(19)
(11) EP 3 006 682 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
13.04.2016  Patentblatt  2016/15

(21) Anmeldenummer: 14187849.6

(22) Anmeldetag:  07.10.2014
(51) Internationale Patentklassifikation (IPC): 
F01K 9/00(2006.01)
F01K 17/02(2006.01)
(84) Benannte Vertragsstaaten:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
Benannte Erstreckungsstaaten:
BA ME

(71) Anmelder: Orcan Energy AG
81379 München (DE)

(72) Erfinder:
  • Aumann, Richard
    80796 München (DE)
  • Gewald, Daniela
    83026 Rosenheim (DE)
  • Langer, Roy
    81371 München (DE)
  • Lintl, Markus
    81369 München (DE)
  • Schuster, Andreas
    86874 Tussenhausen (DE)
  • Springer, Jens-Patrick
    81371 München (DE)

(74) Vertreter: Grünecker Patent- und Rechtsanwälte PartG mbB 
Leopoldstraße 4
80802 München
80802 München (DE)

   


(54) Vorrichtung und Verfahren für den Betrieb einer Wärmeübergabestation


(57) Die Erfindung betrifft eine Wärmeübergabestation zum Übergeben von Wärme von einem Lieferantenwärmenetz mit einem ersten wärmeführenden Fluid auf ein Kundenwärmenetz mit einem zweiten wärmeführenden Fluid, wobei die Wärmeübergabestation eine thermodynamische Kreisprozessvorrichtung mit einem Arbeitsmedium, insbesondere eine ORC-Vorrichtung mit einem organischen Arbeitsmedium umfasst, und wobei die thermodynamische Kreisprozessvorrichtung umfasst: einen als Verdampfer ausgebildeten ersten Wärmeübertrager zum Verdampfen und optional zusätzlichen Überhitzen des Arbeitsmediums unter Zuführung von Wärme aus dem ersten Fluid, eine Expansionsmaschine zum Erzeugen von mechanischer Energie durch Entspannen des verdampften Arbeitsmediums, einen mit der Expansionsmaschine gekoppelten Generator zum zumindest teilweisen Wandeln der mechanischen Energie in elektrische Energie, einen als Kondensator ausgebildeten zweiten Wärmeübertrager zum Kondensieren des entspannten Arbeitsmediums und Übertragen von Wärmeenergie aus dem entspannten Arbeitsmedium auf das zweite Fluid, und eine Speisepumpe zum Fördern des kondensierten Arbeitsmediums unter Druckerhöhung zum Verdampfer. Weiterhin betrifft die Erfindung ein entsprechendes Verfahren zum Übergeben von Wärme.




Beschreibung

Gebiet der Erfindung



[0001] Die Erfindung betrifft eine Wärmeübergabestation zum Übergeben von Wärme von einem Lieferantenwärmenetz mit einem ersten wärmeführenden Fluid auf ein Kundenwärmenetz mit einem zweiten wärmeführenden Fluid. Weiterhin betrifft die Erfindung ein Verfahren zum Übergeben von Wärme von einem Lieferantenwärmenetz mit einem ersten wärmeführenden Fluid auf ein Kundenwärmenetz mit einem zweiten wärmeführenden Fluid.

Stand der Technik



[0002] Fernwärme bezeichnet die Versorgung von Gebäuden mit Heizwärme und Warmwasser. Dafür ist beispielsweise Wasser als Medium für den Wärmetransport gut geeignet, wobei es flüssig oder in Dampfform Verwendung findet. Das Medium wird in wärmegedämmten Rohrleitungen in einem ständigen Umlauf gefördert. Als Nahwärme wird eine entsprechende Wärmeübertragung zu Heizzwecken über vergleichsweise kurze Distanzen bezeichnet, wobei der Übergang zur Fernwärme jedoch fließend ist.

[0003] Wärmeübergabestationen verbinden solche Nah- und Fernwärmenetze mit Wärmeverbrauchern. Die Betriebstemperaturen der Fernwärmenetze richten sich dabei nach den Verbrauchern mit dem höchsten benötigten Temperaturniveau. In der Innenstadt Münchens beispielsweise beträgt die Temperatur des Fernwärme-Vorlaufes im Winter 130 °C und im Sommer 80 °C. Die Temperatur des Rücklaufes darf einen Wert von 45 °C nicht überschreiten. Diese Temperaturen gehören zu den Parametern, die üblicherweise in den technischen Anschlussbedingungen des jeweiligen Versorgungsunternehmens festgelegt sind und müssen durch die Betriebsart und Bauweise der Anlage eingehalten werden. Allerdings benötigt die überwiegende Zahl der Verbraucher niedrigere Vorlauftemperaturen für ihre Heizsysteme. Im Fall von Wohngebäuden liegt die benötigte Vorlauftemperatur der Warmwasserversorgung üblicherweise bei etwa 60 - 65 °C, und daher muss nach dem Stand der Technik zunächst durch Beimischung von kälterem Wasser die Temperatur gesenkt werden. Auf diese Weise wird jedoch ein großer Teil des theoretisch nutzbaren Potenzials (Exergie) des Heißwassers verschwendet, was nachteilig ist. Es wird also nach dem Stand der Technik Wärme auf hohem Temperaturniveau über weite Strecken transportiert und anschließend unter Exergievernichtung auf ein niedriges Temperaturniveau abgesenkt.

Beschreibung der Erfindung



[0004] Aufgabe der Erfindung ist es, diesen Nachteil zu überwinden und das Potential der Fernwärme besser auszunutzen.

[0005] Diese Aufgabe wird gelöst durch eine Wärmeübergabestation nach Anspruch 1.

[0006] Die erfindungsgemäße Wärmeübergabestation zum Übergeben von Wärme von einem Lieferantenwärmenetz mit einem ersten wärmeführenden Fluid auf ein Kundenwärmenetz mit einem zweiten wärmeführenden Fluid umfasst eine thermodynamische Kreisprozessvorrichtung mit einem Arbeitsmedium, insbesondere eine ORC-Vorrichtung mit einem organischen Arbeitsmedium, wobei die thermodynamische Kreisprozessvorrichtung umfasst: einen als Verdampfer ausgebildeten ersten Wärmeübertrager zum Vorwärmen, Verdampfen und optional zusätzlichen Überhitzen des Arbeitsmediums unter Zuführung von Wärme aus dem ersten Fluid, eine Expansionsmaschine zum Erzeugen von mechanischer Energie durch Entspannen des verdampften Arbeitsmediums, einen mit der Expansionsmaschine gekoppelten Generator zum zumindest teilweisen Wandeln der mechanischen Energie in elektrische Energie, einen als Kondensator ausgebildeten zweiten Wärmeübertrager zum Kondensieren des entspannten Arbeitsmediums und Übertragen von Wärmeenergie aus dem entspannten Arbeitsmedium auf das zweite Fluid, und eine Speisepumpe zum Fördern des kondensierten Arbeitsmediums unter Druckerhöhung zum Verdampfer. Optional kann in dem Kondensator vor dem Kondensieren ein Enthitzen des Arbeitsmediums erfolgen. Weiterhin kann optional in dem Kondensator nach dem Kondensieren ein Unterkühlen des Arbeitsmediums unter die Kondensationstemperatur erfolgen. Das erste wärmeführende Fluid und das zweite wärmeführende Fluid können dasselbe Fluid sein. In der Wärmeübergabestation wird Wärme wird aus einem Netz mit einem ersten Temperaturniveau in ein Netz mit einem zweiten, niedrigeren Temperaturniveau übergeben.

[0007] Der Vorteil der erfindungsgemäßen Wärmeübergabestation besteht darin, dass der genannte Exergieunterschied zwischen der Fernwärmeseite und der Wärmekundenseite für die Erzeugung elektrischer Energie genutzt werden kann, indem ein Kreisprozess zwischengeschaltet wird, beispielsweise ein Organic-Rankine-Prozess (ORC-Prozess) mit einem organischen Arbeitsmedium, ein Stirling-Kreisprozess, ein Dampfkraftprozess, etc. Ein Teil der dem Fernwärmenetz entzogenen Hochtemperaturwärme wird im thermodynamischen Kreisprozess in elektrische Energie gewandelt. Die Kondensationswärme des Arbeitsmediums speist das Heiznetz mit Niedertemperaturwärme. So kann die Wärmeversorgung ganz oder teilweise über den thermodynamischen Kreisprozess realisiert werden. Der Hauptnutzen der Erfindung besteht in der zusätzlichen Bereitstellung elektrischer Energie an den Wärmekunden.

[0008] Die erfindungsgemäße Wärmeübergabestation kann dahingehend weitergebildet werden, dass einen dritter Wärmeübertrager zum unmittelbaren Übertragen von Wärme aus dem ersten Fluid auf das zweite Fluid vorgesehen sein kann. Dies hat den Vorteil, dass ein Teil der Wärmeenergie direkt auf das Kundenwärmenetz übertragen wird und somit eine Absicherung der Wärmeversorgung gegen einem Ausfall der thermodynamischen Kreisprozessvorrichtung erzielt wird.

[0009] Eine Weiterbildung der zuvor genannten Weiterbildung besteht darin, dass Mittel zum Aufteilen des Massenstroms des zweiten Fluids in einen ersten Teil und einen zweiten Teil; Mittel zum Leiten des ersten Teils des zweiten Fluids durch den Kondensator und zum Leiten eines zweiten Teils des zweiten Fluids durch den dritten Wärmeübertrager; und Mittel zum Zusammenführen des ersten Teils des Massenstroms des zweiten Fluids nach dem Leiten durch den Kondensator und des zweiten Teils des Massenstroms des zweiten Fluids nach dem Leiten durch den dritten Wärmeübertrager vorgesehen sein können. Die Rücklauftemperatur des Lieferantenwärmenetzes kann dabei durch entsprechende Regelung der Kreisprozessvorrichtung auf einem konstanten Niveau gehalten werden. Die Vorlauftemperatur im Kundenwärmenetz ist beliebig regelbar. Wenn höherer Wärmebedarf besteht, wird der Massenstrom zum Kreisprozess gesenkt.

[0010] Gemäß einer anderen Weiterbildung können die Mittel zum Aufteilen des Massenstroms des zweiten Fluids in einem Vorlauf oder in einem Rücklauf des Kundenwärmenetzes vorgesehen sein, und sie umfassen vorzugsweise ein Dreiwegeventil oder eine Pumpe in einem Vorlauf zum dritten Wärmeübertrager. Dieses entspricht jeweils vorteilhaften Beispielen für die Anordnung und für die konkrete Ausgestaltung dieser Mittel.

[0011] Eine andere Weiterbildung besteht darin, dass ein vierter Wärmeübertrager zum unmittelbaren Übertragen von Wärme aus dem ersten Fluid auf das Arbeitmedium vorgesehen ist. Alternativ zur Stromerzeugung wird durch die Weiterbildung ein Wärmepumpen-Betriebsmodus der Kreisprozessvorrichtung ermöglicht. Der Wärmepumpenbetrieb bietet für Wärmekunden den Vorteil, dass die installierte Anschlussleistung geringer ausfallen kann.

[0012] Eine Weiterbildung der zuvor genannten Weiterbildung besteht darin, dass Mittel zum Umleiten des Arbeitsmediums aus einem Vorlauf des Verdampfers zum vierten Wärmeübertrager, insbesondere in Form eines Dreiwegeventils oder eines Magnetventils; und Mittel zum Betreiben der Expansionsmaschine als Kompressor vorgesehen sind. Auf diese Weise kann das Arbeitsmedium statt zum ersten Wärmeübertrager zum vierten Wärmeübertrager geleitet werden, um dort beim Betrieb der Expansionsmaschine als Kompressor Wärme aus dem ersten Fluid aufzunehmen.

[0013] Eine Weiterbildung der zuvor genannten Weiterbildung besteht darin, dass die Mittel zum Betreiben der Expansionsmaschine als Kompressor umfassen: Mittel zum unmittelbaren Leiten des Arbeitsmediums vom vierten Wärmeübertrager zu einer Niederdruckseite der als Kompressor betriebenen Expansionsmaschine, insbesondere ein erstes Ventil zum Sperren der Verbindung zwischen Verdampfer und der Hochdruckseite der Expansionsmaschine und eine Bypassleitung mit einem zweiten Ventil zum Herstellen einer Verbindung zwischen dem vierten Wärmeübertrager und der Niederdruckseite der Expansionsmaschine, und desweiteren Mittel zum unmittelbaren Leiten des komprimierten Arbeitsmediums von einer Hochdruckseite der als Kompressor betriebenen Expansionsmaschine zum Kondensator, insbesondere ein viertes Ventil zum Sperren einer Verbindung zwischen der Niederdruckseite der Expansionsmaschine und dem Kondensator und eine Bypassleitung mit einem dritten Ventil zum Herstellen einer Verbindung zwischen der Hochdruckseite der Expansionsmaschine und dem Kondensator. Dies stellt bevorzugte Ausgestaltungen der genannten Mittel zur Verfügung.

[0014] Gemäß einer anderen Weiterbildung kann die Wärmeübergabestation derart ausgebildet sein, dass das zweite wärmeführende Fluid vollständig sowohl durch den Kondensator als auch durch den dritten Wärmeübertrager geleitet wird. Dabei wird der Kondensator mit einem großen Massenstrom durchströmt. Dies ist für den elektrischen Wirkungsgrad der Anlage vorteilhaft.

[0015] Eine andere Weiterbildung besteht darin, dass die Wärmeübergabestation mit einem dritten Wärmeübertrager weiterhin Mittel zum Aufteilen des Massenstroms des ersten Fluids in einen ersten Teil und einen zweiten Teil, insbesondere ein Dreiwegeventil, und Mittel zum Leiten des ersten Teils des ersten Fluids zum dritten Wärmeübertrager umfasst.

[0016] Die zuvor genannte Weiterbildung kann zudem dahingehend weitergebildet werden, dass ein Wärmespeicher in thermischem Kontakt mit dem zweiten Fluid vorgesehen ist. Dieses ermöglicht eine Abflachung der Temperaturgradienten des in den Kondensator eintretenden zweiten Fluids. Ist die Temperatur des zweiten Fluids größer als die Temperatur des Wärmespeichers wird das zweite Fluid gekühlt, falls sie kleiner ist, wird es erwärmt.

[0017] Die erfindungsgemäße Aufgabe wird weiterhin gelöst durch ein Verfahren nach Anspruch 11.

[0018] Das erfindungsgemäße Verfahren übergibt Wärme von einem Lieferantenwärmenetz mit einem ersten wärmeführenden Fluid auf ein Kundenwärmenetz mit einem zweiten wärmeführenden Fluid mittels einer thermodynamischen Kreisprozessvorrichtung, insbesondere einer ORC-Vorrichtung, wobei die thermische Kreisprozessvorrichtung einen als Verdampfer ausgebildeten ersten Wärmeübertrager, eine Expansionsmaschine, einen mit der Expansionsmaschine gekoppelten Generator, einen als Kondensator ausgebildeten zweiten Wärmeübertrager und eine Speisepumpe umfasst, wobei das Verfahren die folgenden Schritte umfasst: Vorwärmen, Verdampfen und optional zusätzliches Überhitzen des Arbeitsmediums unter Zuführung von Wärme aus dem ersten Fluid mit dem ersten Wärmeübertrager; Erzeugen von mechanischer Energie durch Entspannen des verdampften Arbeitsmediums mit der Expansionsmaschine und zumindest teilweises Wandeln der mechanischen Energie in elektrische Energie mit dem Generator; Kondensieren des entspannten Arbeitsmediums und Übertragen von Wärmeenergie aus dem entspannten Arbeitsmedium auf das zweite Fluid mit dem zweiten Wärmeübertrager; und Fördern des kondensierten Arbeitsmediums unter Druckerhöhung zum Verdampfer mit der Speisepumpe. Vor dem Kondensieren kann optional ein Enthitzen des entspannten Arbeitsmediums erfolgen. Nach dem Kondensieren kann optional ein Unterkühlen des kondensierten Arbeitsmediums erfolgen.

[0019] Die Vorteile des erfindungsgemäßen Verfahrens und dessen Weiterbildungen entsprechen jenen der erfindungsgemäßen Vorrichtung und dessen Weiterbildungen und werden deshalb hier nicht nochmals aufgeführt.

[0020] Gemäß einer Weiterbildung des erfindungsgemäßen Verfahrens ist der weitere Schritt des unmittelbaren Übertragens von Wärme aus dem ersten Fluid auf das zweite Fluid mit einem dritten Wärmeübertrager vorgesehen.

[0021] Eine Weiterbildung der zuvor genannten Weiterbildung besteht darin, dass die folgenden weiteren Schritte vorgesehen sind: Aufteilen des Massenstroms des zweiten Fluids in einen ersten Teil und einen zweiten Teil; Leiten des ersten Teils des zweiten Fluids durch den Kondensator und Leiten eines zweiten Teils des zweiten Fluids durch den dritten Wärmeübertrager; und Zusammenführen des ersten Teils des Massenstroms des zweiten Fluids nach dem Leiten durch den Kondensator und des zweiten Teils des Massenstroms des zweiten Fluids nach dem Leiten durch den dritten Wärmeübertrager.

[0022] Gemäß einer anderen Weiterbildung umfasst das Verfahren den Schritt des unmittelbaren Übertragens von Wärme aus dem ersten Fluid auf das Arbeitsmedium mit einem vierten Wärmeübertrager.

[0023] Eine andere Weiterbildung besteht darin, dass das zweite wärmeführende Fluid vollständig sowohl durch den Kondensator als auch durch den dritten Wärmeübertrager geleitet wird.

[0024] Gemäß einer anderen Weiterbildung ist ein zumindest teilweises Einspeisen der elektrischen Energie in ein Netz; und/oder ein zumindest teilweises Verwenden der elektrischen Energie zum Betreiben des Kundenwärmenetzes, insbesondere einer kundenseitigen Heizungsanlage vorgesehen.

[0025] Die genannten Weiterbildungen können einzeln eingesetzt oder wie beansprucht geeignet miteinander kombiniert werden.

[0026] Weitere Merkmale und beispielhafte Ausführungsformen sowie Vorteile der vorliegenden Erfindung werden nachfolgend anhand der Zeichnungen näher erläutert. Es versteht sich, dass die Ausführungsformen nicht den Bereich der vorliegenden Erfindung erschöpfen. Es versteht sich weiterhin, dass einige oder sämtliche der im Weiteren beschriebenen Merkmale auch auf andere Weise miteinander kombiniert werden können.

Zeichnungen



[0027] 
Fig. 1
stellt die Exergienutzung und den Temperaturverlauf bei reinem Heizbetrieb schematisch dar.
Fig. 2
zeigt die entsprechende Exergienutzung mit einem integrierten ORC-Prozess.
Fig. 3
zeigt eine erste Ausführungsform der erfindungsgemäßen Wärmeübergabestation.
Fig. 4
zeigt ein T-Q-Diagramm des ORC-Prozesses.
Fig. 5
zeigt eine zweite Ausführungsform der erfindungsgemäßen Wärmeübergabestation.
Fig. 6
illustriert Kavitationsvermeidung durch Verringerung des Massenstroms.
Fig. 7
zeigt eine dritte Ausführungsform der erfindungsgemäßen Wärmeübergabestation in einem ersten Betriebsmodus.
Fig. 8
zeigt die dritte Ausführungsform der erfindungsgemäßen Wärmeübergabestation in einem zweiten Betriebsmodus.
Fig. 9
zeigt eine vierte Ausführungsform der erfindungsgemäßen Wärmeübergabestation.
Fig. 10
zeigt eine fünfte Ausführungsform der erfindungsgemäßen Wärmeübergabestation.

Ausführungsformen



[0028] Zunächst wird im Folgenden die grundlegende Motivation der Erfindung im Bezug auf die Exergie dargestellt. Die Exergie bezeichnet den Teil der Energie, der vollständig in eine beliebige andere Energieform gewandelt werden kann, wie beispielsweise in elektrische Energie. Es handelt sich also um den arbeitsfähigen Teil der Energie. Im Gegensatz dazu ist die Anergie der nicht arbeitsfähige Teil einer Energie, eine Wandlung in andere Energieformen ist hier nicht möglich. So kann Wärmeenergie selbst in einem idealisierten Prozess nur zu einem Teil in mechanische Energie gewandelt werden.

[0029] Ein Wärmestrom Q̇ besteht aus einem Exergie-Anteil Ė und einem Anergie-Anteil Ȧ, wobei sich der Exergie-Anteil mit Hilfe der Gleichung

errechnet. Hierbei ist T die Temperatur der Wärmequelle und TU die Temperatur der Umgebung. Bei einem konventionellen Heizsystem wird die im Wärmestrom enthaltene Exergie durch Absenkung der Temperatur vernichtet, wie Fig. 1 verdeutlicht. Die Absenkung der Temperatur kann hierbei unterschiedliche Gründe haben. So kann eine Absenkung der Temperatur notwendig sein, um z.B. Temperaturgrenzen im Heizungssystem einzuhalten, dies gewährleistet beispielsweise die Wärmeübergabestation. Eine weitere Reduktion der Temperatur findet bei jeglicher Wärmeübertragung statt, sei es in der Wärmeübergabestation oder aber in der Heizung, welche z.B. einen Raum erwärmt. Wenn die Wärme sich auf Umgebungstemperatur reduziert hat, dann besitzt sie keine Arbeitsfähigkeit mehr und ist reine Anergie.

[0030] Im Gegensatz dazu ermöglicht die Integration eines thermodynamischen Kreisprozesses in das Heizsystem (siehe Fig. 2) die Weiterverwendung eines Teils der im Wärmestrom enthaltenen Exergie in Form von elektrischer Energie. Der Energiestrom, welcher in elektrische Energie gewandelt wird, steht zwar nicht mehr für die Beheizung zur Verfügung, er kann jedoch durch eine geringfügige Erhöhung der Wärmezufuhr in den ORC-Prozess ausgeglichen werden. Aufgrund geringer Preise der Energieträger und damit der erzeugten thermischen Energie im Vergleich zu den Bezugspreisen für elektrische Energie ist dies besonders im Bereich der Wohnungswirtschaft/Kleinverbraucher wirtschaftlich interessant.

[0031] Fig. 3 zeigt in einer ersten Ausführungsform der Erfindung die einfachste Realisierung der Strom erzeugenden Wärmeübergabestation. Die hier verwendeten Bezugszeichen werden auch in den weiteren Figuren für die anderen Ausführungsformen beibehalten, wenn es sich um gleiche Elemente handelt.

[0032] Die erste Ausführungsform der erfindungsgemäßen Wärmeübergabestation 1 zum Übergeben von Wärme von einem Lieferantenwärmenetz 10 mit einem ersten wärmeführenden Fluid auf ein Kundenwärmenetz 20 mit einem zweiten wärmeführenden Fluid umfasst eine thermodynamische Kreisprozessvorrichtung 30 mit einem Arbeitsmedium (beispielsweise Wasser oder Wasserdampf), insbesondere eine ORC-Vorrichtung mit einem organischen Arbeitsmedium, wobei die thermodynamische Kreisprozessvorrichtung 30 umfasst: einen als Verdampfer 31 ausgebildeten ersten Wärmeübertrager zum Verdampfen und optional zusätzlichen Vorwärmen und/oder Überhitzen des Arbeitsmediums unter Zuführung von Wärme aus dem ersten Fluid, eine Expansionsmaschine 32 zum Erzeugen von mechanischer Energie durch Entspannen des verdampften Arbeitsmediums, einen mit der Expansionsmaschine gekoppelten Generator 33 zum zumindest teilweisen Wandeln der mechanischen Energie in elektrische Energie, einen als Kondensator 34 ausgebildeten zweiten Wärmeübertrager zum Kondensieren und optional vorherigen Enthitzen und/oder zusätzlichen Unterkühlen des entspannten Arbeitsmediums und Übertragen von Wärmeenergie aus dem entspannten Arbeitsmedium auf das zweite Fluid, und eine Speisepumpe 35 zum Fördern des kondensierten Arbeitsmediums unter Druckerhöhung zum Verdampfer. Die Speisepumpe wird durch einen Motor 36 betrieben. Zudem ist im Heizkreislauf des Kundenwärmenetzes eine Pumpe 21 vorgesehen, mit der das zweite Fluid (beispielsweise Wasser) gefördert wird.

[0033] Zum Zweck der Übersichtlichkeit wird eine vereinfachte Darstellung des Fernwärmenetzes 10, des ORC-Prozesses 30 sowie des Heiznetzes 20 gewählt. Im Verdampfer 31 wird flüssiges Arbeitsmedium unter Wärmezufuhr verdampft, in der Expansionsmaschine 32 (z.B. Schraubenexpander, Turbine) entspannt und auf einem niedrigeren Druckniveau verflüssigt. Bei der Verflüssigung im Kondensator 34 wird Wärme vom Arbeitsfluid an das Heizwassernetz abgegeben und dadurch die geforderte Vorlauftemperatur erreicht. Über eine Welle ist die Expansionsmaschine 32 mit dem Generator 33 gekoppelt, welcher die mechanische Energie in elektrische wandelt. Diese kann sowohl in ein Netz eingespeist werden, als auch zur Deckung des Eigenbedarfs der Heizungsanlage verwendet werden. Der Kreislauf wird geschlossen, indem die Speisepumpe 35 den Druck des Arbeitsmediums auf den Verdampfungsdruck erhöht und es erneut in den Verdampfer 31 fördert. Die Integration eines thermodynamischen Kreisprozesses 30 in eine Wärmeübergabestation 1 bietet somit die Möglichkeit einer dezentralen Kraft-Wärme-Kopplung bei Wärmeverbrauchern. Im Fall von größeren Wärmeübergabestationen wird durch einen modularen Aufbau der Parallelbetrieb mehrerer Anlagen in einem Stack ermöglicht. Auf diese Weise werden ein besseres Teillastverhalten sowie eine erhöhte Flexibilität erreicht.

[0034] Die Kombination einer Wärmeübergabestation mit einem thermodynamischen Kreisprozess beinhaltet allerdings die Problematik, dass der ORC nur einen Teil des Temperaturgefälles zwischen Fernwärme Vorlauf und -Rücklauf nutzen kann. Dies liegt in der Tatsache begründet, dass der Pinch Point zwischen der Temperatur der Wärmequelle und der Temperatur des Arbeitsmediums die Wärmeaufnahme begrenzt, wie das T-Q-Diagramm des ORC-Prozesses in Fig. 4 verdeutlicht. Dargestellt sind dort die Temperaturverläufe der Fluide im Fernwärmenetz, im Heiznetz, sowie im ORC-Prozess. Hierbei ist Q̇max,ORC die maximale Wärmemenge, welche der ORC aufnehmen kann, bei Q̇Anforderung,Kunde handelt es sich um den Wärmebedarf des Gebäudes. Als Pinch Point (auch Zwickpunkt oder Punkt der geringsten Grädigkeit genannt) bezeichnet man in der thermodynamischen Verfahrenstechnik den Punkt der kleinsten Temperaturdifferenz zwischen zwei Medien, die über ein oder mehrere Wärmeübertrager Wärme übertragen.

[0035] Darüber hinaus ist die Heizleistung bei der ersten Ausführungsform nach Fig. 3 abhängig vom Betrieb des ORC 30. Bei einem Ausfall des thermodynamischen Prozesses 30 ist die Wärmeversorgung des Heiznetzes 20 nicht mehr möglich, da über den Kondensator 34 keine Wärme mehr ausgekoppelt wird. Ein weiteres Problem ergibt sich aus der Anfälligkeit der Arbeitsmedium-Speisepumpe 35 gegenüber Kavitation. Gelangt innerhalb von kurzer Zeit eine große Menge kalten Wassers in den Kondensator 34, beispielsweise bei plötzlich auftretendem Wärmebedarf, so sinkt der Druck im Kondensator 34. Wird hierbei der zur vorherrschenden Temperatur des Arbeitsmediums korrespondierende Siededruck unterschritten, kommt es zur Kavitation, also dem lokalen Entstehen von Dampfblasen im Kondensat im Zulauf und Eintritt zur Speisepumpe 35, die anschließend wieder zusammenfallen. Durch die damit verbundenen Druckwellen kommt es zu Schäden an den Laufrädern der Speisepumpe 35, darüber hinaus führt der entstehende Dampf zum Zusammenbruch des geförderten Volumenstromes, was anschließend zum sofortigen Stillstand des Kreisprozesses 30 führt.

[0036] Die Patentschrift DE 10 2009 053 390 B3 "Thermodynamische Maschine sowie Verfahren zu deren Betrieb" beschreibt eine Vorrichtung und ein Verfahren zur Vermeidung von Kavitation in einem thermodynamischen Kreisprozess, welches insbesondere bei Verwendung von Luftkondensatoren vorteilhaft ist. Hierbei wird dem Arbeitsmedium durch Hinzufügen eines nicht kondensierenden Gases im Kondensator ein zusätzlicher Druck aufgeprägt. Da dies gleichbedeutend ist mit einer größeren Vorlaufhöhe der Pumpe, vergrößert sich im Pumpenzulauf der Abstand des tatsächlichen Druckes zum Siededruck. Im Gegenzug verringert sich dadurch die Druckdifferenz über der Expansionsmaschine und somit die abgegebene elektrische Leistung. Da bei Kondensation gegen Wasser die Druckdifferenz über der Expansionsmaschine verhältnismäßig gering ist, ist diese Lösung für den vorliegenden Anwendungsfall nachteilig.

[0037] Diese Nachteile können jedoch durch die nachfolgend dargestellten weiteren Ausführungsformen sowie bevorzugte Kombinationen daraus vermieden werden.

[0038] Der Heizbetrieb ist bei der zweiten Ausführungsform 2 nach Fig. 5 unabhängig vom Betrieb des Kreisprozesses. Ein variabler Teil der Wärme wird vom Kreisprozess aufgenommen, während der Rest über einen dritten Wärmeübertrager 40 direkt in das Heiznetz 20 übertragen wird. Alternativ zum 3-Wege-Ventil 22 kann eine weitere Pumpe im Heiznetz-Vorlauf zum dritten Wärmeübertrager 40 zur Aufteilung des Massenstroms verwendet werden. Die Pumpen können weiterhin sowohl im Vor- als auch im Rücklauf des Heiznetzes 20 angeordnet sein. Bei einem Ausfall des Kreisprozesses kann die gesamte Wärmemenge über den dritten Wärmeübertrager 40 zugeführt werden. Eine Notlauffunktionalität ist somit bei ausreichender Dimensionierung des dritten Wärmeübertragers 40 gegeben. Die Rücklauftemperatur des Fernwärmenetzes kann durch entsprechende Regelung des Kreisprozesses auf einem konstanten Niveau oder unterhalb einer geforderten Maximaltemperatur gehalten werden. Im ORC-Betrieb ist die Temperatur geringfügig höher als bei ausgeschaltetem ORC. Die Vorlauftemperatur im Heiznetz 20 ist beliebig regelbar. Wenn höherer Wärmebedarf besteht, wird der Massenstrom im Kreisprozess gesenkt. Bei konstanten Eingangs- und Ausgangstemperaturen des Arbeitsmediums findet dadurch eine geringere Wärmezufuhr an den ORC statt. Dies wiederum bedeutet aufgrund des konstanten Massenstromes im Fernwärmenetz 10, dass die Ausgangstemperatur auf der Seite des Fernwärmenetzes 10 steigt. Dadurch liegt über dem dritten Wärmeübertrager 40 eine größere Temperaturdifferenz an, wodurch die direkt an das Heiznetz 20 übertragene Wärmemenge erhöht wird. Das System kann sowohl in Heizwassernetze eingebunden werden, in denen Fernwärmenetz- und Heizwassernetz voneinander getrennt sind, als auch in Netzen in denen nur ein gemeinsames Netz besteht. Für die Integration in ein gemischtes Netz wird der dritte Wärmeübertrager 40 nicht mehr benötigt, da man einen Teilstrom des Fernwärmewassers direkt in das Heiznetz leiten kann.

[0039] Diese zweite Ausführungsform verfügt weiterhin über eine verbesserte Funktionalität zur Vermeidung von Kavitationsschäden. Hierbei kann der Massenstrom des Heizwassers durch den Kondensator 34 über das 3-Wege-Ventil 22 reduziert werden. Wie Fig. 6 zeigt, vergrößert sich dadurch die Temperaturspreizung des Wassermassenstroms. Die Kondensationstemperatur des Arbeitsmediums wird durch die Eintrittstemperatur des Wassers, die Temperaturdifferenz im Pinch Point, sowie dem Massenstrom und damit der Temperaturspreizung des Wassers aufgeprägt. Steigt die wasserseitige Eintrittstemperatur, erhöht sich auch der Kondensationsdruck des Arbeitsmediums. Nimmt der Massenstrom des Wassers ab, steigt die Austrittstemperatur des Wassers. Da die Wärmeübertragerfläche konstant bleibt, die Temperaturdifferenz zwischen Arbeitsmedium und Wasser jedoch steigt, wird das Arbeitsmedium stärker unterkühlt. Eine größere Unterkühlung wirkt im Speisepumpenvorlauf wie eine größere Vorlaufhöhe, da sich der Abstand des tatsächlichen Drucks zum Verdampfungsdruck am Pumpeneingang vergrößert.

[0040] Bei der großen Temperaturspreizung zwischen Fernwärme Vorlauf (z.B. 120 °C) und Rücklauf (z.B. 45 °C) stößt die Wärmeübertragung im Verdampfer 34 schnell an ihre Grenzen. Aufgrund des Pinch Points zwischen Arbeitsmedium und Fluid am Eintritt in den ersten Wärmeübertrager (Verdampfer) ist die Auskühlung des Fernwärmerücklaufes und somit die Wärmezufuhr nur begrenzt möglich.

[0041] Weiterhin ermöglicht diese zweite Ausführungsform 2 verschiedene Betriebsmodi. Ein erster Betriebsmodus dient zum Heizen und zur Stromproduktion. Bei durchschnittlichem Wärmebedarf läuft der Kreisprozess parallel zur Wärmeversorgung und ein Teil des Wärmebedarfes wird durch die Kondensationswärme gedeckt. Ein kleiner Teil der Wärme aus dem Heiznetz 20 wird über die Expansionsmaschine 32 und den Generator 33 in elektrische Energie gewandelt. Ein zweiter Betriebsmodus dient als reiner Heizbetrieb. Dazu wird bei sehr großem Wärmebedarf der Kreisprozess 30 ausgeschaltet und die gesamte benötigte Wärme über den dritten Wärmeübertrager 40 dem Heiznetz 20 zugeführt. Dieser Betriebsmodus gleicht hierbei dem einer herkömmlichen Übergabestation.

[0042] Im Fall von sensiblen Wärmequellen (z.B. Geothermie-Heizwerk) ist die Rücklauftemperatur ein wichtiger Parameter, um möglichst viel Wärme aus der Quelle zu entnehmen und den Wirkungsgrad der Anlage zu steigern. Die dritte Ausführungsform 3 gemäß Fig. 7 stellt eine Weiterentwicklung der zweiten Ausführungsform 2 dar, durch die entsprechend niedrige Temperaturen im Fernwärme-Rücklauf erreicht werden können.

[0043] Alternativ zur Stromerzeugung wird durch die dritte Ausführungsform 3 nach Fig. 7 ein Wärmepumpen-Betriebsmodus des ORC ermöglicht. Dazu wird der Expander 32 als Kompressor 32 betrieben, indem das Ventil 54 geschlossen und das Ventil 53 geöffnet wird, so dass das Fluid auf der Niederdruckseite in die Expansionsmaschine 32 strömt. Weiterhin wird das Ventil 55 geschlossen. Durch das offene Ventil 52 strömt das verdichtete Arbeitsmedium in den Kondensator 34, wo es Wärme an das Heiznetz 20 abgibt. Durch die Drossel 56 erfolgt eine Druckabsenkung, die mit einer Verringerung der Siedetemperatur einhergeht. Mittels des dritten Wärmeübertragers 40 wird ein Teil der Wärmeenergie an das Heiznetz 20 übertragen und so die Rücklauftemperatur auf einen für die Wärmepumpe geeigneten Bereich herabgesenkt. Anschließend kann das Arbeitsmedium über das 3-Wege-Ventil 51 zum vierten Wärmeübertrager 50 geleitet werden, wo es verdampft werden kann. Dadurch wird der Fernwärme-Rücklauf weiter gekühlt.

[0044] Der Wärmepumpenbetrieb bietet für Wärmekunden den Vorteil, dass die installierte Anschlussleistung geringer ausfallen kann. Dies liegt darin begründet, dass die Nennanschlussleistung sich durch eine festgelegte Spreizung zwischen Fernwärme Vor- und Rücklauf sowie der Fläche der Wärmeübertrager definiert. Durch die zusätzliche Auskühlung des Rücklaufes bei konstanter Wärmeübertragerfläche und konstantem Massenstrom, ist die tatsächliche Wärmezufuhr im Wärmepumpenbetrieb größer als die Nennanschlussleistung. Für Betreiber von beispielsweise Geothermie-Heizwerken ergibt sich der Vorteil, dass der regenerativen Wärmequelle so mehr Energie entzogen werden kann. Durch die höhere Ausbeute thermischer Energie bei niedrigen Rücklauftemperaturen kann darüber hinaus ein Teil der Bereitstellung von Spitzenlastenergie ersetzt werden.

[0045] Im ORC-Betrieb gemäß Fig. 8 verhält sich diese dritte Ausführungsform 3 analog zur zweiten Ausführungsform 2. Hierbei sind die Ventile 54 und 55 offen, das 3-WegeVentil 51 versperrt den Zugang zum vierten Wärmeübertrager 50 und ermöglicht den Zugang zum ersten Wärmeübertrager 31.

[0046] Durch die Ventile 52, 53, 54, 55 ist ein Bypass der Expansionsmaschine 32 möglich, somit sinken die Druckverluste und die Wärmebereitstellung an das Heiznetz 20 kann über einen Naturumlauf realisiert werden. Alternativ kann der dritte Wärmeübertrager 40 den Bypass ermöglichen. Im Wärmepumpen-Betriebsfall sind niedrige FernwärmeRücklauftemperaturen erreichbar. Eine Begrenzung der Heiznetz-Vorlauftemperatur besteht durch die maximale Kondensationstemperatur plus der Grädigkeit des Wärmeübertragers. Der Einsatz ist mit geringfügigen Modifikationen sowohl bei getrennten als auch bei gemischten Heizkreisen möglich. Die Kavitationsvermeidung ist hier wie für die zweite Ausführungsform gegeben. Die Temperaturspreizung des Verdampfers ist wie in der zweiten Ausführungsform. Bei der großen Temperaturspreizung zwischen Fernwärme Vor- und Rücklauf stößt die Wärmeübertragung im Verdampfer schnell an ihre Grenzen. Aufgrund des Pinch Points zwischen Arbeitsmedium und Fluid in der Fernwärmeleitung ist die Auskühlung des Fernwärme Rücklaufes und somit die Wärmezufuhr an den ORC nur begrenzt möglich.

[0047] Fig. 9 zeigt eine vierte Ausführungsform 4 der erfindungsgemäßen Wärmeübergabestation. In dieser vierten Ausführungsform 4 sind Mittel zum Aufteilen des Massenstroms des ersten Fluids in einen ersten Teil und einen zweiten Teil in Form eines Dreiwegeventils, und Mittel zum Leiten des ersten Teils des ersten Fluids zum dritten Wärmeübertrager 40 vorgesehen. Weiterhin gibt es einen Wärmespeicher 60 in thermischem Kontakt mit dem zweiten Fluid. Bei einem Ausfall des Kreisprozesses kann die gesamte Wärmemenge über den dritten Wärmeübertrager 40 zugeführt werden. Eine Notlauffunktionalität ist somit bei ausreichender Dimensionierung des dritten Wärmeübertrager 40 gegeben. Im ORC-Betrieb ist die Fernwärme-Rücklauftemperatur leicht erhöht gegenüber der zweiten Ausführungsform 2. Die Vorlauftemperatur im Heiznetz ist beliebig regelbar. Wenn (z.B. bei Spitzenlast) ein gesteigerter/erhöhter Wärmebedarf besteht, wird der Massenstrom zum Kreisprozess gesenkt, dadurch wird mehr Wärme auf einem höheren Temperaturniveau über den dritten Wärmeübertrager 40 an das Heiznetz 20 übertragen. Die Heiznetz Vorlauftemperatur ist wie bei der zweiten Ausführungsform 2. Der Einsatz ist mit geringfügigen Modifikationen sowohl bei getrennten als auch bei gemischten Heizkreisen möglich. In den Rücklauf des Heiznetzes 20 ist als thermischer Puffer ein Wärmespeicher 60 (Latentwärmespeicher oder ein sensibler Wärmespeicher) vor den Kondensator 34 geschaltet werden. Dieses ermöglicht eine Abflachung der Temperaturgradienten des in den Kondensator 34 eintretenden Heizwassers. Bei der großen Temperaturspreizung zwischen Fernwärme Vor- und Rücklauf stößt die Wärmeübertragung im Verdampfer schnell an ihre Grenzen. Aufgrund des Pinch Points zwischen Arbeitsmedium und Fluid in der Fernwärmeleitung ist die Auskühlung des Fernwärme Rücklaufes und somit die Wärmezufuhr nur begrenzt möglich.

[0048] Bei der fünften Ausführungsform 5 nach Fig. 10 wird der Kondensator 34 des ORC auf der Seite des Heiznetzes 20 immer mit der kältesten Temperatur sowie mit einem großen Massenstrom durchströmt, da das zweite wärmeführende Fluid vollständig sowohl durch den Kondensator 34 als auch durch den dritten Wärmeübertrager 40 geleitet wird. Dies ist für den elektrischen Wirkungsgrad der Anlage vorteilhaft, da sich bei einem größeren Massenstrom eine geringere Temperaturdifferenz im HeizwasserRücklauf einstellt. Bei konstantem Pinch Point stellt sich somit ein niedrigerer Gegendruck zur Expansionsmaschine ein (siehe dazu Fig. 11), was zu einer höheren elektrischen Leistung führt. Bei einem Ausfall des Kreisprozesses kann die gesamte Wärmemenge über den dritten Wärmeübertrager 40 zugeführt werden. Eine Notlauffunktionalität ist somit bei ausreichender Dimensionierung des dritten Wärmeübertragers 40 gegeben. Aufgrund der Erwärmung des Heiznetz-Rücklaufes im Kondensator 34 kann der Fernwärme-Rücklauf durch den dritten Wärmeübertrager 40 nicht so weit gekühlt werden wie bei der zweiten Ausführungsform. Dadurch ergibt sich im ORC-Betrieb je nach Betriebsweise eine Erhöhung der Fernwärme-Rücklauftemperatur, beispielsweise um etwa 10 bis 15 K. Die Vorlauftemperatur im Heiznetz 20 ist beliebig regelbar. Wenn Wärmebedarf besteht, wird der Massenstrom im Kreisprozess gesenkt, dadurch wird mehr Wärme auf einem höheren Temperaturniveau über den dritten Wärmeübertrager 40 direkt an das Heiznetz übertragen. Der Einsatz ist mit geringfügigen Modifikationen sowohl bei getrennten als auch bei gemischten Heizkreisen möglich. Kavitationsvermeidung: In den Rücklauf des Heiznetzes kann wie bei der vierten Ausführungsform 4 als thermischer Puffer ein Latentwärmespeicher oder ein sensibler Wärmespeicher vor den Kondensator 34 geschaltet werden. Dieses ermöglicht eine Abflachung der Temperaturgradienten des in den Kondensator eintretenden Heizwassers. Temperaturspreizung im Verdampfer der fünften Ausführungsform 5 entspricht jener der zweiten Ausführungsform 2.

[0049] Zusammenfassend weist die erfindungsgemäße Wärmeübergabestation die folgenden Vor- und Nachteile auf. Als Vorteile sind eine bessere Ausnutzung der eingesetzten Exergie (bei wenig zusätzlicher Wärmeleistung großer zusätzlicher Nutzen, siehe Fig. 2); weniger Vernichtung von Exergie bei Wärmeübergabe an Wärmeverbraucher; dezentrale Kraft-Wärme-Kopplung beim Endnutzer (Strom erzeugendes Heizsystem); Nutzung unterschiedlicher Temperaturvarianten und Netztypen (gemischte und getrennte Kreise); große Flexibilität in Leistung und Betrieb, an wachsendes Wärmenetz anpassbar (kann als Stack ausgeführt werden); und Steigerung von Wirkungsgrad und Stromkennzahl des Gesamtsystems aufzuführen. Als Nachteil ist eine geringfügig niedrigere maximale Wärmebereitstellung für den Wärmekunden zu nennen und in den Ausführungsformen 1, 2, 4, 5 eine geringfügige bis mäßige Erhöhung der Temperatur des Fernwärmerücklaufs. In den Ausführungsformen mit Notlauffunktion kann durch einen Bypass des ORC, also dessen Abschaltung, und einer ausreichenden Dimensionierung des dritten Wärmeübertragers 40 trotzdem die gesamte Anschlussleistung zur Verfügung gestellt werden.

[0050] Die dargestellten Ausführungsformen sind lediglich beispielhaft und der vollständige Umfang der vorliegenden Erfindung wird durch die Ansprüche definiert.


Ansprüche

1. Wärmeübergabestation zum Übergeben von Wärme von einem Lieferantenwärmenetz mit einem ersten wärmeführenden Fluid auf ein Kundenwärmenetz mit einem zweiten wärmeführenden Fluid, umfassend:

eine thermodynamische Kreisprozessvorrichtung mit einem Arbeitsmedium, insbesondere eine ORC-Vorrichtung mit einem organischen Arbeitsmedium, wobei die thermodynamische Kreisprozessvorrichtung umfasst:

einen als Verdampfer ausgebildeten ersten Wärmeübertrager zum Vorwärmen, Verdampfen und optional zusätzlichen Überhitzen des Arbeitsmediums unter Zuführung von Wärme aus dem ersten Fluid,

eine Expansionsmaschine zum Erzeugen von mechanischer Energie durch Entspannen des verdampften Arbeitsmediums,

einen mit der Expansionsmaschine gekoppelten Generator zum zumindest teilweisen Wandeln der mechanischen Energie in elektrische Energie,

einen als Kondensator ausgebildeten zweiten Wärmeübertrager zum Kondensieren und optional zusätzlichen Enthitzen und/oder optional zusätzlichen Unterkühlen des entspannten Arbeitsmediums und Übertragen von Wärmeenergie aus dem entspannten Arbeitsmedium auf das zweite Fluid, und

eine Speisepumpe zum Fördern des kondensierten Arbeitsmediums unter Druckerhöhung zum Verdampfer.


 
2. Wärmeübergabestation nach Anspruch 1, weiterhin umfassend:

einen dritten Wärmeübertrager zum unmittelbaren Übertragen von Wärme aus dem ersten Fluid auf das zweite Fluid.


 
3. Wärmeübergabestation nach Anspruch 2, weiterhin umfassend:

Mittel zum Aufteilen des Massenstroms des zweiten Fluids in einen ersten Teil und einen zweiten Teil;

Mittel zum Leiten des ersten Teils des zweiten Fluids durch den Kondensator und zum Leiten eines zweiten Teils des zweiten Fluids durch den dritten Wärmeübertrager; und

Mittel zum Zusammenführen des ersten Teils des Massenstroms des zweiten Fluids nach dem Leiten durch den Kondensator und des zweiten Teils des Massenstroms des zweiten Fluids nach dem Leiten durch den dritten Wärmeübertrager.


 
4. Wärmeübergabestation nach Anspruch 3, wobei die Mittel zum Aufteilen des Massenstroms des zweiten Fluids in einem Vorlauf oder in einem Rücklauf des Kundenwärmenetzes vorgesehen sind und vorzugsweise ein Dreiwegeventil, ein Magnetventil oder eine Pumpe in einem Vorlauf zum dritten Wärmeübertrager umfassen.
 
5. Wärmeübergabestation nach einem der Ansprüche 1 bis 4, weiterhin umfassend:

einen vierten Wärmeübertrager zum unmittelbaren Übertragen von Wärme aus dem ersten Fluid auf das Arbeitmedium.


 
6. Wärmeübergabestation nach Anspruch 5, weiterhin umfassend:

Mittel zum Umleiten des Arbeitsmediums aus einem Vorlauf des Verdampfers zum vierten Wärmeübertrager, insbesondere in Form eines Dreiwegeventils oder

eines Magnetventils; und

Mittel zum Betreiben der Expansionsmaschine als Kompressor.


 
7. Wärmeübergabestation nach Anspruch 6, wobei die Mittel zum Betreiben der Expansionsmaschine als Kompressor umfassen:

Mittel zum unmittelbaren Leiten des Arbeitsmediums vom vierten Wärmeübertrager zu einer Niederdruckseite der als Kompressor betriebenen Expansionsmaschine, insbesondere ein erstes Ventil zum Sperren der Verbindung zwischen Verdampfer und der Hochdruckseite der Expansionsmaschine und eine Bypassleitung mit einem zweiten Ventil zum Herstellen einer Verbindung zwischen dem vierten Wärmeübertrager und der Niederdruckseite der Expansionsmaschine, und

Mittel zum unmittelbaren Leiten des komprimierten Arbeitsmediums von einer Hochdruckseite der als Kompressor betriebenen Expansionsmaschine zum Kondensator, insbesondere ein viertes Ventil zum Sperren einer Verbindung zwischen der Niederdruckseite der Expansionsmaschine und dem Kondensator und eine Bypassleitung mit einem dritten Ventil zum Herstellen einer Verbindung zwischen der Hochdruckseite der Expansionsmaschine und dem Kondensator.


 
8. Wärmeübergabestation nach Anspruch 2, wobei die Wärmeübergabestation derart ausgebildet ist, dass das zweite wärmeführende Fluid vollständig sowohl durch den Kondensator als auch durch den dritten Wärmeübertrager geleitet wird.
 
9. Wärmeübergabestation nach Anspruch 2 oder 8, weiterhin umfasssend:

Mittel zum Aufteilen des Massenstroms des ersten Fluids in einen ersten Teil und einen zweiten Teil, insbesondere ein Dreiwegeventil, und

Mittel zum Leiten des ersten Teils des ersten Fluids zum dritten Wärmeübertrager.


 
10. Wärmeübergabestation nach Anspruch 9, weiterhin umfassend:

einen Wärmespeicher in thermischem Kontakt mit dem zweiten Fluid.


 
11. Verfahren zum Übergeben von Wärme von einem Lieferantenwärmenetz mit einem ersten wärmeführenden Fluid auf ein Kundenwärmenetz mit einem zweiten wärmeführenden Fluid mittels einer thermodynamischen Kreisprozessvorrichtung, insbesondere einer ORC-Vorrichtung, wobei die thermische Kreisprozessvorrichtung einen als Verdampfer ausgebildeten ersten Wärmeübertrager, eine Expansionsmaschine, einen mit der Expansionsmaschine gekoppelten Generator, einen als Kondensator ausgebildeten zweiten Wärmeübertrager und eine Speisepumpe umfasst, und wobei das Verfahren die folgenden Schritte umfasst:

Vorwärmen, Verdampfen und optional zusätzliches Überhitzen des Arbeitsmediums unter Zuführung von Wärme aus dem ersten Fluid mit dem ersten Wärmeübertrager;

Erzeugen von mechanischer Energie durch Entspannen des verdampften Arbeitsmediums mit der Expansionsmaschine und zumindest teilweises Wandeln der mechanischen Energie in elektrische Energie mit dem Generator;

Kondensieren und optional zusätzliches Enthitzen und/oder optional zusätzliches Unterkühlen des entspannten Arbeitsmediums und Übertragen von Wärmeenergie aus dem entspannten Arbeitsmedium auf das zweite Fluid mit dem zweiten Wärmeübertrager; und

Fördern des kondensierten Arbeitsmediums unter Druckerhöhung zum Verdampfer mit der Speisepumpe.


 
12. Verfahren nach Anspruch 11, mit dem weiteren Schritt:

unmittelbares Übertragen von Wärme aus dem ersten Fluid auf das zweite Fluid mit einem dritten Wärmeübertrager.


 
13. Verfahren nach Anspruch 12, mit den weiteren Schritten:

Aufteilen des Massenstroms des zweiten Fluids in einen ersten Teil und einen zweiten Teil;

Leiten des ersten Teils des zweiten Fluids durch den Kondensator und Leiten eines zweiten Teils des zweiten Fluids durch den dritten Wärmeübertrager; und

Zusammenführen des ersten Teils des Massenstroms des zweiten Fluids nach dem Leiten durch den Kondensator und des zweiten Teils des Massenstroms des zweiten Fluids nach dem Leiten durch den dritten Wärmeübertrager.


 
14. Verfahren nach einem der Ansprüche 11 bis 13, mit dem weiteren Schritt:

unmittelbares Übertragen von Wärme aus dem ersten Fluid auf das Arbeitsmedium mit einem vierten Wärmeübertrager.


 
15. Verfahren nach Anspruch 12, wobei das zweite wärmeführende Fluid vollständig sowohl durch den Kondensator als auch durch den dritten Wärmeübertrager geleitet wird.
 




Zeichnung



















Recherchenbericht









Recherchenbericht




Angeführte Verweise

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE



Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente