(19)
(11) EP 2 275 683 B1

(12) EUROPÄISCHE PATENTSCHRIFT

(45) Hinweis auf die Patenterteilung:
11.01.2017  Patentblatt  2017/02

(21) Anmeldenummer: 09163048.3

(22) Anmeldetag:  18.06.2009
(51) Internationale Patentklassifikation (IPC): 
F04C 2/18(2006.01)
F04C 14/08(2006.01)

(54)

Verfahren zur Steuerung einer Zahnradpumpe

Method for controlling a gear pump

Procédé de commande d'une pompe à engrenages


(84) Benannte Vertragsstaaten:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

(43) Veröffentlichungstag der Anmeldung:
19.01.2011  Patentblatt  2011/03

(73) Patentinhaber: Maag Pump Systems AG
8154 Oberglatt (CH)

(72) Erfinder:
  • Aregger, Markus
    8006 Zürich (CH)

(74) Vertreter: Troesch Scheidegger Werner AG 
Schwäntenmos 14
8126 Zumikon
8126 Zumikon (CH)


(56) Entgegenhaltungen: : 
EP-A1- 0 382 029
EP-B1- 0 886 068
US-A- 5 314 312
EP-A2- 0 697 523
DE-A1- 19 522 515
   
       
    Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europäischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäischen Patent Einspruch einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Einspruchsgebühr entrichtet worden ist. (Art. 99(1) Europäisches Patentübereinkommen).


    Beschreibung


    [0001] Die vorliegende Erfindung betrifft ein Verfahren nach dem Oberbegriff von Anspruch 1 sowie eine Anwendung des Verfahrens.

    [0002] Zahnradpumpen bestehen aus zwei ineinander greifenden Zahnrädern, die auf Wellen montiert sind, wobei in der Regel eine Welle mit einer Antriebseinheit verbunden ist. Die nicht mit einer Antriebseinheit angetriebene Welle wird mittels Drehmomentübertragung von der angetriebenen Welle über die Zahnflanken angetrieben.

    [0003] Aufgrund der Drehmomentübertragung kommt es an den Zahnflanken durch zu hohe Flächenpressungen oft zu Verschleissproblemen, und zwar einerseits, weil über die Zahnflanken von der angetriebenen Welle auf die getriebene Welle die Drucklast, hervorgerufen durch den Differenzdruck, übertragen werden muss, und, andererseits, weil die Reibarbeit überwunden werden muss. Insbesondere bei der Herstellung von Polymeren in grossen Polymerisationsanlagen oder beim Compounding von Kunststoffen mit grossen Durchsätzen bei sehr hohen Gegendrücken und hohen Temperaturen, d.h. insgesamt hohen Drehmomenten, können an den Zahnflanken Schäden durch Abnützung oder Verschleiss (Pittings, Mikroverschweissungen, Abnützung) an der Oberfläche der Zahnräder auftreten.

    [0004] Um diese Schäden zu vermeiden, sind bereits Zweiwellenantriebe eingesetzt worden, bei denen der Antrieb durch eine einzige Antriebseinheit (Motor) erfolgt, und dann anschliessend die Kraftverteilung durch mechanische Verteilgetriebe auf die beiden Zahnradpumpenwellen erfolgt.

    [0005] Des Weiteren ist aus der Patentschrift CH-659 290 eine Zahnradpumpe bekannt, bei der die zwei Wellen je mit einer Antriebseinheit angetrieben werden. Jedes der beiden Zahnräder bezieht die erforderliche Antriebsleistung von der zugehörigen Antriebseinheit. Zwischen den beiden Zahnrädern werden nur verhältnismässig geringfügige Differenzleistungen übertragen.

    [0006] Aus der EP-0 886 068 B1 ist eine Zahnradpumpe bekannt, bei der wiederum zwei Antriebseinheiten zum einzelnen Antreiben der Wellen vorgesehen sind, wobei Phase und Winkelgeschwindigkeit der ineinander greifenden Zahnräder derart koordiniert werden, dass einerseits ein Abheben von Zahnflanken der ineinander greifenden Zahnräder und anderseits ein zu hohes Überschussdrehmoment über die Zahnflanken der ineinander greifenden Zahnräder vermieden werden.

    [0007] Es hat sich gezeigt, dass bei den bekannten Zahnradpumpen der Verschleiss, insbesondere bei Förderung von abrasiven Fördermedien, erheblich sein kann.

    [0008] Insbesondere bei Extrusionsanwendungen von hochgefüllten, abrasiven Polymerschmelzen stellt sich das Problem des hohen Zahnflankenverschleisses durch Abrasion und damit des vorzeitigen Ausfalls der Zahnradwellen, da zwischen den Zahnflanken die in der Schmelze enthaltenen abrasiven Partikel zerrieben werden und es dabei zur Schädigung und Abtragung der Zahnflankenoberflächen kommen kann. Ausserdem steigt durch Füllstoffbeladung die Viskosität der Schmelze und damit der Drehmomentbedarf der Gesamtpumpe bzw. das benötigte Drehmoment an den einzelnen Wellen, so dass auch eine mögliche Überschreitung der zulässigen Flächenpressung an den Zahnflanken wieder in den Fokus rückt.

    [0009] Es ist daher eine Aufgabe der vorliegenden Erfindung, ein Verfahren zur Steuerung einer Zahnradpumpe anzugeben, bei dem eine Verbesserung in Bezug auf zumindest einen der erwähnten Nachteile erhalten wird.

    [0010] Diese Aufgabe wird durch die im kennzeichnenden Teil von Anspruch 1 angeführten Merkmale gelöst. Vorteilhafte Ausführungsvarianten sowie eine Anwendung sind in weiteren Ansprüchen angegeben.

    [0011] Die vorliegende Erfindung betrifft zunächst ein Verfahren zur Steuerung einer aus zwei ineinander greifenden Zahnrädern bestehenden Zahnradpumpe, bei der die zwei Zahnräder über entsprechende Wellen je mit einer Antriebseinheit angetrieben werden. Die Erfindung zeichnet sich dadurch aus, dass eine momentane Position des einen Zahnrades in Bezug auf eine momentane Position des anderen Zahnrades bestimmt wird und dass die momentane Position des einen Zahnrades in Bezug auf die momentane Position des anderen Zahnrades nach Vorgabe von vordefinierten Betriebsbedingungen laufend eingestellt und dass die Bestimmung der momentanen Position des einen Zahnrades in Bezug auf die momentane Position des anderen Zahnrades über einen Referenzwert eingestellt wird, der vor dem normalen Betrieb der Zahnradpumpe oder während Unterbrüchen des normalen Betriebes der Zahnradpumpe ermittelt wird. Weitere Ausführungsvarianten der vorliegenden Erfindung zeichnen sich dadurch aus, dass der Referenzwert in der Mitte zwischen Zahnflanken einer Zahnlücke eines Zahnrades, vorzugsweise in der Mitte zwischen Zahnflanken einer Zahnlücke eines Zahnrades, liegt.

    [0012] Weitere Ausführungsvarianten der vorliegenden Erfindung zeichnen sich dadurch aus, dass der Referenzwert dadurch bestimmt wird,
    • dass das eine Zahnrad das andere Zahnrad mit einem vorgegebenen Drehmoment antreibt,
    • dass eine erste Winkeldifferenz durch Differenzbildung zwischen mit den Drehgeber/Sensoreinheiten gemessenen Werten bestimmt wird,
    • dass das andere Zahnrad das eine Zahnrad mit dem vorgegebenen Drehmoment antreibt,
    • dass eine zweite Winkeldifferenz durch Differenzbildung zwischen mit der Drehgeber/Sensoreinheiten gemessenen Werten bestimmt wird,
    • dass eine Differenz zwischen der ersten Winkeldifferenz und der zweiten Winkeldifferenz bestimmt wird und
    • dass der Referenzwert innerhalb der bestimmten Differenz festgelegt wird.


    [0013] Damit ist ein Verfahren zur automatischen Kalibrierung der Anordnung mit einer Zahnradpumpe angegeben. Das System kann diese Kalibrierung sowohl vor Inbetriebnahme als auch während Betriebsunterbrüchen durchführen, ohne dass weitere Massnahme durch das Bedienpersonal vorgenommen werden müssen. Mit diesem Verfahren kann auch ein allfälliger Verschleiss von Zahnflanken festgestellt werden, denn dann verändert resp. vergrössert sich auch die Differenz zwischen der ersten Winkeldifferenz und der zweiten Winkeldifferenz. Ein übermässiger Verschliess kann dann durch eine einfache Schwellwertüberschreitung festgestellt werden.

    [0014] Weitere Ausführungsvarianten der vorliegenden Erfindung zeichnen sich dadurch aus, dass mindestens einer der folgenden Momentanwerte überwacht wird:
    • die erste Winkeldifferenz,
    • ein Unterschied zwischen der ersten Winkeldifferenz und dem Referenzwert,
    • die zweite Winkeldifferenz,
    • ein Unterschied zwischen der zweiten Winkeldifferenz und dem Referenzwert,
    und dass bei Unter- bzw. Überschreitung des mindestens einen der Momentanwerte unter einen vordefinierten Wert mindestens eine der folgenden Aktionen durchgeführt wird:
    • eine optische Warnung,
    • optische Anzeige,
    • akustische Warnung,
    • Änderung der Betriebsbedingungen der Zahnradpumpe.


    [0015] Weitere Ausführungsvarianten der vorliegenden Erfindung zeichnen sich dadurch aus, dass zur Bestimmung der momentanen Positionen des einen und des zweiten Zahnrades Drehgeber/Sensoreinheiten verwendet werden, wobei jede Drehgeber/Sensoreinheit mittig zwischen der Verzahnung des jeweiligen Zahnrades und einem Rotor des jeweiligen Antriebes angeordnet sind.

    [0016] Eine mittige Anordnung der Drehgeber/Sensoreinheiten hat den Vorteil, dass ein vorhandener Verdrehwinkel aufgrund einer nicht idealen Steifigkeit des gesamten Antriebsstranges einen reduzierten Einfluss auf den Messfehler des Systems hat. Der Messfehler wird durch die mittige Anordnung halbiert.

    [0017] Weitere Ausführungsvarianten der vorliegenden Erfindung zeichnen sich dadurch aus, dass ein vordefiniertes Flankenspiel zwischen zwei ineinander greifenden Zahnrädern eingestellt wird.

    [0018] Weitere Ausführungsvarianten der vorliegenden Erfindung zeichnen sich dadurch aus, dass eine in Drehrichtung des einen Zahnrades vorauseilende Flanke eines in eine Zahnlücke eintauchenden Zahnes eine in Drehrichtung des anderen Zahnrades nacheilende Flanke berührt und dass eine in Drehrichtung des anderen Zahnrades vorauseilende Flanke eines in eine Zahnlücke eintauchenden Zahnes eine in Drehrichtung des einen Zahnrades nacheilende Flanke berührt.

    [0019] Diese Betriebsbedingung wird auch etwa als Flankenwechsel bezeichnet, da sich die berührenden Zahnflanken im Laufe eines Ausquetschvorganges ändern.

    [0020] Weitere Ausführungsvarianten der vorliegenden Erfindung zeichnen sich dadurch aus, dass das eine Zahnrad das andere Zahnrad mit einem vorgegebenen Drehmoment antreibt, wobei das vorgegebenen Drehmoment grösser ist, als die Hälfte des gesamten, mit den beiden Antrieben erzeugten Drehmomentes ist.

    [0021] Eine exakte Drehmomenteinstellung kann durch entsprechende Steuerung der Drehzahlen bzw. momentanen Positionen der Zahnräder zueinander erreicht werden. Die Zahnflanken übertragen somit ein beliebig einstellbares Drehmoment, heben jedoch im Betrieb niemals voneinander ab, wenn immer eine definierte Flankendichtung erreicht werden soll. Weitere Ausführungsvarianten der vorliegenden Erfindung zeichnen sich dadurch aus, dass die Drehzahl der durch die Antriebseinheiten angetriebenen Wellen derart synchron eingestellt wird, dass ein Fördermediumsdruck auf einer Druckseite der Zahnradpumpe im wesentlichen konstant verläuft.

    [0022] Damit ist der Vorteil verbunden, dass kein störendes Pulsieren auf der Druckseite der Zahnradpumpe mehr vorhanden ist, was sich in der Qualität des Extrudates niederschlägt.

    [0023] Weitere Ausführungsvarianten der vorliegenden Erfindung zeichnen sich dadurch aus, dass der Fördermediumsdruck auf der Druckseite der Zahnradpumpe gemessen wird und dass die Drehzahl in Abhängigkeit des gemessenen Fördermediumsdruckes eingestellt wird.

    [0024] Ferner zeichnet sich das erfindungsgemässe Verfahren durch die Verwendung einer Anordnung mit einer Zahnradpumpe aus, die ein Pumpengehäuse, zwei im Pumpengehäuse enthaltene und ineinander greifende Zahnräder und zwei Wellen umfasst, die mit den Zahnrädern wirkverbunden sind und durch das Pumpengehäuse geführt sind, wobei die zwei Wellen mit je einer Antriebseinheit wirkverbunden sind, wobei zwischen Zahnrad und Antriebseinheit jeweils eine Kupplungseinheit zur Ausgleichung von Exzentrizitäten zwischen der Antriebseinheit und der jeweiligen Welle angeordnet ist und wobei zwischen Zahnradmitte und Antriebsmitte jeweils eine Drehgeber/Sensoreinheit angeordnet ist.

    [0025] Eine Ausführungsvariante der vorliegenden Erfindung zeichnet sich dadurch aus, dass die Drehgeber/Sensoreinheit in einem axialen Bereich liegt, der durch die Mitte zwischen Zahnradmitte und Antriebsmitte plus einer beidseitigen Abweichung von maximal 10% der Distanz zwischen Zahnradmitte und Antriebsmitte definiert ist.

    [0026] Weitere Ausführungsvarianten der vorliegenden Erfindung zeichnen sich dadurch aus, dass die Drehgeber/Sensoreinheiten jeweils in der Mitte zwischen jeweiliger Zahnradmitte und jeweiliger Antriebsmitte angeordnet sind.

    [0027] Weitere Ausführungsvarianten der vorliegenden Erfindung zeichnen sich dadurch aus, dass die Drehgeber/Sensoreinheit zur Drehachse der jeweiligen Welle einen radialen Abstand aufweisen, der grösser ist, vorzugsweise mindestens doppelt so gross ist, wie ein äusserer Radius der Zahnräder. Weitere Ausführungsvarianten der vorliegenden Anwendung zeichnen sich dadurch aus, dass die Drehgeber/Sensoreinheiten entweder optische oder magnetische Drehgeber/Sensoreinheiten sind. Weitere Ausführungsvarianten der vorliegenden Anwendung zeichnen sich dadurch aus, dass die Drehgeber/Sensoreinheiten derart angeordnet sind, dass eine senkrecht auf die Welle stehende und durch die korrespondierenden Drehgeber/Sensoreinheit verlaufende Verbindungslinie mit einer mittig zwischen den beiden Drehachsen verlaufenden Ebene saugseitig einen Winkel im Bereich von 35° bis 55°, vorzugsweise 40° bis 50°, vorzugsweise 45°, einschliesst.

    [0028] Weitere Ausführungsvarianten der vorliegenden Anwendung zeichnen sich dadurch aus, dass jede Antriebseinheit einen Rotor und einen Stator aufweist, wobei der Rotor in Bezug auf den Stator axial verschiebbar ist.

    [0029] Weitere Ausführungsvarianten der vorliegenden Anwendung zeichnen sich dadurch aus, dass die Antriebseinheiten auf der in Bezug auf die Zahnradpumpe abgewandten Seiten jeweils eine Ausgleichslagereinheit aufweisen, die den jeweiligen Rotor der Antriebseinheit radial stützt.

    [0030] Weitere Ausführungsvarianten der vorliegenden Anwendung zeichnen sich dadurch aus, dass der Rotor der Antriebseinheit über die Kupplungseinheit mit der jeweiligen Welle der Zahnradpumpe verbunden ist.

    [0031] Weitere Ausführungsvarianten der vorliegenden Anwendung zeichnen sich dadurch aus, dass die Kupplungseinheit eine Membrankupplung ist.

    [0032] Weitere Ausführungsvarianten der vorliegenden Anwendung zeichnen sich dadurch aus, dass ein Flansch zwischen dem Pumpengehäuse und dem Stator der jeweiligen Antriebseinheit angeordnet ist, wobei der Flansch Bohrungen aufweist, durch die ein Kühlmedium zur Einstellung der Temperatur zirkuliert.

    [0033] Weitere Ausführungsvarianten der vorliegenden Anwendung zeichnen sich dadurch aus, dass die Antriebseinheiten mit der jeweiligen Welle der Zahnradpumpe von der in Bezug auf die Zahnradpumpe angewandten Seite aus verbunden wird.

    [0034] Weitere Ausführungsvarianten der vorliegenden Anwendung zeichnen sich dadurch aus, dass die Verbindungen zwischen den Antriebseinheiten und den jeweiligen Wellen der Zahnradpumpe konische Polygonverbindungen sind.

    [0035] Weitere Ausführungsvarianten der vorliegenden Anwendung zeichnen sich dadurch aus, dass die Antriebseinheiten vom Typ Torquemotoren sind.

    [0036] Weitere Ausführungsvarianten der vorliegenden Anwendung zeichnen sich dadurch aus, dass die eine Antriebseinheit, die Zahnradpumpe und die andere Antriebseinheit je in einer Temperaturzone enthalten sind, in der die Temperaturen auf vorgegebene Werte einstellbar sind, wobei zwischen benachbarten Temperaturzonen vorzugsweise Isolationsbereiche vorhanden sind.

    [0037] Die Erfindung wird nachfolgend anhand von Zeichnungen, in denen Ausführungsbeispiele der vorliegenden Erfindung dargestellt sind, erläutert. Dabei zeigen:
    Fig. 1
    eine bekannte Anordnung mit einer Zahnradpumpe und einer Antriebseinheit,
    Fig. 2
    einen Schnitt durch die in Fig. 4 angegebene Schnittebene A-A durch eine erfindungsgemässe Anordnung mit einer Zahnradpumpe und einer Antriebseinheit,
    Fig. 3
    eine schematische Darstellung der erfindungsgemässen Anordnung mit Angaben zu Temperaturzonen,
    Fig. 4
    eine Position für Drehgeber und Sensoreinheit zur Bestimmung von momentanen Positionen der Zahnräder,
    Fig. 5
    einen Schnitt quer durch die Drehachsen der Wellen im Bereich der Zahnräder zur Illustration einer ersten Betriebsbedingung,
    Fig. 6
    wiederum einen Schnitt quer durch die Drehachsen der Wellen im Bereich der Zahnräder zur Illustration einer zweiten Betriebsbedingung,
    Fig. 7
    wiederum einen Schnitt quer durch die Drehachsen der Wellen im Bereich der Zahnräder zur Illustration einer dritten Betriebsbedingung,
    Fig. 8
    wiederum einen Schnitt quer durch die Drehachsen der Wellen im Bereich der Zahnräder zur Illustration einer vierten Betriebsbedingung und
    Fig. 9
    einen Graphen mit einem Drehzahlverlauf, einem Druckverlauf und einem Drehmomentverlauf in Funktion der Zeit.


    [0038] In Fig. 1 ist eine bekannte Anordnung mit einer Zahnradpumpe 1 dargestellt, die Fördermedium F von einer Saugseite S auf eine Druckseite D fördert. Ersichtlich ist in Fig. 1 ein Pumpengehäuse 10, durch das Wellen 2 und 3 nach aussen geführt sind. Die nach aussen geführte Welle 3 ist über ein erstes Kreuzgelenk 4, ein in der Länge verstellbarer Achsabschnitt 6 und eine zweites Kreuzgelenk 5 mit einer Antriebseinheit 7 verbunden. Entsprechend ist auch die nach aussen geführte Welle 2 über ein entsprechendes erstes und zweites Kreuzgelenk sowie über einen entsprechenden Achsabschnitt mit einer weiteren Antriebseinheit (in Fig. 1 nicht dargestellt) verbunden. Somit werden die mit den Wellen 2, 3 verbundenen Zahnräder (in Fig. 1 nicht ersichtlich) jeweils über eine eigene Antriebseinheit angetrieben.

    [0039] Es wird darauf hingewiesen, dass das aus dem ersten und dem zweiten Kreuzgelenk 4 und 5 bestehende Doppel-Wellengelenk zusammen mit dem verstellbaren Achsabschnitt 6 zur Aufnahme von Lateral- und Winkelabweichungen der Antriebseinheit in Bezug zur Welle 2 bzw. 3 vorgesehen ist. Durch das Doppel-Wellengelenk in Kombination mit dem verstellbaren Achsabschnitt 6 wirkt eine zusätzliche Lagerkraft auf ein im Pumpengehäuse 10 enthaltenes Wellenlager. Diese zusätzliche Lagerkraft entsteht aufgrund des Eigengewichtes des Doppel-Wellengelenkes und des Achsabschnittes 6. Die zusätzliche Lagerkraft ist aufgrund eines verhältnismässig kurzen Lagerabstandes der Pumpenlager, die sich im Pumpengehäuse 10 zur Stützung der Wellen 2 und 3 befinden, in Bezug auf die Länge des Doppel-Wellengelenkes beträchtlich.
    In Fig. 2 ist ein Schnitt durch eine erfindungsgemässe Anordnung mit einer Zahnradpumpe 1 dargestellt, wobei die Schnittebene in die Drehachsen 13 und 14 der Wellen 2 und 3 und durch einen Sensor 25 gelegt ist, entsprechend der in Fig. 4 eingezeichneten Schnittebene A-A. Fig. 2 zeigt der Einfachheit halber lediglich eine Hälfte der Zahnradpumpe 1. Entsprechend ist auch nur eine Antriebseinheit 7 dargestellt. Die Antriebseinheit 7 ist über einen Flansch 15 direkt, d.h. ohne Zwischengetriebe, an das Pumpengehäuse 10 bzw. dessen Deckel gepresst. Über eine Schraube 21 werden die rotierenden Teile der Antriebseinheit 7, wie eine Nabe 16, eine Membrankupplung 22 und ein Rotor 18, mit der Welle 3 der Zahnradpumpe 1 verbunden. Die Schraube 21 kann bei Bedarf gelöst werden, wodurch die Antriebseinheit 7 von der Zahnradpumpe 1 wiederum gelöst werden kann. Nach dem Lösen von Schrauben 40, welche den Flansch 15 mit dem Pumpengehäuse 10 bzw. mit dessen Deckel verbindet, und nach dem Lösen der Schraube 21 kann die komplette Antriebseinheit 7 von der Zahnradpumpe 1 gelöst werden. Die Wellen 2,3 der Zahnradpumpe und deren Lagereinheiten bleiben innerhalb der Zahnradpumpe und können einzeln demontiert werden.

    [0040] Die Antriebseinheit 7 besteht neben dem Flansch 15 und der Nabe 16 ferner aus einem Rotor 18, einem Stator 17 und einem Antriebsdeckel 19 mit einer Öffnung 20. Der Antriebsdeckel 19 schliesst die Antriebseinheit 7 auf der der Zahnradpumpe 1 abgewandten Seite ab und ist mit dem Stator 17 verbunden, wobei die Öffnung 20 mittig auf der verlängerten Drehachse 13 der Welle 3 angeordnet ist. Zahnradpumpenseitig ist der Stator 17 mit dem Flansch 15 verbunden.

    [0041] Wie bereits darauf hingewiesen worden ist, ist die Zahnradpumpe 1 direkt, d.h. ohne Zwischengetriebe, mit der Antriebseinheit 7 verbunden. Hierzu ist die Schraube 21 vorgesehen, mit Hilfe derer der Rotor 18 über die Nabe 16 und den Flansch 15 axial fixiert wird. Die Schraube 21 wird bei der Montage der Antriebseinheit 7 an die Zahnradpumpe 1 durch die Öffnung 20 im Antriebsdeckel 19 entlang der Drehachse 13 der Welle 3 geführt und in einer entsprechenden Bohrung in der Welle 3 befestigt. Dabei wird die Nabe 16 mit der Welle 3 über eine so genannte konische Polygonverbindung verbunden, die einerseits ein genaues axiales Ausrichten des Rotors 18 zur Welle 3 ermöglicht, anderseits eine äusserst drehsteife Verbindung zwischen dem Rotor 18 der Antriebseinheit 7 und der anzutreibenden Welle 3 der Zahnradpumpe 1 ermöglicht.

    [0042] Es ist bereits aus dem Vergleich der bekannten Anordnung gemäss Fig. 1 und der erfindungsgemässen Anordnung gemäss Fig. 2 deutlich ersichtlich, dass die erfindungsgemässe Anordnung vergleichsweise äusserst kurz ist und aufgrund der kurzen Drehachsverbindung zwischen dem Rotor 18 und dem Zahnrad 11 auch eine sehr drehsteife Verbindung ergibt, was besonders im Zusammenhang mit dem noch zu erläuternden erfindungsgemässen Verfahren von Bedeutung ist.

    [0043] Da wie beim Doppel-Wellengelenk gemäss Fig. 1 auch bei der Anordnung gemäss Fig. 2 ein Winkel- und ein Lateralausgleich erforderlich ist, ist einerseits eine Membrankupplung 22 am Zahnradpumpen-seitigen Ende des Rotors 18 - für den Winkelausgleich - und anderseits der Stator 17 und der Rotor 18 derart ausgebildet, dass der Rotor 18 in Bezug auf den Stator 17 axial verschiebbar ist, um den Lateralausgleich zu ermöglichen.

    [0044] Die Membrankupplung 22 und die Nabe 16 sind beispielsweise auch als einzelnes Teil denkbar, wie es auch aus Fig. 2 hervorgeht, wobei in der linken, antriebsseitigen Hälfte das einzelne Teil die klassische Funktion einer Nabe, die an die Welle 3 koppelbar ist, im rechten Teil ist dieses einzelne Teil dünnwandig und erfüllt damit die Funktionen einer Membrankupplung.

    [0045] Neben der erwähnten Abstützung des Rotors 18 in Bezug auf den Stator 17 auf der Seite der Zahnradpumpe 1 mittels Flansch 15 und Nabe 16 - via konische Polygonverbindung und Schraube 21 -, ist auf der in Bezug auf die Zahnradpumpe 1 abgewandten Seite ein Ausgleichslager 23 vorgesehen, das den Rotor 18 in Bezug auf den Stator 17 radial in Position hält.

    [0046] Fertigungsbedingte Exzentrizitäten der Drehachse 13 der Welle 3 in Bezug auf eine Drehachse des Ausgleichslagers 23 können durch die Membrankupplung 22 ausgeglichen werden. Zwar entsteht aufgrund von fertigungsbedingten Exzentrizitäten eine zusätzliche Belastung der Zahnradpumpenlager, allerdings halten sich die daraus resultierenden Momentreaktionen in relativ engen Grenzen, da die Distanz der Membrankupplung 22 zum belasteten Lager gering ist und da nur ein moderater Winkelausgleich bewerkstelligt werden muss.

    [0047] Als Antriebseinheit 7 wird beispielsweise ein so genannter Torquemotor verwendet, der ein hochpolig permanenterregter Drehstrom-Synchronmotor mit Hohlwellenläufer für die direkte, vorstehend erwähnte Ankopplung an die Zahnradpumpe ist. Torquemotoren zeichnen sich insbesondere durch eine kurze kompakte Bauform und einem geringen Verdrehspiel (hohe Drehsteifigkeit) aus.

    [0048] Wie aus den noch folgenden Ausführungen zum Betrieb der Anordnung mit der Zahnradpumpe 1 deutlich werden wird, sind genaue Angaben zur momentanen Position des einen Zahnrades in Bezug auf die momentane Position des anderen Zahnrades sehr wichtig. Damit einhergehend ist die Forderung nach einem direkten und möglichst unverfälschten Einfluss der Antriebseinheiten auf die Zahnräder der Zahnradpumpe. Ein Kriterium ist das bereits erwähnte geringe Verdrehspiel (hohe Steifigkeit) zwischen der Antriebseinheit und dem angetriebenen Zahnrad. Ein weiteres Kriterium ist eine möglichst genaue Messung der momentanen Position des einen Zahnrades in Bezug auf die momentane Position des anderen Zahnrades.

    [0049] Im Ausführungsbeispiel gemäss Fig. 2 wird dies dadurch erreicht, dass an der Peripherie der Nabe 16 ein Drehgeber 24 angeordnet ist, der mit einer mit dem Stator 17 verbundenen Sensoreinheit 25 zusammenwirkt. Beispielsweise ist auf der Nabe 16 ein Raster aufgetragen, das mit der Sensoreinheit 25 gelesen wird. Anstelle einer solchen optischen Messvorrichtung können auch entsprechende magnetische Messvorrichtungen oder andere Verfahren zur Positionsbestimmung eingesetzt werden.

    [0050] Um allfällige Messfehler durch eine Exzentrizität des Drehgebers 24 zur Verzahnung zu minimieren, wird der Drehgeber 24 im Durchmesser möglichst gross ausgeführt. Die Exzentrizität des Drehgebers 24 selbst wird durch die Integration der Aufnahme des Drehgebers 24 in die Nabe 16 minimiert. Da die Nabe 16 einteilig ist, können sehr enge Fertigungstoleranzen an der Aufnahme des Drehgebers 24 eingehalten werden.

    [0051] Die Position des Drehgebers 24 resp. der Sensoreinheit 25 wird vorzugsweise zwischen der Mitte des Rotors 18 bzw. Stators 17 und der Mitte des angetriebenen Zahnrades 11 der Zahnradpumpe 1 gewählt. Bei einer gleichmässigen Steifheitsverteilung über den Antriebsstrang (d.h. zwischen der Mitte des Rotors 18 bzw. Stators 17 und der Mitte des angetriebenen Zahnrades 11 der Zahnradpumpe 1) ist der Drehgeber 24 resp. die Sensoreinheit 25 vorzugsweise in der Mitte zwischen der Mitte des Rotors 18 bzw. Stators 17 und der Mitte des angetriebenen Zahnrades 11 der Zahnradpumpe 1 angeordnet.

    [0052] Ein möglicher Einsatzbereich der Anordnung mit einer Zahnradpumpe ist der einem Extruder nachgeschaltete Druckaufbau bei der Förderung von Kunststoffschmelzen in einer Extrusionslinie. In diesem Anwendungsgebiet werden die Polymerschmelzen bei Temperaturen von bis zu 300°C gegen hohe Austragsdrücke (z. B. 300 bar) gefördert. Dazu sind hohe Antriebsleistungen und damit auch hohe Drehmomente notwendig. Entsprechend ist die Zahnradpumpe bzw. deren Pumpengehäuse auf einer vom Fördermedium bedingten Temperatur von beispielsweise 300°C erwärmt, währenddem die Temperatur der Antriebseinheiten 7 und 8, insbesondere für die bei diesen notwendigen elektronischen Schaltungen, 60°C nicht überschreiten sollte. Zur Illustration dieses Sachverhaltes zeigt Fig. 3 in schematischer Darstellung die erfindungsgemässe Anordnung mit einer Zahnradpumpe 1, wobei nunmehr die Zahnradpumpe 1 und die beiden seitlich angeordneten Antriebseinheiten 7 und 8 durch einfache Blöcke dargestellt sind. Die einzelnen Komponenten sind in Temperaturzonen 32, 33 und 34 enthalten, die entsprechend den vorstehenden Erläuterungen zulässige bzw. geforderte Temperaturwerte aufweisen müssen. So ist in der Temperaturzone 33 die Zahnradpumpe 1 enthalten, welche aufgrund der Temperatur des Fördermediums beispielsweise bei 300° C betrieben wird. Antriebsseitig sind die Antriebseinheiten 7 und 8 vorgesehen, die in den Temperaturzonen 32 resp. 34 liegen, deren maximaler Wert 60° C für ein einwandfreies Funktionieren nicht überschreiten darf. Die vorliegende Anordnung erfordert die Platzierung von elektrischen Komponenten in unmittelbarer Nähe der Zahnradpumpe. Da die Zahnradpumpe bis zu 300°C heiss wird, sind isolierende Trennwände 30 und 31 erforderlich, die zwischen den Temperaturzonen 32 und 33 resp. zwischen den Temperaturzonen 33 und 34 vorhanden sind. Neben den isolierenden Trennwänden 30 und 31 sind nach Bedarf zusätzlich Massnahmen erforderlich, damit die Temperatur in den kalten Temperaturzonen 32 und 34 nicht unzulässige Werte erreicht. Eine zusätzliche Massnahme besteht beispielsweise darin, dass eine aktive Kühlung (beispielsweise eine aktive Wasserkühlung) vorgesehen ist.

    [0053] Denkbar ist auch, den Rotor 18 (Fig. 2) vor Übertemperatur zu schützen, indem eine Kühlung des Flansches 15 zwischen der Nabe 16 und der Zahnradpumpe 1 geschaltet ist. Die Kühlung wird dabei beispielsweise durch sternförmige Bohrungen im Flansch 15 realisiert. Damit werden sehr gute Kühleigenschaften erreicht, da die Umlenkungen hohe Verwirbelungen erzeugen. Die Nabe 16 wird an der gesamten Oberfläche flanschseitig durch Strahlung und erzwungene Konvektion gekühlt.

    [0054] Fig. 4 zeigt eine mögliche Positionierung der Sensoreinheit 25, die zur Bestimmung der momentanen Position des einen Zahnrades in Bezug auf die momentane Position des anderen Zahnrades verwendet wird, wobei Fig. 4 einen Schnitt quer zu den Drehachsen 11 und 13 der Wellen 2 und 3 zeigt. Das Fördermedium wird in Pfeilrichtung von der Saugseite S mit der Zahnradpumpe auf die Druckseite D befördert. Dabei wird eine Kraftkomponente in Richtung der Pfeile P, P' erzeugt, welche auf die Wellenlager der Zahnradpumpe einwirken und zu einer geringfügigen Verschiebung der Wellen 2 und 3 (Fig. 2) führen.

    [0055] Um die durch die Verschiebung hervorgerufene Exzentrizität auszugleichen, wird nun die Sensoreinheit 25 in Verschiebungsrichtung, d.h. in Richtung der Durchbiegung der Welle, angebracht. Die Anbringung erfolgt beispielsweise unter 45° und ist somit im Durchschnitt des möglichen Verschiebungswinkels, der differenzdruckabhängig und viskositätsabhängig ist. Bei ungenügender Genauigkeit, verursacht durch die Wellenverschiebung und Durchbiegung, kann z. B. eine zahnradbreiten- und spielgrössenabhängige Anordnung der Sensoreinheit 25 vorgenommen werden.

    [0056] Anhand der Fig. 5 bis 9 werden im Folgenden verschiedene Betriebsbedingungen erläutert, die als vordefinierte Abläufe für den Betrieb der Anordnung mit der Zahnradpumpe vorgegeben werden können.

    [0057] Fig. 5 zeigt einen Schnitt quer zu den Drehachsen 13 und 14 im Bereich der Zahnräder 11 und 12. Fördermedium F wird auf der Saugseite S von den Zahnlücken aufgenommen und anschliessend entlang des Pumpengehäuses auf die Druckseite D transportiert, wo das Fördermedium F durch die kämmenden Zahnräder 11, 12 ausgequetscht wird.

    [0058] Beim Betrieb der Zahnradpumpe entsteht im Verzahnungsbereich zwischen Zahngrund und Zahnkopf der Zahnräder ein "gefangenes Volumen", das durch die sich beinahe berührenden Zahnflanken vor und hinter diesem Volumen abgedichtet wird. Strömungstechnisch kann jedoch an den Stellen, an denen ein grosser Fliessspalt aus tribologischen Gründen (optimale Spaltdicke zur Relativgeschwindigkeit der Zahnflanken) gewünscht wird, ein Fliessspalt gezielt erzeugt werden. Durch die vorhandene Lageregelung der Wellen kann aktiv das Verhältnis dieser beiden Dichtspalten gesteuert werden. Einmal kann der dem "gefangenen Volumen" vorlaufende Spalt minimiert werden, einmal der dem "gefangenen Volumen" nachfolgende Spalt. Dadurch ist es möglich, dass der Ausquetschvorgang aus diesem "gefangenen Volumen" aktiv beeinflusst werden kann, womit sich die Gleichförmigkeit der Strömung optimieren lässt.

    [0059] Um die verschiedenen Betriebszustände bzw.
    Betriebsbedingungen der Anordnung gemäss der Erfindung einstellen zu können, müssen Angaben über die momentane Position des einen Zahnrades 11 in Bezug auf die momentane Position des anderen Zahnrades 12 bekannt sein. Diese Angaben sind die eigentlichen Anfangsbedingungen, die für weitere Einstellungen der Zahnräder zueinander notwendig sind. Eine Möglichkeit, diese Angaben zu ermitteln, besteht in der Durchführung der folgenden Schritte des Verfahrens, das auch etwa als Kalibrierung bezeichnet wird:

    In einem ersten Schritt treibt die erste Welle 2 die zweite Welle 3 mit einem definierten Drehmoment an. Dabei wird eine erste absolute Drehwinkeldifferenz mit Hilfe des erläuterten Drehgebers 24 in Kombination mit der Sensoreinheit 25 (Fig. 2) bei beiden Wellen 2 und 3 bestimmt, indem eine Differenz zwischen einem gemessenen Wert der einen Sensoreinheit 25 und einem gemessenen Wert der anderen Sensoreinheiten 25' bestimmt wird.



    [0060] In einem zweiten Schritt treibt die zweite Welle 3 die erste Welle 2 mit dem gleichen definierten Drehmoment wie im ersten Schritt an. Dabei wird eine zweite absolute Drehwinkeldifferenz wiederum mit Hilfe des erläuterten Drehgebers 24 in Kombination mit der Sensoreinheit 25 bei beiden Wellen 2 und 3 bestimmt, indem wiederum die Differenz zwischen einem gemessenen Werten der einen Sensoreinheit 25 und einem gemessenen Wert der anderen Sensoreinheiten 25' bestimmt wird.

    [0061] In einem dritten Schritt wird eine Differenz zwischen der ersten absoluten Drehdifferenz und der zweiten absoluten Drehdifferenz gebildet. Diese Differenz ist der eigentliche Bereich, in welchem sich die Zahnräder zueinander bewegen können, sofern das definierte Drehmoment, das im ersten und zweiten Schritt bei der Messung verwendet worden ist, nicht überschritten wird. In diesem Bereich kann nun ein Referenzwert festgelegt werden, in Bezug zu dem die momentanen Positionen der Zahnräder angegeben werden. Der Referenzwert ist dann also ein Nullpunkt eines definierten Koordinatensystems. Beispielsweise liegt der Referenzwert in der Mitte zwischen Zahnflanken einer Zahnlücke, so dass der Absolutbeträge der maximalen Auslenkungen identisch sind.

    [0062] Bei der anhand der Fig. 5 erläuterten Betriebsbedingung wird eine konstante Kraft FO zwischen den Zahnrädern 11 und 12 übertragen, wie dies in der Detaildarstellung X in der rechten Hälfte der Fig. 5 illustriert ist.

    [0063] So können nach dem Festlegen des Referenzpunktes nun in einer ersten Einstellung die Betriebsbedingungen beispielsweise so gewählt werden, dass ein Zahnrad die Hälfte plus eine definierte Prozentzahl des gesamten Drehmomentes überträgt. Entsprechend überträgt dann das andere Zahnrad die Hälfte minus die definierte Prozentzahl des gesamten Drehmoments.

    [0064] Unter diesen Betriebsbedingungen kann eine definierte Dichtung zwischen den Zahnflanken erreicht werden. Der Anwendungsbereich dieser Betriebsbedingungen zielt auf die Förderung von niederviskosen Fluiden, bei welchen eine Dichtwirkung zwischen den Zahnradflanken notwendig ist, um eine ausreichende Dichtung von der Druckseite D zur Saugseite S zu erhalten.
    Eine weitere Einstellung besteht darin, dass als Betriebsbedingungen das Flankenspiel zwischen den Flanken von zwei ineinander greifenden Zähnen wählbar ist, und zwar beispielsweise in 10%-Schritten von der Berührung der Flanken (kein Flankenspiel) über eine mittige Ausrichtung (d.h. der in eine Zahnlücke eintauchende Zahn liegt genau in der Mitte der Lücke) bis sich die Zahnflanken wiederum berühren, wobei es sich diesmal um die nacheilenden Zahnflanken handelt.

    [0065] Fig. 6 illustriert die eben erläuterten Betriebsbedingungen wiederum in einem Schnitt quer zu den Drehachsen 13 und 14 im Bereich der Zahnräder 11 und 12. Auch hier ist im kämmenden Bereich der Zahnräder 11 und 12 ein Ausschnitt X als Detail vergrössert dargestellt, bei dem auch ein eingestelltes Flankenspiel 26 hervorgehoben dargestellt ist.

    [0066] Diese Betriebsbedingungen werden gewählt, wenn das Fördermedium F eine mittlere Viskosität aufweist. Mit der Einstellung des Flankenspiels 26 kann der Quetschdruck so eingestellt werden, dass dieser möglichst gleich dem Druck auf der Druckseite D entspricht. Ein zu grosses Flankenspiel 26, das zu einem kleineren Quetschdruck als der Druck auf der Druckseite D führt, muss vermieden werden, da ein zu geringe Dichtwirkung zwischen Druckseite D und Saugseite S erhalten wird. Die Betriebsbedingung, bei der ein gewisses Flankenspiel 26 (d.h. ohne Flankenberührung) vorhanden ist, kann dann mit einer korrosionsfesten (und damit auch oft weichen) Beschichtung der Zahnräder realisiert werden, ohne dass Schäden durch Abrasion entstehen.

    [0067] Eine weitere Einstellung besteht darin, dass als Betriebsbedingungen ein Flankenwechselbetrieb vorgeschlagen wird. Dabei wechselt ein Zahnrad die Flanken während des theoretischen Abwälzens eines Zahnes auf der Eingriffslinie. Die Quetschdruckentladung erfolgt somit gezielt immer zur Saugseite.

    [0068] Der Flankenwechselbetrieb wird anhand von Fig. 7 erläutert, die wiederum Schnitte quer zu den Drehachsen 13, 14 in einem Bereich der kämmenden Zahnräder 11, 12 zeigen. Auf der linken Hälfte von Fig. 7 ist ein Zustand gezeigt, bei dem der in eine Zahnlücke des Zahnrades 12 eingreifende Zahn Z1' des Zahnrades 11 den Zahn Z1 berührt. Auf der rechten Hälfte der Fig. 7 ist dann ein Zustand zeitlich später gezeigt, bei dem der in eine Zahnlücke des Zahnrades 11 eingreifende Zahn Z2 des Zahnrades 12 den Zahn Z1' berührt. Damit wurde zwischenzeitlich der erwähnte Flankenwechsel vorgenommen.

    [0069] Der Flankenwechselbetrieb weist zumindest einer der folgenden Vorteile auf:
    • Minimierung des Quetschdruck-bedingten Pulsierens durch Quetschdruckentladung zur Saugseite S;
    • Minimierung des aufzuwendenden Drehmomentes durch Minimierung der Quetschdruckenergie;
    • Reduzierung der Temperaturerhöhung durch Minimierung der Quetschdruckenergie.


    [0070] Die Betriebsbedingungen gemäss dem erwähnten Flankenwechselbetrieb werden beispielsweise bei hochviskosen Fördermedien angewendet, bei denen der Quetschdruck so gross wird, dass ein sehr grosses Drehmoment erforderlich ist, um die Quetschdruckenergie zu erzeugen, da diese energetisch einen reinen Verlust darstellen.

    [0071] Mit der Flexibilität einer elektronischen Steuerung kann in Abhängigkeit von den Eigenschaften des Fördermediums, d.h. dem Fliessverhalten oder der Feststoffbeladung des zu fördernden Polymers, das Ausquetschverhalten gezielt variiert werden. So kann jedem Polymertyp ein optimales Geschwindigkeitsprofil zugewiesen werden.

    [0072] Anhand Fig. 8 wird ein weiterer Aspekt des erfindungsgemässen Verfahrens erläutert. Ausgehend von der Kenntnis über die momentane Position des einen Zahnrades 11 in Bezug auf die momentane Position des anderen Zahnrades 12, beispielsweise durch Anwendung der erläuterten Schritte für eine Kalibrierung, und des maximalen Spielraumes (Differenz zwischen der ersten absoluten Drehdifferenz und der zweiten absoluten Drehdifferenz) für eine momentane Position des einen Zahnrades 11 in Bezug auf die momentane Position des anderen Zahnrades 12, kann nun eine Aussage über einen Verschleiss der Zahnräder 11, 12 gemacht werden, wenn sich beispielsweise der maximale Spielraum bei einem bestimmten, vom einen Zahnrad 11, 12 auf das andere Zahnrad 12, 11 übertragenen Drehmoment verändert. Wenn sich beispielsweise der Spielraum über einen vorgegebenen maximalen Schwellwert hinaus vergrössert, kann dies so gedeutet werden, dass demnächst ein Zahnrad und/oder Welle mit Zahnrad ausgewechselt werden muss, da beispielsweise mit einem baldigen Ausfall der Anlage gerechnet werden muss. So werden bei einer Zahnradpumpe, die gemäss linker Hälfte der Fig. 8 so eingestellt ist, dass immer auf die Saugseite S ausgequetscht wird, bei Überschreiten des maximal zulässigen Verschleisswertes (d.h. des maximal zulässigen Spielraumes auf einer Seite, ausgehend vom Referenzwert) die Betriebsbedingungen automatisch oder nach entsprechender manueller Bestätigung einer Überwachungsperson umgestellt. Die Umstellung der Betriebsbedingungen kann dabei derart erfolgen, dass nunmehr die notwendige Abdichtung auf die anderen Zahnflanken übertragen wird. Gemäss der rechten Hälfte der Fig. 8 ist dies dann bei einem in eine Zahnlücke eintauchenden Zahn dessen vorauseilende Zahnflanke.

    [0073] Denkbar ist auch, dass bei Feststellung eines Verschleisses die momentane Position des einen Zahnrades in Bezug der momentanen Position des anderen Zahnrades derart verändert wird, dass die ursprünglich gewünschten optimalen Betriebsbedingungen beibehalten werden. Beispielsweise kann ein Abheben der Zahnflanken aufgrund von Verschleiss auftreten. Die entsprechende Korrektur zu Wiederherstellung der gewünschten Betriebsbedingungen wäre dann eine Änderung der momentanen Position des einen Zahnrades in Bezug zur momentanen Position des anderen Zahnrades, damit sich die Zahnflanken wiederum in gewünschter Weise berühren bzw. damit wiederum das gewünschte Flankenspiel erhalten wird.

    [0074] Die Überwachung von Verschleisserscheinungen kann auch dahingehend ausgenutzt werden, dass bei Feststellung eines vorgegebenen Verschleissgrades eine akustische und/oder optische Warnung an die Überwachungsperson abgegeben wird, damit Vorkehrungen getroffen werden können, um einem Ausfall der Pumpenanlage vorzubeugen. So ist denkbar, dass bei Abgabe einer entsprechenden Warnmeldung eine Ersatzwelle bzw. ein Ersatzzahnrad beim Hersteller rechtzeitig in Auftrag gegeben wird, damit die benötigten Ersatzteile vor einem möglichen Ausfall der Pumpenanlage vor Ort vorhanden sind.

    [0075] In manchen Extrusionsanlagen, in denen Zahnradpumpen zum Einsatz kommen, stören Druckschwankungen aufgrund des erwähnten Ausquetschvorganges von Restvolumen zwischen den Zahnrädern. Diese Druckschwankungen werden auch etwa als Pulsationen bezeichnet und führen zu Unregelmässigkeiten im durch die Extrusion erzeugten Produkt. Es wurden aus diesem Grund bereits verschiedene Massnahmen vorgeschlagen, um die Druckschwankungen zu reduzieren. Zu nennen ist der Einsatz von Schrägverzahnungen oder Pfeilverzahnungen, die beide jedoch systembedingte Nachteile aufweisen.

    [0076] Gemäss der vorliegenden Erfindung werden Druckschwankungen durch eine aktive Beeinflussung der Drehzahlen der beiden Zahnradwellen eliminiert oder zumindest stark reduziert.

    [0077] Die erfindungsgemässe Anordnung bzw. das erfindungsgemässe Verfahren ist in der Lage, den Drehzahlverlauf pro Ausquetschvorgang zu variieren, und zwar derart, dass der Druck auf der Druckseite innerhalb von engen Grenzen liegt resp. dass der Druck auf der Druckseite konstant ist. Mithin wird der Ausquetschvorgang des Fördermediums aus dem Zahngrund gezielt über die momentane Position des einen Zahnrades in Bezug auf die momentane Position des anderen Zahnrades gesteuert.

    [0078] Es hat sich gezeigt, dass es zwar grundsätzlich erwünscht ist, dass die Druckschwankungen vollständig eliminiert werden können. In gewissen Anwendungen können jedoch gerade gezielt Druckschwankungen erwünscht sein, damit entsprechende Variationen in der Extrudatdicke erhalten werden. Mithin eröffnet das erfindungsgemässe Verfahren, insbesondere im Zusammenhang mit der erfindungsgemässen Anordnung mit einer Zahnradpumpe, neue Herstellungsmöglichkeiten in der Extrusion.

    [0079] Um eine möglichst einfache und gleichzeitig auch eine vollständige Elimination von Druckschwankungen erhalten zu können, muss ein Überdeckungsgrad von 1 ausgewählt werden. Wird ein Überdeckungsgrad von 1 gewählt, dann ist immer nur ein Zahnpaar an der Verdrängung, d.h. dem Ausquetschen, beteiligt (vgl. Vogel Fachbuch Jarosla und Monika Ivantysyn: "Hydrostatische Pumpen und Motoren", 1993, S. 319). In diesem Fall ergibt sich ein sinusförmiger Verlauf des Verdrängungsvolumenstroms. Dieser lässt sich über eine sinusförmige Kompensationstabelle (beispielsweise eine so genannte "Look-Up" Tabelle) einfach und effizient korrigieren.

    [0080] In Fig. 9 ist ein Drehzahlverlauf 90 der Zahnradpumpenwellen, ein Druckverlauf 91 des Druckes auf der Druckseite der Zahnradpumpe und ein Drehmomentverlauf 92 des Drehmomentes der Zahnradpumpenwelle dargestellt. Der Drehzahlverlauf 90, der Druckverlauf 91 und der Drehmomentverlauf 92 sind in Funktion der Zeit t aufgetragen. Die Drehzahl der Zahnradpumpenwelle wird in Funktion der Zeit so einstellt, dass der Druck auf der Druckseite der Zahnradpumpe konstant ist oder zumindest innerhalb eines vorgegebenen Toleranzbereiches liegt. Der in Fig. 9 gezeigte Drehzahlverlauf 90 weist eine Periodizität mit einer Periode T auf. Es handelt sich dabei um den Zeitabschnitt, während dem ein Zahneingriff in eine entsprechende Zahnlücke erfolgt. Wird nun also die Drehzahl für beide Wellen synchron gemäss dem Drehzahlverlauf 90 gesteuert, kann die Pulsation vollständig kompensiert werden.

    [0081] Es wird ausdrücklich darauf hingewiesen, dass die Pulsationskompensation mit allen in dieser Beschreibung erläuterten Betriebsbedingungen bzw. Vorgaben kombiniert werden kann.

    [0082] Aufgrund der Periodizität besteht die Möglichkeit, den Drehzahlverlauf 90 in einer Speichereinheit (Look-up Table) abzulegen. Die Werte für die einzustellende Drehzahl werden dann in einem vorgegebenen Takt ausgelesen, wobei sich der vorgegebene Takt aufgrund des einzustellenden Druckes auf der Druckseite ergibt.

    [0083] Alternativ besteht auch die Möglichkeit, den Druck auf der Druckseite mit einem Drucksensor zu messen, und die Drehzahl aufgrund des gemessenen Druckes laufend zur Einstellung der Drehzahl zu verwenden. Dieses als on-line Druckeinstellungs-Verfahren bezeichnete Vorgehen ist zwar aufwendiger in der Realisation, doch ergeben sich hierdurch weitere Anwendungsmöglichkeiten zur Realisierung von spezifischen Herstellungsverfahren in der Extrusion.

    [0084] Die gezielte Beeinflussung der Lageregelung, wie es vorstehend zur Verhinderung bzw. Verminderung des Pulsierens des Druckes auf der Druckseite einer Zahnradpumpe erläutert worden ist, kann für scherempfindliche Materialien auch dazu eingesetzt werden, eine Gesamtscherbelastung zu reduzieren. So wird bei der Bestimmung des Drehzahlverlaufes darauf geachtet, dass eine maximal zulässige Scherbelastung nicht überschritten wird.

    [0085] Die vorliegende Erfindung ermöglicht es erstmals, die Effekte Pulsation, Quetschdrücke und tribologisches Verhalten gezielt zu beeinflussen. Bei den Einstellungen können alle Effekte, die für den spezifischen Fall von Bedeutung sind, berücksichtigt werden, oder es können einzelne Betriebsbedingungen als prioritär betrachtet werden. Damit ist gemeint, dass diese Betriebsbedingungen einen gewichtigeren Einfluss auf das Verhalten der Gesamtanlage habe sollten.

    [0086] Bei den typischerweise für Zahnradpumpen verwendeten Evolventenverzahnungen besteht der Vorteil, dass das Übersetzungsverhältnis der beiden Rotationsgeschwindigkeiten während einer Umdrehung konstant bleibt, was eine Grundvoraussetzung für einen konstanten Volumenstrom darstellt. Kreisbogenverzahnungen weisen hingegen den Nachteil auf, dass das Übersetzungsverhältnis der Rotationsgeschwindigkeiten der Wellen periodisch schwankt und damit der Fördermediumstrom pulsiert. Der Einsatz der beschriebenen Erfindung mit zwei gesteuerten Antriebseinheiten ermöglicht es zum ersten Mal Kreisbogenverzahnungen zu verwenden, ohne dass ein unerwünschtes Pulsieren des Fördermediumstroms entsteht. So können bei genügend grossem Flankenspiel die Antriebsgeschwindigkeiten der Wellen entsprechend korrigiert und mit gegenläufigem Geschwindigkeitsprofil kompensiert werden, so dass Kreisbogenverzahnungen mit konstantem Übersetzungsverhältnis und damit konstantem Volumenstrom möglich werden. Wie bei der erwähnten Kreisbogenverzahnung sind auch andere Zahnformen denkbar. Es ist lediglich das Geschwindigkeitsprofil entsprechend anzupassen.


    Ansprüche

    1. Verfahren zur Steuerung einer aus zwei ineinander greifenden Zahnrädern (11, 12) bestehenden Zahnradpumpe (1), bei der die zwei Zahnräder (11, 12) über entsprechende Wellen (2, 3) je mit einer Antriebseinheit (7, 8) angetrieben werden, wobei eine momentane Position des einen Zahnrades (11, 12) in Bezug auf eine momentane Position des anderen Zahnrades (12, 11) bestimmt wird, dass die momentane Position des einen Zahnrades (11, 12) in Bezug auf die momentane Position des anderen Zahnrades (12, 11) nach Vorgabe von vordefinierten Betriebsbedingungen laufend eingestellt wird, dadurch gekennzeichnet dass die Bestimmung der momentanen Position des einen Zahnrades (11, 12) in Bezug auf die momentane Position des anderen Zahnrades (12, 11) über einen Referenzwert eingestellt wird, der vor dem normalen Betrieb der Zahnradpumpe (1) oder während Unterbrüchen des normalen Betriebes der Zahnradpumpe (1) ermittelt wird.
     
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Referenzwert zwischen Zahnflanken einer Zahnlücke eines Zahnrades (11, 12), vorzugsweise in der Mitte zwischen Zahnflanken einer Zahnlücke eines Zahnrades (11, 12), liegt.
     
    3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der Referenzwert dadurch bestimmt wird,

    - dass das eine Zahnrad (11) das andere Zahnrad (12) mit einem vorgegebenen Drehmoment antreibt,

    - dass eine erste Winkeldifferenz durch Differenzbildung zwischen mit der Drehgeber/Sensoreinheiten (24, 25) gemessenen Werten bestimmt wird,

    - dass das andere Zahnrad (12) das eine Zahnrad (11) mit dem vorgegebenen Drehmoment antreibt,

    - dass eine zweite Winkeldifferenz durch Differenzbildung zwischen mit der Drehgeber/Sensoreinheiten (24, 25) gemessenen Werten bestimmt wird,

    - dass eine Differenz zwischen der ersten Winkeldifferenz und der zweiten Winkeldifferenz bestimmt wird und

    - dass der Referenzwert innerhalb der bestimmten Differenz festgelegt wird.


     
    4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass mindestens einer der folgenden Momentanwerte überwacht wird:

    - die erste Winkeldifferenz,

    - ein Unterschied zwischen der ersten Winkeldifferenz und dem Referenzwert,

    - die zweite Winkeldifferenz,

    - ein Unterschied zwischen der zweiten Winkeldifferenz und dem Referenzwert,

    und dass bei Unter- bzw. Überschreitung des mindestens einen der Momentanwerte unter einen vordefinierten Wert mindestens eine der folgenden Aktionen durchgeführt wird:

    - eine optische Warnung,

    - optische Anzeige,

    - akustische Warnung,

    - Änderung der Betriebsbedingungen der Zahnradpumpe (1).


     
    5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass zur Bestimmung der momentanen Positionen des einen und des zweiten Zahnrades (11, 12) Drehgeber/Sensoreinheiten (24, 25) verwendet werden, wobei jede Drehgeber/Sensoreinheit (24, 25) mittig zwischen der Verzahnung des jeweiligen Zahnrades (11, 12) und einem Rotor (18) der jeweiligen Antriebseinheit (7, 8) angeordnet sind.
     
    6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass ein vordefiniertes Flankenspiel (26) zwischen zwei ineinander greifenden Zahnrädern (11, 12) eingestellt wird.
     
    7. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass eine in Drehrichtung des einen Zahnrades (11) vorauseilende Flanke eines in eine Zahnlücke eintauchenden Zahnes eine in Drehrichtung des anderen Zahnrades (12) nacheilende Flanke berührt und dass eine in Drehrichtung des anderen Zahnrades (12) vorauseilende Flanke eines in eine Zahnlücke eintauchenden Zahnes eine in Drehrichtung des einen Zahnrades (11) nacheilende Flanke berührt.
     
    8. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das eine Zahnrad (11, 12) das andere Zahnrad (12, 11) mit einem vorgegebenen Drehmoment antreibt, wobei das vorgegebenen Drehmoment grösser ist, als die Hälfte des gesamten, mit den beiden Antriebseinheiten (7, 8) erzeugten Drehmomentes ist.
     
    9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Drehzahl der durch die Antriebseinheiten (7, 8) angetriebenen Wellen (2, 3) derart synchron eingestellt wird, dass ein Fördermediumsdruck auf einer Druckseite (D) der Zahnradpumpe (1) im wesentlichen konstant verläuft.
     
    10. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass der Fördermediumsdruck auf der Druckseite (D) der Zahnradpumpe (1) gemessen wird und dass die Drehzahl in Abhängigkeit des gemessenen Fördermediumsdruckes eingestellt wird.
     
    11. Verfahren nach einem der Ansprüche 1 bis 10 dadurch gekennzeichnet, dass eine Anordnung mit einer Zahnradpumpe (1) verwendet wird, die ein Pumpengehäuse (10), zwei im Pumpengehäuse (10) enthaltene und ineinander greifende Zahnräder (11, 12) und zwei Wellen (2, 3) umfasst, die mit den Zahnrädern (11, 12) wirkverbunden sind und durch das Pumpengehäuse (10) geführt sind, wobei die zwei Wellen (2, 3) mit je einer Antriebseinheit (7, 8) wirkverbunden sind, wobei zwischen Zahnrad (11, 12) und Antriebseinheit (7, 8) jeweils eine Kupplungseinheit (22) zur Ausgleichung von Exzentrizitäten zwischen der Antriebseinheit (7, 8) und der jeweiligen Welle (2, 3) angeordnet ist und wobei zwischen Zahnradmitte und Antriebsmitte jeweils eine Drehgeber/Sensoreinheit (24, 25) angeordnet ist.
     
    12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass die Drehgeber/Sensoreinheit (24, 25) in einem axialen Bereich liegt, der durch die Mitte zwischen Zahnradmitte und Antriebsmitte plus einer beidseitigen Abweichung von maximal 10% der Distanz zwischen Zahnradmitte und Antriebsmitte definiert ist.
     
    13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass die Drehgeber/Sensoreinheiten (24, 25) jeweils in der Mitte zwischen jeweiliger Zahnradmitte und jeweiliger Antriebsmitte angeordnet sind.
     
    14. Verfahren nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, dass die Drehgeber/Sensoreinheit (24, 25) zur Drehachse (13, 14) der jeweiligen Welle (2, 3) einen radialen Abstand aufweisen, der grösser ist, vorzugsweise mindestens doppelt so gross ist, wie ein äusserer Radius der Zahnräder (11, 12).
     


    Claims

    1. Method for controlling a gear pump (1) comprising two meshing gear wheels (11, 12), at which gear pump (1) the two gear wheels (11, 12) each are driven by a drive unit (7, 8) via corresponding shafts (2, 3), wherein a momentary position of the one gear wheel (11, 12) is determined with respect to a momentary position of the other gear wheel (12, 11), that the momentary position of the one gear wheel (11, 12) is continuously adjusted with respect to the momentary position of the other gear wheel (12, 11) according to predefined operating conditions, characterized in that the determination of the momentary position of the one gear wheel (11, 12) is adjusted with respect to the momentary position of the other gear wheel (12, 11) by means of a reference value, that is determined before the normal operation of the gear pump (1) or during interruptions of the normal operation of the gear pump (1).
     
    2. Method according to claim 1, characterized in that the reference value lies between tooth flanks of a tooth space of a gear wheel (11, 12), preferably in the middle between tooth flanks of a tooth space of a gear wheel (11, 12).
     
    3. Method according to claim 2, characterized in that the reference value is determined in that

    - the one gear wheel (11) drives the other gear wheel (12) with a specified torque,

    - a first angle difference is determined by differentiation between values measured by the rotary encoder/sensor units (24, 25),

    - the other gear wheel (12) drives the one gear wheel (11) with the specified torque,

    - a second angle difference is determined by differentiation between values measured by the rotary encoder/sensor units (24, 25),

    - the difference between the first angle difference and the second angle difference is determined and

    - the reference value is set within the determined difference.


     
    4. Method according to claim 3, characterized in that at least one of the following momentary values is monitored:

    - the first angle difference,

    - the difference between the first angle difference and the reference value,

    - the second angle difference,

    - the difference between the second angle difference and the reference value,

    and in that when at least one of the momentary values is below resp. above a predefined value, at least one of the following actions is carried out:

    - an optical warning,

    - an optical display,

    - an acoustic warning,

    - change of the operating conditions of the gear pump (1).


     
    5. Method according to one of claims 1 to 4, characterized in that rotary encoder/sensor units (24, 25) are used for the determination of the momentary position of the one and the other gear wheel (11, 12), wherein each rotary encoder/sensor unit (24, 25) is arranged in the middle between the toothing of the respective gear wheel (11, 12) and a rotor (18) of the respective drive unit (7, 8).
     
    6. Method according to one of claims 1 to 5, characterized in that a predefined flank clearance (26) is adjusted between two meshing gear wheels (11, 12).
     
    7. Method according to one of claims 1 to 5, characterized in that a leading flank with respect to the rotating direction of the one gear wheel (11) of a tooth immersing in a tooth gap touches a following flank with respect to the rotating direction of the other gear wheel (12) and in that a leading flank with respect to the rotating direction of the other gear wheel (12) of a tooth immersing in a tooth gap touches a following flank with respect to the rotating direction of the one gear wheel (11).
     
    8. Method according to one of claims 1 to 5, characterized in that the one gear wheel (11, 12) drives the other gear wheel (12, 11) with a specified torque, wherein the specified torque is greater than half of the entire torque that is produced by the two drive units (7, 8).
     
    9. Method according to one of claims 1 to 8, characterized in that the number of revolutions of the shafts (2, 3) driven by the drive units (7, 8) is adjusted synchronously as such that a pressure of the medium to be pumped is in essence constant on a pressure side (D) of the gear pump (1).
     
    10. Method according to claim 8, characterized in that the pressure of the medium to be pumped is measured on the pressure side (D) of the gear pump (1) und in that the number of revolutions is adjusted in dependence of the measured pressure of the medium to be pumped.
     
    11. Method according to one of the claims 1 to 10, characterized in that an arrangement with a gear pump (1) is used comprising a pump housing (10), two meshing gear wheels (11, 12) comprised within the pump housing (10) and two shafts (2, 3) that are operationally connected to the gear wheels (11, 12) and are guided through the pump housing (10), wherein each of the two shafts (2, 3) are operationally connected to a respective drive unit (7, 8), wherein a coupling unit (22) is arranged between each gear wheel (11, 12) and drive unit (7, 8) for the equalization of eccentricities between each drive unit (7, 8) and corresponding shaft (2, 3) and wherein a rotary encoder/sensor unit (24, 25) is arranged between each gear wheel centre and drive centre.
     
    12. Method according to claim 11, characterized in that the rotary encoder/sensor unit (24, 25) is arranged in an axial region that is defined by the middle between the gear wheel centre and the drive centre plus a deviation on both sides of maximal 10% of the distance between the gear wheel centre and the drive centre.
     
    13. Method according to claim 12, characterized in that the rotary encoder/sensor units (24, 25) each are arranged in the middle between each gear wheel centre and each drive centre.
     
    14. Method according to one of claims 11 to 13, characterized in that rotary encoder/sensor unit (24, 25) comprises a radial distance to the axis of rotation (13, 14) of each shaft (2, 3), which is greater than an outer radius of the gear wheels (11, 12), preferably at least twice as great.
     


    Revendications

    1. Procédé de commande d'une pompe à engrenages (1) comprenant deux roues dentées engrenant (11, 12), à laquelle pompe à engrenages (1) les deux roues dentées (11, 12) sont entraînées chacune par une unité d'entraînement (7, 8) par l'intermédiaire des arbres correspondants (2, 3), où une position momentanée de l'une roue dentée (11, 12) est déterminée par rapport à une position momentanée de l'autre roue dentée (12, 11), en ce que la position momentanée de l'une roue dentée (11, 12) est ajustée en continue par rapport à la position momentanée de l'autre roue dentée (12, 11) selon des conditions de fonctionnement prédéfinies, caractérisé en ce que la détermination de la position momentanée de l'une roue dentée (11, 12) est réglée par rapport à la position momentanée de l'autre roue dentée (12, 11) au moyen d'une valeur de référence qui est déterminée avant le fonctionnement normal de la pompe à engrenages (1) ou pendant des interruptions du fonctionnement normal de la pompe à engrenages (1).
     
    2. Procédé selon la revendication 1, caractérisé en ce que la valeur de référence se situe entre les flancs de dent d'un espace de dent d'une roue dentée (11, 12), de préférence au milieu entre les flancs de dent d'un espace de dent d'une roue dentée (11, 12).
     
    3. Procédé selon la revendication 2, caractérisé en ce que la valeur de référence est déterminée en ce que

    - l'une roue dentée (11) entraîne l'autre roue dentée (12) avec un couple spécifié,

    - une première différence d'angle est déterminée par différenciation entre des valeurs mesurées par les unités codeur/capteur rotatives (24, 25),

    - l'autre roue dentée (12) entraîne l'une roue dentée (11) avec le couple spécifié,

    - une deuxième différence d'angle est déterminée par différenciation entre des valeurs mesurées par les unités codeur/capteur rotatives (24, 25),

    - la différence entre la première différence d'angle et la deuxième différence d'angle est déterminée et

    - la valeur de référence est réglée à l'intérieur de la différence déterminée.


     
    4. Procédé selon la revendication 3, caractérisé en ce qu'au moins l'une des valeurs momentanées suivantes est surveillée:

    - la première différence d'angle,

    - la différence entre la première différence d'angle et la valeur de référence,

    - la deuxième différence d'angle,

    - la différence entre la deuxième différence d'angle et la valeur de référence,

    et en ce que lorsque au moins une des valeurs momentanées est inférieure resp. supérieure à une valeur prédéfinie, au moins une des actions suivantes est effectuée:

    - un avertissement optique,

    - une indication optique,

    - un avertissement acoustique,

    - modification des conditions de fonctionnement de la pompe à engrenages (1).


     
    5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que des unités codeuses/capteurs rotatives (24, 25) sont utilisées pour la détermination de la position momentanée de l'une et de l'autre roue dentée (11, 12), où chaque unité de codeur/capteur rotative est arrangée au milieu entre la denture de la roue dentée respective (11, 12) et un rotor (18) de l'unité d'entraînement respective (7, 8).
     
    6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce qu'un jeu de flanc prédéfini (26) est réglé entre deux roues dentées engrenant (11, 12).
     
    7. Procédé selon l'une des revendications 1 à 5, caractérisé en ce qu'un flanc antérieur par rapport au sens de rotation de la roue dentée (11) d'une dent immergée dans un espace de dente touche un flanc suivant par rapport au sens de rotation de l'autre roue dentée (12) et en ce qu'un flanc avant par rapport au sens de rotation de l'autre roue dentée (12) d'une dent immergée dans un espace de dente touche un flanc suivant par rapport au sens de rotation de l'une roue dentée (11).
     
    8. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que l'une des roues dentées (11, 12) entraîne l'autre roue dentée (12, 11) avec un couple spécifié, le couple spécifié étant supérieur à la moitié du couple total produite par les deux unités d'entraînement (7, 8).
     
    9. Procédé selon l'une des revendications 1 à 8, caractérisé en ce que le nombre de tours des arbres (2, 3) entraîné par les unités d'entraînement (7, 8) est réglé de manière synchrone de telle sorte qu'une pression du milieu à pomper est en essence constante sur un côté de pression (D) de la pompe à engrenages (1).
     
    10. Procédé selon la revendication 8, caractérisé en ce que la pression du milieu à pomper est mesurée du côté de pression (D) de la pompe à engrenages (1) et en ce que le nombre de tours est ajusté en fonction de la pression mesurée du milieu à pomper.
     
    11. Procédé selon l'une des revendications 1 à 10, caractérisé en ce qu'un ensemble avec une pompe à engrenages (1) est utilisé comprenant un carter de pompe (10), deux roues dentées engrenant (11, 12) comprises dans le carter de pompe (10) et deux arbres (2, 3) qui sont reliés fonctionnellement aux roues dentées (11, 12) et sont guidés à travers le carter de pompe (10), chacun des deux arbres (2, 3) étant relié fonctionnellement à une unité d'entraînement (7, 8) respectif, où une unité d'accouplement (22) est arrangée entre chaque roue dentée (11, 12) et unité d'entraînement (7, 8) pour l'égalisation des excentricités entre chaque unité d'entraînement (7, 8) et l'arbre correspondant (2, 3) et où une unité de codeur/capteur rotatif (24, 25) est arrangée entre chaque centre de la roue dentée et centre d'entraînement.
     
    12. Procédé selon la revendication 11, caractérisé en ce que l'unité codeur/capteur rotatif (24, 25) est arrangée dans une zone axiale définie par le milieu entre le centre de la roue dentée et le centre d'entraînement plus un écart des deux côtés du maximum 10% de la distance entre le centre de la roue dentée et le centre d'entraînement.
     
    13. Procédé selon la revendication 12, caractérisé en ce que les unités de codeur/capteur rotatif (24, 25) sont chacune arrangée au milieu entre chaque centre de la roue dentée et chaque centre d'entraînement.
     
    14. Procédé selon l'une quelconque des revendications 11 à 13, caractérisé en ce que l'unité de codeur/capteur rotatif (24, 25) comprend une distance radiale par rapport à l'axe de rotation (13, 14) de chaque arbre (2, 3), qui est plus grand qu'un radius extérieur des roues dentées (11, 12), de préférence au moins deux fois plus grand.
     




    Zeichnung


























    Angeführte Verweise

    IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE



    Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

    In der Beschreibung aufgeführte Patentdokumente




    In der Beschreibung aufgeführte Nicht-Patentliteratur