred energy to the spark plug decreases with higher burn voltages.

    [0004] Furthermore, it is known from document WO 2007/025367 an ignition system providing power and duration controlled ignition spark. The system comprises a spark controller, first switching energy accumulator, storage capacitor, and second switching energy accumulator with an ignition coil. The ignition system utilizes dual means of switching energy accumulation, internal energy transfer, and three means of energy release to the ignition spark, managed by means of the spark controller depending on engine operating conditions, and provides continuous bipolar ignition spark. Such ignition system is based on the use of an energy accumulator coupled to a storage capacitor in order to feed energy to a single ignition coil. It does not provide any solution to the disadvantage encountered with multi-charge systems.

    [0005] It is also known from document EP 1 046 814 A1, an ignition system for the engine of a motor vehicle.

    SUMMARY OF THE INVENTION



    [0006] One goal of the present invention is to overcome the aforecited drawbacks by providing a multi-charge ignition system without these negative effects and, at least partly, producing a continuous ignition spark over a wide area of burn voltage, delivering an adjustable energy to the spark plug and providing with a burning time of the ignition fire that can be chosen freely.

    [0007] For that purpose, according to a first aspect, the invention concerns an ignition system for a combustion engine comprising a spark plug with a pair of gapped electrodes, a first transformer including a first primary winding inductively coupled to a first secondary winding, a second transformer including a second primary winding inductively coupled to a second secondary winding, secondary windings being each coupled to the gapped electrodes of the spark plug and a control unit enabled to simultaneously energize and deenergize primary windings by simultaneously switching on and off two switches to establish an electrical arc across the gapped electrodes and to sequentially energize and deenergize primary windings by sequentially switching on and off both switches to maintain a continuous ignition fire. Thanks to the use of a multi-charge ignition system, it allows the control unit to use simultaneously the energy stored in both transformers to create an ignition spark and to use alternatively the energy stored either in one transformer or in the other to maintain a continuous ignition fire while reenergizing the other transformer. The alternation between energizing and deenergizing is done after comparison of the secondary current with a predetermined current threshold representative of the minimum necessary level of energy stored in the transformer that is switched off. When the secondary current falls short to the predetermined current threshold, the switching operation is executed. Thus, the ignition system allows production of a continuous ignition spark with a burning time of the ignition fire that can be chosen freely.

    [0008] According to an advantageous embodiment, the ignition system further comprises a step-down converter connected to the primary windings and including a third switch and a diode, and said control unit is enabled to switch off said third switch when a primary current exceeds a predetermined current threshold in order to limit the stored energy in the transformer that is switched on by impelling a current over the diode. Due to this step-down converter, the primary current is limited to a predetermined maximum value, so that the transformers cannot go into magnetic saturation.

    [0009] According to another advantageous embodiment, the control unit is further enabled to compare the secondary current with the predetermined current threshold representative of the minimum necessary level of energy stored in the transformer that is switched off and to adapt this predetermined current threshold to the level of energy stored. Such adaptation of the minimum secondary current level depending on the stored energy in the transformers allows getting a stable controlling circuit.

    [0010] According to another advantageous embodiment, secondary windings are decoupled one from the other by high voltage diodes, and said control unit is further enabled to detect a burn voltage at the spark plug in the combustion engine, to switch off both corresponding switches when burn voltage is higher than a predetermined burn voltage threshold and switch on high-voltage diodes so as a forward current floats through. Advantageously, said control unit detects burn voltage at the spark plug by measuring the gradient of the secondary current. Detection of the burn voltage allows stopping ignition when it exceeds a predetermined level in order to be able to use ordinary low-cost high-voltage breakdown diodes on the secondary side, i.e. with a breakdown voltage of e.g. 5kV, instead of expensive and too large high-voltage diodes with a breakdown voltage of 30kV or more.

    [0011] According to another aspect, the present invention concerns a method of producing electrical arcs across a pair of gapped electrodes of a spark plug with an ignition system of claim 1, comprising the steps of:
    • energizing simultaneously both primary windings by switching on corresponding switches;
    • deenergizing simultaneously both primary windings by switching off corresponding switches to establish an electrical arc across the pair of gapped electrodes;
    • energizing and deenergizing sequentially primary windings by sequentially switching on and off corresponding switches.


    [0012] According to an advantageous variant, the method further comprises the steps of comparing the primary current with a first predetermined current threshold; switching off a third switch when the primary current exceeds the first predetermined current threshold and impelling a current over a diode from the primary winding that is switched on.

    [0013] According to another advantageous variant, the method further comprises the steps of comparing the secondary current with a second predetermined current threshold representative of the minimum necessary level of energy stored in the transformer that is switched off; and switching sequentially on and off both corresponding switches when the secondary current falls short to the second predetermined current threshold.

    [0014] According to another advantageous variant, the method further comprises the step of setting adaptively said second predetermined current threshold to the level of energy stored in the transformer that is switched off.

    [0015] According to another advantageous variant, the method further comprises the step of detecting burn voltage at the spark plug in the combustion engine and switching off both corresponding switches when burn voltage is higher than a predetermined burn voltage threshold and switching on high-voltage diodes so as forward current floats through.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0016] Other features and advantages of the invention will appear upon reading the following description which refers to the annexed drawings in which:
    • Figure 1 is an electrical schematic illustration of an ignition system according to a preferred embodiment of the present invention;
    • Figures 2, 4 and 5 illustrate certain characteristic signals at various points in a use cycle for the exemplary ignition system as illustrated in Figure 1;
    • Figure 3 is a diagram representing step by step the different control signals sent and received by the control unit of an ignition system as illustrated in Figure 1.

    DETAILED DESCRIPTION OF THE INVENTION



    [0017] With reference now to Figure 1, a multi-charge ignition system is illustrated for producing a continuous ignition spark over a wide area of burn voltage servicing a single set of gapped electrodes in a spark plug 11 such as might be associated with a single combustion cylinder of an internal combustion engine (not shown).

    [0018] The multi-charge ignition system uses fast charging ignition coils (L1-L4), including primary windings, L1, L2 to generate the required high AC voltage and wound on a common core K1 forming a first transformer and secondary windings L3, L4 wound on another common core K2 forming a second transformer. The two coil ends of the first and second primary windings L1, L3 may be alternately switched to a common ground such as a chassis ground of an automobile by electrical switches Q1, Q2. These switches Q1, Q2 are preferably Insulated Gate Bipolar Transistors. Resistor R1 for measuring the primary current Ip that flows from the primary side is connected between the switches Q1, Q2 and ground, while resistor R2 for measuring the secondary current Is that flows from the secondary side is connected between the diodes D1, D2 and ground.

    [0019] In the present embodiment for extended burn applications, it is assumed that the low-voltage ends of the secondary windings L2, L4 are coupled to a common ground or chassis ground of an automobile through high-voltages diodes D1, D2. The high-voltage ends of the secondary ignition windings L2, L4 are coupled to one electrode of a gapped pair of electrodes in a spark plug 11 through conventional means. The other electrode of the spark plug 11 is also coupled to a common ground, conventionally by way of threaded engagement of the spark plug to the engine block.

    [0020] The primary windings L1, L3 are connected to a common energizing potential which in the present embodiment is assumed to correspond to conventional automotive system voltage in a nominal 12V automotive electrical system and is in the figure the positive voltage of battery 15.

    [0021] The charge current can be supervised by an electronic control circuit 13 that controls the state of the switches Q1, Q2. The control circuit 13 is for example responsive to engine spark timing (EST) signals to selectively couple the primary windings L1 and L2 to system ground through switches Q1 and Q2 respectively controlled by signals Igbt1 and Igbt2 respectively. Measured primary current Ip and secondary current Is are sent to control unit 13.

    [0022] Advantageously, the common energizing potential of the battery 15 is coupled by way of an ignition switch M1 to the primary windings L1, L3 at the opposite end that the grounded one. Switch M1 is preferably a MOSFET transistor. A diode D3 is coupled to transistor M1 so as to form a step-down converter. Control unit 13 is enabled to switch off switch M1 by means of a signal FET.

    [0023] In operation, the control circuit 13 is operative to provide an extended continuous high-energy arc across the gapped electrodes. During a first step, switches M1, Q1 and Q2 are all switched on, so that the delivered energy of the power supply 15 is stored in the magnetic circuit of both transformers (T1, T2). During a second step, both primary windings are switched off at the same time by means of switches Q1 and Q2. On the secondary side of the transformers a high voltage is induced and an ignition ignition spark is created through the gapped electrodes of the spark plug 11. During a third step, switch Q1 is switched on and switch Q2 is switched off (or vice versa). That means that the first transformer (L1, L2) stores energy into its magnetic circuit while the second transformer (L3, L4) delivers energy to spark plug (or vice versa). During a fourth step, when the primary current Ip increases over a limit (Ipmax), the control unit detects it and switches transistor M1 off. The stored energy in the transformer (L1, L2 or L3, L4) that is switched on (Q1, or Q2) impels a current over diode D3 (step-down topology), so that the transformer cannot go into the magnetic saturation, its energy being limited. Preferably, transistor M1 will be permanently switched on and off to hold the energy in the transformer on a constant level. During a fifth step, just after the secondary current Is falls short of a secondary current threshold level (Ismin) the switch Q1 is switched off and the switch Q2 is switched on (or vice versa). Then steps 3 to 5 will be iterated by sequentially switching on and off switches Q1 and Q2 as long as the control unit switches both switches Q1 and Q2 off.

    [0024] As illustrated in Figure 2, on the upper graph, the trace represents primary current Ip along time. On the lower graph, the traces represent the secondary current Is and the secondary voltage Us at the gapped electrodes of the spark plug. The different steps 1 to 5 of operation of the control circuit have been reported on Figure 2. During step 1, i.e. M1, Q1 and Q2 switched on, the primary current Ip is increasing rapidly with the energy storage in the transformers. During step 2, i.e. Q1 and Q2 switched off, the secondary current Is is increasing and a high voltage is induced so as to create an ignition spark through the gapped electrodes of the spark plug. During step 3, i.e. Q1 and Q2 are switched on and off sequentially, so as to maintain the spark as well as the energy stored in the transformers. During step 4, comparison is made between primary current Ip and a limit Ipmax. When Ip exceeds Ipmax M1 is switched off, so that the "switched on" transformer cannot go into the magnetic saturation, by limiting its stored energy. During step 5, comparison is made between the secondary current Is and a secondary current threshold level Ismin. If Is < Ismin, Q1 is switched off and Q2 switched on (or vice versa). Then steps 3 to 5 will be iterated by sequentially switching on and off Q1 and Q2 as long as the control unit switches both Q1 and Q2 off. Because of the alternating charging and discharging of the two transformers the ignition system delivers a continuous ignition fire.

    [0025] Figure 3 is a diagram showing in more details step by step the different control signals sent and received by the control unit of an ignition system as illustrated in Figure 1.

    [0026] During a step S0, the control unit checks whether there is a high EST signal. If so, during a step S1, control signals Igbt1, Igbt2 and Fet are switched on, so both transformers are charged at the same time. The delivered energy of the power supply is stored in the magnetic circuit of the transformers. During a step S1.1, the control unit checks whether there is a low EST signal. Until this is the case, the transformers are charging.

    [0027] When a low EST signal is detected, during a step S1.2, the control unit will preferably detect the maximum primary current Ipmax and set the secondary current threshold Ismin dependent on the Ipmax (Ismin=f(Ipmax)). A greater primary current will result in a greater secondary current threshold and vice versa.

    [0028] Then during a step S2, both control signals Igbt1 and Igbt2 are switched off. On the secondary side of the transformers a high voltage is induced (up to 30-40kV). After a short time a spark gap at the spark plug breaks down and the secondary voltage decreases to a burn voltage (e.g. ≈ 0.5 kV). The high voltage diodes (D1, D2) are protected from too high voltages, because both diodes are conducted in forward direction during this critical breakthrough period.

    [0029] Then during a step S3, Igbt1 remains off and Igbt2 is switched on. Thus coil T1 is recharged and coil T2 is firing. If the primary current Ip exceeds the primary threshold Ipmax, the control signal FET is switched off for a short time during a step S4. Thus, the primary current Ip is limited to a maximum value and cannot rise up very quickly to non-controllable values; and therefore the magnetic circuit cannot go into magnetic saturation.

    [0030] Otherwise, since the secondary voltage Us depends on the ambient conditions at the spark plug (e.g. airflow), the control circuit will preferably detect during a step 4.1 the secondary voltage Us using the gradient of the secondary current (dIs/dt=f(Us)). In order to protect the high-voltage-diodes on the secondary side from too high voltages, the control circuit will advantageously switch both Igbt1 and Igbt2 off, if the secondary voltage (respectively dIs/dt) reaches a maximum limit (Us>Usmax). In case such event occurs the control circuit detects the gradient of the secondary current any more and will fall back to the normal operational mode, if the secondary voltage falls below the maximum limit (Us<Usmax), i.e. one Igbt control signal being on, the other one being off. In case the secondary voltage would remain at a very high level, the system then works in a normal multi-charge mode where both Igbt signals are on respectively off at the same time, (see figures 4 and 5). Another way to detect the secondary voltage is to measure the voltage at the drain connector of the transistors Q1, Q2.

    [0031] During a step 5, if the secondary current Is falls short off the secondary current threshold Ismin (Is < Ismin) the Igbt 2 control signal is switched off and Igbt 1 is switched on. Then during a step 6, the Igbt control signals are alternately switched on and off, steps 1.2, 4, 4.1 and 5 being iterated by the control unit.

    [0032] The burn voltage at the spark plug in a combustion engine is variable, because of the turbulences at the ignition spark. When the secondary voltage Us becomes higher, the firing transformer has to deliver more energy to the ignition spark. Then, the transformer, which is recharging, cannot safe enough energy until the secondary current Is falls short to the secondary current threshold Ismin. Consequently, the average energy level in the transformers decreases. To get a stable controlling circuit, the burn voltage Us is advantageously detected and the secondary current threshold Ismin set adaptively to a level that depends on the stored energy in the charging coil. This situation has been shown in Figure 4.

    [0033] Figure 4 illustrates three traces which represent primary current Ip, secondary current Is and the secondary voltage Us along time. In this example, the secondary voltage or burn voltage is around 2kV, i.e. twice greater than in the example of Figure 2. The steps for creating and maintaining an ignition spark are mainly the same as for the example of Figure 2. However, in this preferred embodiment, the secondary current threshold Is is set dependent on the primary current Ip (see step S1.2 explained above). This function is useful to prevent the system to get to an oscillating system. When the secondary current threshold Ismin reaches a minimum set value, the system switches into a normal multi-charge mode to deliver a higher power level to the spark plug until the burn voltage decreases.

    [0034] When the burn voltage Us becomes too high (e.g. the ignition spark is blown out), the high-voltage diodes on the secondary side can breakdown. One possible solution is to increase the breakdown voltage of the diodes, e.g. to 30kV or more. But these diodes are expensive and/or not available for automotive applications. Therefore, to minimize the breakdown voltage of the high-voltage diodes on the secondary side, the burn voltage Us has to be detected by the control unit. A convenient way to do so is to detect the gradient of the secondary current (dls/dt). If the gradient is too high, the control unit switches both transistors Q1 and Q2 off. Thus, the diodes are safe, because both are switched on and through the diodes float a forward current. This situation has been shown in Figure 5.

    [0035] Figure 5 illustrates the same traces as Figure 4, namely the primary current Ip, the secondary current Is and the secondary voltage Us along time. In this example, the secondary voltage or burn voltage is around 4.8kV, i.e. five greater than in the example of Figure 2. The controlling unit detects the detects the gradient of the secondary current (dls/dt). Over a predetermined value, e.g. 4kV, since the gradient is to high, the ignition system switches both transistors Q1 and Q2 off, so as to deliver a higher power level to the spark plug until the burn voltage decreases called normal multi-charge mode. If the burn voltage does not decrease the system remains in this normal multi-charge mode.

    [0036] According to this preferred embodiment, such intelligent control unit saves the high-voltage diodes on the secondary side for too large burn voltages, allowing using safely high-voltage diodes with only a breakdown voltage of 5kV which are easily available and at low price on the market.

    [0037] Having described the invention with regard to certain specific embodiments, it is to be understood that these embodiments are not meant as limitations of the invention. Indeed, various modifications, adaptations and/or combination between embodiments may become apparent to those skilled in the art without departing from the scope of the annexed claims.


    Claims

    1. An ignition system for a combustion engine comprising:

    - a spark plug with a pair of gapped electrodes;

    - a first transformer (T1) including a first primary winding (L1) inductively coupled to a first secondary winding (L2);

    - a second transformer (T2) including a second primary winding (L3) inductively coupled to a second secondary winding (L4);

    - secondary windings (L2, L4) being each coupled to the gapped electrodes of the spark plug and being decoupled one from the other by high voltage diodes (D1, D2);

    - a control unit enabled to simultaneously energize and deenergize both primary windings (L1, L3) by simultaneously switching on and off two corresponding switches (Q1, Q2) to establish an electrical arc across the gapped electrodes and to sequentially energize and deenergize both primary windings (L1, L3) by sequentially switching on and off both corresponding switches (Q1, Q2) to maintain a continuous ignition fire,

    characterized in that said control unit being further enabled to detect a burn voltage at the spark plug in the combustion engine, to switch off both corresponding switches (Q1, Q2) when burn voltage is higher than a predetermined burn voltage threshold and thereby switch on both high voltage diodes (D1, D2) so as a forward current floats through.
     
    2. An ignition system according to claim 1, wherein it further comprises a step-down converter including a switch (M1) and a diode (D3), said control unit being enabled to switch off said switch (M1) when a primary current (Ip) exceeds a first predetermined current threshold (Ipmax) in order to limit the stored energy in the transformer (T1 or T2) that is switched on by impelling a current over said diode (D3).
     
    3. An ignition system according to claim 1 or 2, wherein the control unit is enabled to compare a secondary current (Is) with a second predetermined current threshold (Ismin) representative of the minimum necessary level of energy stored in the transformer that is switched off and for switching sequentially on and off both corresponding switches (Q1 and Q2) when the secondary current (Is) falls short to the second predetermined current threshold (Ismin).
     
    4. An ignition system according to any of claims 1 to 3, wherein the control unit is further enabled to compare the secondary current (Is) with a second predetermined current threshold (Ismin) representative of the minimum necessary level of energy stored in the transformer (T1 or T2) that is switched off and to adapt said second predetermined current threshold (Ismin) to the level of energy stored in said switched off transformer (T1 or T2).
     
    5. An ignition system according to claim 1, wherein said control unit detects burn voltage at the spark plug by measuring the gradient of a secondary current Is or by detecting the drain voltage at the switches (Q1, Q2).
     
    6. A method of producing electrical arcs across a pair of gapped electrodes of a spark plug with an ignition system of claim 1, comprising the steps of:

    - energizing simultaneously both primary windings (L1, L3) by switching on corresponding switches (Q1, Q2);

    - deenergizing simultaneously both primary windings (L1, L3) by switching off corresponding switches (Q1, Q2) to establish an electrical arc across the pair of gapped electrodes;

    - energizing and deenergizing sequentially said primary windings (L1, L3) by sequentially switching on and off both corresponding switches (Q1, Q2); characterized in that it further comprises a step consisting of:

    - detecting burn voltage at the spark plug in the combustion engine and switching off both corresponding switches (Q1, Q2) when the burn voltage is higher than a predetermined burn voltage threshold and thereby switching on both high-voltage diodes (D1, D2) so as a forward current floats through.


     
    7. The method according to claim 6, wherein it further comprises the steps of:

    - comparing the primary current (Ip) with a first predetermined current threshold (Ipmax);

    - switching off a switch (M1) when the primary current (Ip) exceeds the first predetermined current threshold (Ipmax) and impelling a current over a diode (D3) from the primary winding that is switched on.


     
    8. The method according to claim 6 or 7, wherein it further comprises the steps of:

    - comparing the secondary current (Is) with a second predetermined current threshold (Ismin) representative of the minimum necessary level of energy stored in the transformer that is switched off;

    - switching sequentially on and off both corresponding switches (Q1, Q2) when the secondary current (Is) falls short to the second predetermined current threshold (Ismin).


     
    9. The method according to claim 8, wherein it further comprises the step of:

    - setting adaptively said second predetermined current threshold (Ismin) to the level of energy stored in the transformer that is switched off.


     
    10. The method according to claim 6, wherein said control unit detects burn voltage at the spark plug by measuring the gradient of the secondary current (Is) or by detecting the drain voltage at the switches (Q1, Q2).
     


    Ansprüche

    1. Zündsystem für einen Verbrennungsmotor, das aufweist:

    - eine Zündkerze mit einem Paar von beabstandeten Elektroden;

    - einen ersten Transformator (T1) mit einer ersten Primärwicklung (L1), die mit einer ersten Sekundärwicklung (L2) induktiv gekoppelt ist;

    - einen zweiten Transformator (T2) mit einer zweiten Primärwicklung (L3), die mit einer zweiten Sekundärwicklung (L4) induktiv gekoppelt ist;

    - Sekundärwicklungen (L2, L4), die jeweils mit den beabstandeten Elektroden der Zündkerze verbunden sind und durch Hochspannungsdioden (D1, D2) voneinander entkoppelt sind;

    - eine Steuereinheit, die aktiviert ist zum gleichzeitigen Zuführen von Energie in und Abführen von Energie von beide(n) Primärwicklungen (L1, L3) durch gleichzeitiges Ein- und Ausschalten von zwei entsprechenden Schaltern (Q1, Q2), um einen elektrischen Lichtbogen über die beabstandeten Elektroden herzustellen, und zum sequentiellen Zuführen von Energie in und Abführen von Energie von beide(n) Primärwicklungen (L1, L3) durch sequentielles Ein- und Ausschalten der beiden entsprechenden Schalter (Q1, Q2), um eine kontinuierliche Zündung zu halten,

    dadurch gekennzeichnet, dass die Steuereinheit weiter aktiviert ist zum Erfassen einer Brennspannung an der Zündkerze in dem Verbrennungsmotor, Ausschalten beider entsprechender Schalter (Q1, Q2), wenn die Brennspannung höher ist als eine vorgegebene Brennspannungsschwelle, und dadurch Einschalten beider Hochspannungsdioden (D1, D2), so dass ein Vorwärtsstrom hindurch fließt.
     
    2. Ein Zündsystem gemäß Anspruch 1, das weiter einen Abwärtswandler mit einem Schalter (M1) und einer Diode (D3) aufweist, wobei die Steuereinheit aktiviert ist zum Ausschalten des Schalters (M1), wenn ein Primärstrom (Ip) eine erste vorgegebene Stromschwelle (Ipmax) übersteigt, um die gespeicherte Energie in dem Transformator (T1 oder T2) zu begrenzen, der eingeschaltet wird, durch ein Treiben von Strom über die Diode (D3).
     
    3. Ein Zündsystem gemäß Anspruch 1 oder 2, wobei die Steuereinheit aktiviert ist zum Vergleichen eines Sekundärstroms (Is) mit einer zweiten vorgegebenen Stromschwelle (Ismin), die repräsentativ ist für den erforderlichen Mindestpegel von Energie, die in dem Transformator gespeichert ist, der ausgeschaltet wird, und zum sequentiellen Ein- und Ausschalten beider entsprechender Schalter (Q1 und Q2), wenn der Sekundärstrom (Is) die zweite vorgegebene Stromschwelle (Ismin) unterschreitet.
     
    4. Ein Zündsystem gemäß einem der Ansprüche 1 bis 3, wobei die Steuereinheit weiter aktiviert ist zum Vergleichen des Sekundärstroms (Is) mit einer zweiten vorgegebenen Stromschwelle (Ismin), die repräsentativ ist für den erforderlichen Mindestpegel von Energie, die in dem Transformator (T1 oder T2) gespeichert ist, der ausgeschaltet wird, und zum Anpassen der zweiten vorgegebenen Stromschwelle (Ismin) auf den Pegel der Energie, die in dem ausgeschalteten Transformator (T1 oder T2) gespeichert ist.
     
    5. Ein Zündsystem gemäß Anspruch 1, wobei die Steuereinheit eine Brennspannung an der Zündkerze durch Messen des Gradients eines Sekundärstroms Is oder durch Erfassen der Drain-Spannung an den Schaltern (Q1, Q2) erfasst.
     
    6. Verfahren zum Erzeugen von elektrischen Lichtbögen über ein Paar von beabstandeten Elektroden einer Zündkerze mit einem Zündsystem gemäß Anspruch 1, das die Schritte aufweist:

    - gleichzeitiges Zuführen von Energie in beide Primärwicklungen (L1, L3) durch Einschalten von entsprechenden Schaltern (Q1, Q2);

    - gleichzeitiges Abführen von Energie von beiden Primärwicklungen (L1, L3) durch Ausschalten von entsprechenden Schaltern (Q1, Q2), um einen elektrischen Lichtbogen über das Paar von beabstandeten Elektroden herzustellen;

    - sequentielles Zuführen von Energie in die und Abführen von Energie von den Primärwicklungen (L1, L3) durch sequentielles Ein- und Ausschalten der beiden entsprechenden Schalter (Q1, Q2);

    dadurch gekennzeichnet, dass es weiter einen Schritt aufweist, der besteht aus:

    - Erfassen einer Brennspannung an der Zündkerze in dem Verbrennungsmotor und Ausschalten beider entsprechender Schalter (Q1, Q2), wenn die Brennspannung höher ist als eine vorgegebene Brennspannungsschwelle, und dadurch Einschalten beider Hochspannungsdioden (D1, D2), so dass ein Vorwärtsstrom hindurch fließt.


     
    7. Das Verfahren gemäß Anspruch 6, das weiter die Schritte aufweist:

    - Vergleichen des Primärstroms (Ip) mit einer ersten vorgegebenen Stromschwelle (Ipmax);

    - Ausschalten eines Schalters (M1), wenn der Primärstrom (Ip) die erste vorgegebene Stromschwelle (Ipmax) übersteigt, und Treiben von Strom über eine Diode (D3) von der Primärwicklung, die eingeschaltet wird.


     
    8. Das Verfahren gemäß Anspruch 6 oder 7, das weiter die Schritte aufweist:

    - Vergleichen des Sekundärstroms (Is) mit einer zweiten vorgegebenen Stromschwelle (Ismin), die repräsentativ ist für den erforderlichen Mindestpegel von Energie, die in dem Transformator gespeichert ist, der ausgeschaltet wird;

    - sequentielles Ein- und Ausschalten beider entsprechender Schalter (Q1, Q2), wenn der Sekundärstrom (Is) die zweite vorgegebene Stromschwelle (Ismin) unterschreitet.


     
    9. Das Verfahren gemäß Anspruch 8, das weiter den Schritt aufweist:

    - adaptives Setzen der zweiten vorgegebenen Stromschwelle (Ismin) auf den Pegel von Energie, die in dem Transformator gespeichert ist, der ausgeschaltet wird.


     
    10. Das Verfahren gemäß Anspruch 6, wobei die Steuereinheit eine Brennspannung an der Zündkerze durch Messen des Gradients des Sekundärstroms (Is) oder durch Erfassen der Drain-Spannung an den Schaltern (Q1, Q2) erfasst.
     


    Revendications

    1. Système d'allumage pour un moteur à combustion interne, comprenant :

    - une bougie avec une paire d'électrodes écartées ;

    - un premier transformateur (T1) incluant un premier enroulement primaire (L1) couplé de manière inductive à un premier enroulement secondaire (L2) ;

    - un second transformateur (T2) incluant un second enroulement primaire (L3) couplé de manière inductive à un second enroulement secondaire (L4) ;

    - les enroulements secondaires (L2, L4) étant couplés chacun aux électrodes écartées de la bougie et étant découplés l'un de l'autre par des diodes à haut voltage (D1, D2) ;

    - une unité de commande activée pour exciter et désexciter simultanément les deux enroulements primaires (L1, L3) en commutant simultanément en marche et à l'arrêt deux commutateurs correspondants (Q1, Q2) pour établir un arc électrique entre les électrodes écartées et pour exciter et désexciter séquentiellement les deux enroulements primaires (L1, L3) en commutant séquentiellement en marche et à l'arrêt les deux commutateurs correspondants (Q1, Q2) pour maintenir une étincelle d'allumage continue,

    caractérisé en ce que ladite unité de commande est en outre activée pour détecter un voltage actif de l'étincelle dans le moteur à combustion interne, pour commuter à l'arrêt les deux commutateurs correspondants (Q1, Q2) quand le voltage actif est plus élevé qu'un seuil de voltage actif prédéterminé et ainsi commuter en marche les deux diodes à haut voltage (D1, D2) de telle sorte qu'un courant s'écoule à travers celles-ci.
     
    2. Système d'allumage selon la revendication 1, qui comprend en outre un convertisseur réducteur incluant un commutateur (M1) et une diode (D3), ladite unité de commande étant activée pour commuter à l'arrêt ledit commutateur (M1) quand un courant primaire (Ip) excède un premier seuil de courant prédéterminé (Ipmax) afin de limiter l'énergie stockée dans le transformateur (T1 ou T2) qui est commuté en marche en imposant un courant via ladite diode (D3).
     
    3. Système d'allumage selon la revendication 1 ou 2, dans lequel l'unité de commande est activée pour comparer un courant secondaire (Is) avec un second seuil de courant prédéterminé (Ismin) représentatif du niveau d'énergie minimum nécessaire stocké dans le transformateur qui est commuté à l'arrêt et pour commuter en séquence en marche et à l'arrêt les deux commutateurs correspondants (Q1, Q2) quand le courant secondaire (Is) s'approche du second seuil de courant prédéterminé (Ismin).
     
    4. Système d'allumage selon l'une quelconque des revendications 1 à 3, dans lequel l'unité de commande est en outre activée pour comparer le courant secondaire (Is) avec un second seuil de courant prédéterminé (Ismin) représentatif du niveau d'énergie minimum nécessaire stocké dans le transformateur (T1 ou T2) qui est commuté à l'arrêt et pour adapter ledit second seuil de courant prédéterminé (Ismin) au niveau d'énergie stocké dans ledit transformateur commuté à l'arrêt (T1 ou T2).
     
    5. Système d'allumage selon la revendication 1, dans lequel ladite unité de commande détecte le voltage actif au niveau de la bougie en mesurant le gradient d'un courant secondaire Is ou en détectant le voltage de drain au niveau des commutateurs (Q1, Q2).
     
    6. Procédé pour produire des arcs électriques entre une paire d'électrodes écartées d'une bougie avec un système d'allumage selon la revendication 1, comprenant les étapes consistant à :

    - exciter simultanément les deux enroulements primaires (L1, L3) en commutant en marche des commutateurs correspondants (Q1, Q2) ;

    - désexciter simultanément les deux enroulements primaires (L1, L3) en commutant à l'arrêt des commutateurs correspondants (Q1, Q2) pour établir un arc électrique entre la paire d'électrodes écartées ;

    - exciter et désexciter en séquence lesdits enroulements primaires (L1, L3) en commutant séquentiellement en marche et à l'arrêt les deux commutateurs correspondants (Q1, Q2) ;

    caractérisé en ce qu'il comprend en outre une étape consistant à :

    - détecter un voltage actif au niveau de la bougie dans le moteur à combustion interne et commuter à l'arrêt les deux commutateurs correspondants (Q1, Q2) quand le voltage actif est plus élevé qu'un seuil de voltage actif prédéterminé et ainsi commuter en marche les deux diodes à haut voltage (D1, D2) de telle sorte qu'un courant s'écoule à travers celles-ci.


     
    7. Procédé selon la revendication 6, qui comprend en outre les étapes consistant à :

    - comparer le courant primaire (Ip) avec un premier seuil de courant prédéterminé (Ipmax) ;

    - commuter à l'arrêt un commutateur (M1) quand le courant primaire (Ip) excède le premier seuil de courant prédéterminé (Ipmax) et imposer un courant via une diode (D3) depuis l'enroulement primaire qui est commuté en marche.


     
    8. Procédé selon la revendication 6 ou 7, qui comprend en outre les étapes consistant à :

    - comparer le courant secondaire (Is) avec un second seuil de courant prédéterminé (Ismin) représentatif du niveau d'énergie minimum nécessaire stocké dans le transformateur qui est commuté à l'arrêt ;

    - commuter séquentiellement en marche et à l'arrêt les deux commutateurs correspondants (Q1, Q2) quand le courant secondaire (Is) s'approche du second seuil de courant prédéterminé (Ismin).


     
    9. Procédé selon la revendication 8, qui comprend en outre l'étape consistant à :

    - fixer de manière adaptative ledit second seuil de courant prédéterminé (Ismin) au niveau d'énergie stocké dans le transformateur qui est commuté à l'arrêt.


     
    10. Procédé selon la revendication 6, dans lequel ladite unité de commande détecte le voltage actif au niveau de la bougie en mesurant le gradient du courant secondaire (Is) ou en détectant le voltage de drain au niveau des commutateurs (Q1, Q2).
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description