(19)
(11) EP 2 351 811 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
05.04.2017 Bulletin 2017/14

(21) Application number: 08877397.3

(22) Date of filing: 14.10.2008
(51) International Patent Classification (IPC): 
C10B 39/02(2006.01)
(86) International application number:
PCT/JP2008/068583
(87) International publication number:
WO 2010/044138 (22.04.2010 Gazette 2010/16)

(54)

COKE DRY TYPE EXTINGUISHING FACILITY, AND COKE DRY TYPE EXTINGUISHING METHOD

KOKSLÖSCHVORRICHTUNG VOM TROCKENTYP UND KOKSLÖSCHVERFAHREN VOM TROCKENTYP

INSTALLATION D'EXTINCTION À SEC DU COKE, ET PROCÉDÉ D'EXTINCTION À SEC DU COKE


(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

(43) Date of publication of application:
03.08.2011 Bulletin 2011/31

(73) Proprietors:
  • Nippon Steel & Sumikin Engineering Co., Ltd.
    Tokyo 141-8604 (JP)
  • NS Plant Designing Corporation
    Fukuoka 804-0002 (JP)

(72) Inventors:
  • FUKUOKA, Takashi
    Kitakyushu-shi Fukuoka 804-8585 (JP)
  • FUJIKAWA, Atsushi
    Kitakyushu-shi Fukuoka 804-8585 (JP)
  • OTANI, Hiroshi
    Kitakyushu-shi Fukuoka 804-8585 (JP)

(74) Representative: Vossius & Partner Patentanwälte Rechtsanwälte mbB 
Siebertstrasse 3
81675 München
81675 München (DE)


(56) References cited: : 
JP-U- S60 172 752
US-A- 1 462 119
US-A- 4 416 733
JP-Y2- 59 017 883
US-A- 1 496 094
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present invention relates to coke dry quenching equipment for cooling red-hot coke and to a coke dry quenching method.

    Background Art



    [0002] Coke dry quenching (CDQ) equipment installed in ironworks and the like is equipment for quenching red-hot coke dry-distilled in a coke oven using a cooling gas such as an inert gas. The high temperature coke is gradually cooled to improve its quality, so that the operation of an ironmaking blast furnace is stabilized. Coke dry quenching equipment is characterized in that the cooling gas is circulated in the system to allow coke dust to be prevented from flying out and that the sensible heat of the coke is recovered by a heat recovery apparatus such as a waste heat boiler to save energy.

    [0003] As shown in Fig. 6, conventional coke dry quenching equipment 1 has a chamber in which a pre-chamber 2 having a coke charging port 10 formed at its upper portion is vertically connected to a cooling chamber 3 including a coke discharge unit 11 disposed at its lower portion.

    [0004]  The cooling chamber 3 is formed to have a conical lower part (for example, an inverted conical or inverted truncated conical lower part). A blast head 4 serving as a cooling gas supplying unit for injecting a cooling gas such as an inert gas to make the descending flow of coke uniform is disposed at the center of the conical part. The blast head 4 includes a substantially conical cap member 41 and is configured such that the cooling gas is circumferentially injected from an injection port (not shown) formed in the cap member 41. The blast head 4 is supported by a supporting member 42 having a gas flow passage formed thereinside, and the gas flow passage inside the supporting member 42 is in communication with a gas supply chamber 43. A part of the cooling gas supplied to the gas supply chamber 43 is configured to be supplied to the cooling chamber 3 also from cooling gas supplying units (for example, supply ports 44) disposed circumferentially in an inclined portion of the cooling chamber 3 that is located in the lower part thereof.

    [0005] Moreover, a plurality of divided small flues 5 for discharging the cooling gas injected into the cooling chamber 3 are formed so as to circumferentially surround the barrel portion of the pre-chamber 2.

    [0006] In the above configuration, high temperature red-hot coke 6 is charged into the chamber through the coke charging port 10 and continuously discharged from the bottom of the chamber through the coke discharge unit 11. During this process, the coke 6 descending inside the chamber is cooled by heat exchange with the cooling gas from the lower portion of the chamber that includes the blast head 4. The cooling gas increased in temperature by heat exchange is discharged from the chamber through the small flues 5. Although not shown in the drawing, the discharged gas passes through a dust removing unit is then supplied to a heat recovery apparatus such as a waste gas boiler to recover the heat, and is again supplied as the cooling gas to the chamber.

    [0007] In the above coke dry quenching equipment 1, not all the coke 6 in the chamber uniformly descends straight down. The coke 6 inside the chamber gradually descends along different paths in different directions due to the influence of the shape and wall surface of the chamber and differences in properties of the coke. The non-uniform descent causes varied heat exchange of the coke 6, resulting in low cooling efficiency of the chamber as a whole, which has been a problem for a long time. Another problem is that a large chamber is required to cool the coke 6 to a predetermined temperature because the cooling efficiency of the chamber as a whole is low.

    [0008] One known method to solve the above problems is to improve the blast head 4 (see, for example, Patent Documents 1 and 2). Patent Document 1 describes a method in which the skirt portion at the end of the blast head is driven to extend and contract, so that the width of the passage of coke is changed to control variation in heat exchange. Patent Document 2 describes a method in which the entire head portion of the blast head is vertically raised and lowered.

    [0009] The blast head 4 disposed in the lower part of the chamber receives a high pressure from the charged coke 6 (such as the pressure caused by the mass of the coke and the descent thereof). Therefore, to raise and lower the blast head or to extend and contract the end of the blast head as described in Patent Documents 1 and 2, an expensive high-power driving unit is required. In addition, the temperature inside the chamber environment is high, and the chamber contains a large amount of dust. Therefore, the use of a movable blast head as in Patent Documents 1 and 2 can cause troubles in the equipment.

    [0010] US-A-1,496,094 and JP-S59-017883 Y2 disclose coke dry quenching.

    [0011] 

    [Patent Document 1] Japanese Patent Application Laid-Open No. Hei 1-110592

    [Patent Document 2] Japanese Patent Application Laid-Open No. Sho 63-10691


    DISCLOSURE OF THE INVENTION


    PROBLEMS TO BE SOLVED BY THE INVENTION



    [0012] The present invention has been made in view of the above circumstances. An object of the present invention is to provide coke dry quenching equipment including a blast head that can make the descent of coke uniform in a chamber to contribute to the improvement of the efficiency of cooling the coke and to provide a coke dry quenching method.

    [0013] Another object of the present invention is to provide coke dry quenching equipment including a blast head that can improve the efficiency of cooling coke to reduce the size of the chamber and to provide a coke dry quenching method.

    MEANS FOR SOLVING THE PROBLEMS



    [0014] In coke dry quenching equipment of the present invention, red-hot coke is charged from an upper portion of a chamber formed to have a lower conical portion, descends inside the chamber while being cooled by a cooling gas injected from a cooling gas supply unit disposed in the lower portion of the chamber, and is then discharged from a coke discharge port disposed in the lower portion of the chamber. The coke dry quenching equipment is characterized by disposing at least one cap-shaped small head below a cap-shaped main head and having a diameter d smaller than a diameter D of the main head, wherein a blast head is disposed in the lower portion of the chamber and the diameter D of the main head is the diameter of the blast head.

    [0015] The cap-shaped main head is placed on a supporting member disposed so as to penetrate a side wall of the conical portion in the lower portion of the chamber, a direction of a flow of the coke descending in a central portion of the chamber in the conical portion is changed to a circumferentially outward direction by the main head. The small head is disposed such that an angle (θ1) between a horizontal axis line passing through the lower end plane of the conical portion and a line (T1) connecting an outer peripheral edge of the small head to the center of the coke discharge port is in the range of 60° to 80°. Preferably, the small head and the main head are disposed such that angles (θ1, θ2) between a horizontal axis line and lines (T1, T2) connecting the outer peripheral edges of the small head and the main head to the center of the coke discharge port are in the range of 60° degrees to 80°. In this case, the angles θ1 and θ2 may be the same or different.

    [0016] Preferably, an inclination angle θ3 of the conical portion is in the range of θ4 to θ4. - 25°, where θ4 is a smaller one of the angles (θ1, θ2) between a horizontal axis line and lines (T1, T2) connecting outer peripheral edges of the small head and the main head to the center of the coke discharge port.

    [0017] Preferably, a bore Dh of the coke discharge port is one-half or more of the diameter d of the small head (Dh ≥ 0.5d).

    [0018] Preferably, the small head is disposed at a position at which H is 1 to 5 times the bore Dh of the coke discharge port, where H is a distance from a repose angle lower plane of the coke that is formed below the small head to the coke discharge port.

    [0019] Preferably, a gas flow passage for the cooling gas is provided in the main head or in each of the main head and the small head to constitute a cooling gas supply unit for injecting the cooling gas into the chamber.

    [0020] A coke dry quenching method of the present invention includes charging red-hot coke from an upper portion of a chamber formed to have a lower conical portion, allowing the red-hot coke to descend inside the chamber and cooling the coke by a cooling gas injected from a cooling gas supply unit disposed in a lower portion of the chamber, and discharging the coke from a coke discharge port disposed in the lower portion of the chamber. The method is characterized by disposing at least one cap-shaped small head below a cap-shaped main head and having a diameter d smaller than a diameter D of the main head, wherein a blast head is disposed in the lower portion of the chamber and the diameter D of the main head is a diameter of the blast head.

    [0021] The cap-shaped main head is placed on a supporting member disposed so as to penetrate a side wall of the conical portion in the lower portion of the chamber, a direction of a flow of the coke descending in a central portion of the chamber in the conical portion is changed to a circumferentially outward direction by the main head. The small head is disposed such that an angle (Θ1) between a horizontal axis line passing through the lower end plane of the conical portion and a line (T1) connecting an outer peripheral edge of the small head to the center of the coke discharge port is in a range of 60° to 80°.

    [0022] Preferably, the cooling gas is injected from the main head or from the main head and the small head to cool the red-hot coke.

    EFFECTS OF THE INVENTION



    [0023] According to the present invention, a small head is disposed below a main head and has a diameter d smaller than a diameter D of the main head, the blast head being disposed in the lower portion of the chamber and the diameter D of the main head is the diameter of the blast head. Therefore, the variation of the coke that descends inside the chamber is improved, and uniform descent of the coke is thereby achieved. This allows uniform heat exchange between the coke and the cooling gas in the chamber, and the efficiency of cooling the coke is thereby improved.

    [0024] In the present invention, since uniform descent of the coke is achieved, the efficiency of cooling the coke is improved. Therefore, the size of the chamber can be reduced. In particular, since the cooling gas is injected also from the small head, a region below the blast head (main head), which is not utilized as a cooling zone in the conventional structure, can be used as a cooling zone. The cooling efficiency can thereby be further improved, and the size of the chamber can be further reduced.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0025] 

    Fig. 1 is a schematic diagram illustrating coke dry quenching equipment according to an embodiment of the present invention.

    Fig. 2 is a horizontal cross sectional view of the coke dry quenching equipment.

    Fig. 3 is a set of diagrams illustrating a blast head of the coke dry quenching equipment.

    Fig. 4 is a diagram illustrating the action of the blast head.

    Fig. 5 is a set of diagrams illustrating the effects of the blast head.

    Fig. 6 is a schematic diagram illustrating conventional coke dry quenching equipment.


    DESCRIPTION OF REFERENCE NUMERALS



    [0026] 
    1
    coke dry quenching equipment
    2
    pre-chamber
    3
    cooling chamber
    4
    blast head
    41
    main head
    42
    supporting member
    45
    small head

    BEST MODE FOR CARRYING OUT THE INVENTION



    [0027] Preferred embodiments of coke dry quenching equipment and a coke dry quenching method according to the present invention will be described in detail with reference to the drawings. However, the technical scope of the present invention is not construed as being limited to the description of the embodiments.

    [0028] As shown in Figs. 1 and 2, a chamber of coke dry quenching equipment 1 in the present embodiment is configured to include a pre-chamber 2 having a coke charging port 10 in its upper portion and a cooling chamber 3 having a coke discharge port 12 in its bottom portion, the pre-chamber 2 and the cooling chamber 3 being connected vertically. These chambers can be formed of, for example, a refractory material such as steel or brick. High temperature coke 6 generated in a coke oven is charged into the pre-chamber 2 from the coke charging port 10 using a coke transferring unit (not shown) such as a bucket. The coke 6 charged into the pre-chamber 2 gradually descends and enters the cooling chamber 3. The coke 6 that enters the cooling chamber 3 continues descending gradually, is cooled by a cooling gas 7, and continuously discharged through a coke discharge unit 11 disposed at the coke discharge port 12. In general operation, the coke 6 is continuously discharged through the coke discharge unit 11 and is replenished on a batch basis. However, the present invention is not limited thereto.

    [0029] The cooling chamber 3 is formed to have a cone-shaped (for example, inverted conical or inverted truncated conical) lower portion. A blast head 4 that is used as a cooling gas supply unit for injecting a cooling gas such as an inert gas and to make the descending flow of the coke 6 uniform is disposed in the central portion of the conical portion (for example, on the center axis thereof). As shown in Fig. 2, the blast head 4 is supported by a substantially cross-shaped supporting member 42 disposed so as to penetrate the side wall of the conical portion. In addition, a gas supply chamber 43 is formed so as to surround the outer circumference of the conical portion, and the ends of the supporting member 42 that penetrate the side wall of the conical portion extend inside the gas supply chamber 43. A gas flow passage (not shown) for the cooling gas is formed inside the supporting member 42. In this configuration, the cooling gas supplied to the gas supply chamber 43 is introduced into the blast head 4 through the gas flow passage and then injected into the chamber through the blast head 4. Part of the cooling gas supplied to the gas supply chamber 43 is supplied to the cooling chamber 3 also from cooling gas supply units (for example, supply ports 44) disposed circumferentially in an inclined portion of the cooling chamber 3 that is located in the lower part thereof. However, the invention is not limited to this configuration. The cooling gas may be supplied from any one of the blast head 4 and a supply port 44. The substantially cross-shaped supporting member 42 shown in Fig. 2 is only an example. The shape of the supporting member 42 is not limited to the cross shape, so long as the supporting member 42 can support the blast head 4.

    [0030] The blast head 4 of the present embodiment has a two-stage head structure having a main head 41 disposed in an upper section and a small head 45 disposed in a lower section. Each of the main head 41 and the small head 45 includes a substantially conical cap member and is configured such that the cooling gas is injected, for example, circumferentially from a gas injection port (not shown) formed in the cap member. The diameter (bore) d of the small head 45 is smaller than the diameter (bore) D of the main head 41. The shapes of the heads are not limited to the shapes shown in Fig. 1, so long as they satisfy the above condition. Preferably, as shown in Fig. 3(a), the small head 45 and the main head 41 are disposed such that the angles (θ1, θ2) between a horizontal axis line and lines (T1, T2) connecting the outer peripheral edges of the heads (in this example, the outer peripheral edges of the cap members) to the center of the coke discharge port 12 are in the range of 60° to 80° and particularly preferably 70° (condition (I)). "The coke discharge port" in the condition (I) is defined to mean the end of the inclined section of the conical portion (i.e. , the lower end plane of the conical portion), as exemplified in Fig. 3(a). Preferably, both the angles (θ1, θ2) are in the range of 60° to 80°. However, when at least the angle θ1 of the small head 45 is in the above range, the angle θ2 of the main head 41 may be outside the above range. Fig. 3(a) shows one exemplary arrangement in which the angles θ1 and θ2 are different. However, the heads may be arranged such that the angles θ1 and θ2 are the same.

    [0031] More preferably, as shown in Fig. 3 (a), the inclination angle θ3 of the conical portion is in the range of θ4 to θ4 - 25° (condition (II)), where θ4 is a smaller one of the angles (θ1, θ2) between the horizontal axis line and the lines (T1, T2) connecting the outer peripheral edges of the small head 45 and the main head 41 to the center of the coke discharge port 12.

    [0032] More preferably, the bore Dh of the coke discharge port 12 shown in Fig. 3(a) is one-half or more of the diameter d of the small head 45 (Dh ≥ 0.5d) (condition (III)).

    [0033] Preferably, as shown in Fig. 3(b), the small head 45 is disposed at a position at which H is 1 to 5 times the bore Dh of the coke discharge port 12 and more preferably 1 to 3 times the bore Dh (condition (IV)), where H is the distance from the lower plane (h1) of a space formed below the small head 45 at the angle of repose of the coke 6 to the coke discharge port 12. "The coke discharge port 12" in this condition is defined similarly to that in the condition (I) above. Generally, the angle of repose of coke is 34° to 35°. Therefore, the height position of the lower plane (h1) can be computed or arithmetically calculated using this value. However, the present invention is not limited thereto. The angle of repose may be computed using any other known method. For example, the angle of repose is measured using a sample of coke.

    [0034] In the present embodiment, it is preferable that one of the conditions (I) and (IV) be satisfied. However, to achieve uniform descent of the coke in a more reliable manner, it is preferable that both the conditions (I) and (IV) be satisfied. More preferably, condition (I) is combined with condition (II) and/or condition (III).

    [0035] Referring again to Fig. 1, a plurality of divided small flues 5 for discharging the cooling gas are formed so as to circumferentially surround the straight tubular barrel portion of the pre-chamber 2. A flue 51 is connected to the small flues 5. The flue 51 is connected to a heat recovery apparatus 53 such as a waste heat boiler through a dust catcher 52 used as a first dust removing unit. The gas cooled in the heat recovery apparatus 53 passes through a second dust removing unit 54, is sent to a preheater 56 by a blowing unit 55 such as a blower, and again supplied as the cooling gas to the cooling chamber 3. This configuration is well-known, and the detailed description thereof is omitted.

    [0036] In the above coke dry quenching equipment 1, the coke 6 charged into the pre-chamber 2 from the coke charging port 10 gradually descends and enters the cooling chamber 3, while the coke 6 is continuously discharged from the bottom of the cooling chamber 3. The coke 6 is then cooled in the cooling chamber 3 by heat exchange with the cooling gas 7 injected from the main head 41 and the small head 45 and the cooling gas 7 injected from the supply ports 44 and is discharged through the coke discharge unit 11. Preferably, the ratio of the volume of gas per unit time from the main head 41 to that from the small head 45 is, for example, 8:2. As described in the section of BACKGROUND ART, the coke 6 descending inside the chamber generally tends to gradually descend along different paths in different directions due to the influence of the shape and wall surface of the chamber and differences in properties of the coke. The present inventors have thought that this is the main cause of the variation of the descent and have conducted extensive studies. The inventors have found that the addition of the small head 45 that is smaller than the main head 41 and is disposed below the main head 41 can significantly improve the nonuniformity of the descent. Thus the invention has been completed. Particularly, when the main head 41 and the small head 45 satisfy the above relational condition (I) and/or condition (IV), the above effect is high. Tests were actually performed to confirm that the values in the conditions (I) and (IV) are tightly related to the properties of coke.

    [0037] The inventors consider that the reason that the variation of the descent can be improved is as follows. As schematically illustrated in Fig. 4, in the conical portion of the cooling chamber 3, the direction of the flow of the coke 6 descending in the central portion of the chamber is changed to a circumferentially outward direction by the main head 41, so that the slow descending flow of the coke near the furnace wall is facilitated. Then a flowdirected to the center at the angle of repose is formed below the main head 41. The direction of the flow is changed to the circumferentially outward direction by the small head 45, so that the flow of the coke near the furnace wall is further facilitated. Then a flow directed to the center at the angle of repose is formed below the small head 45, and the coke is discharged through the coke discharge port 12. The flow state is regulated in the conical portion in the manner described above. Therefore, after the coke in the central portion of the chamber passes over the main head 41, this coke is prevented from selectively descending toward the coke discharge port 12 and descends uniformly together with the coke near the wall. The variation of the descent in the cooling chamber 3 is thereby improved.

    [0038] If the condition (I) described above is satisfied, the circumferentially outward flows formed by the main head 41 and the small head 45 can more effectively act on regions in which the internal friction angle of the coke causes low fluidity, and the variation of the descent can thereby be improved in a more reliable manner. More specifically, the inventors have focused attention on that the internal friction angle of coke is about 75°, and the angles of the outer peripheral edges of the main head 41 and the small head 45 are set to 60° to 80°. This allows the circumferentially outward flows to more effectively act on the regions in which the internal friction angle of the coke causes low fluidity. The operational effects of the condition (I) can be more effective when the condition (I) is combined with the condition (II) and/or the condition (III).

    [0039] The condition (IV) described above allows the height position of the small head 45 to be more preferable. If the condition (IV) is satisfied, the variation of the descent can be improved in a more reliable manner. More specifically, as illustrated in Fig. 5, when the condition Dh ≤ distance H ≤ 5Dh is satisfied, the nonuniformity of descent is smaller than that when the distance H is smaller than the bore Dh and that when the distance H is large than 5 times the bore Dh. This may be because, when the distance H is larger than 5 times the bore Dh (Fig. 5(b)), the distance from the small head 45 to the coke discharge port 12 is too long, so that the coke that passes over the small head 45 selectively descends through the central portion. When the distance H is smaller than the bore Dh (Fig. 5(a)), the distance from the small head 45 to the coke discharge port 12 is too short. Therefore, it is assumed that the coke may be discharged before the flow of coke is changed to a circumferentially outward direction below the small head 45 and the flow is formed into a flow toward the center at the angle of repose. In Fig. 5(a), the space between the small head 45 and the wall surface of the chamber through which the coke passes becomes narrow, and this may be another cause.

    [0040] As described above, in the present embodiment, the small head 45 smaller than the main head 41 in size is added to provide a two-stage head structure in which the small head 45 is disposed below the main head 41. The variation of the descent of the coke inside the conical portion of the chamber is thereby improved, whereby uniform descent of the coke is achieved over the entire chamber. When uniform descent of the coke is obtained inside the chamber, uniform heat exchange between the coke and the cooling gas is achieved in the chamber, and the efficiency of cooling the coke can thereby be improved. In particular, when the conditions (I) to (IV) are satisfied, such an effect can be enhanced.

    [0041]  In the present embodiment, since the efficiency of cooling the coke is improved, the size of the chamber can be reduced. In particular, by injecting the cooling gas also from the small head 45, the region below the main head 41, which is not utilized as a cooling zone in the conventional structure, can be used as a cooling zone. Therefore, the cooling efficiency can be further improved, and the size of the chamber can be further reduced. However, the cooling gas may not be injected from the small head 45, and the cooling gas may be injected only from the main head 41.

    [0042] In the present invention, the number of small heads 45 disposed below the main head 41 is not necessarily limited to one, and a multi-stage head structure having 3 or more stages may be used. In such a case, it is preferable to reduce the head bore (d) gradually for lower heads.

    [0043] Embodiments and examples of the present invention have been exemplified above.


    Claims

    1. Coke dry quenching equipment wherein red-hot coke is charged from an upper portion of a chamber formed to have a lower conical portion, descends inside the chamber while being cooled by a cooling gas injected from a cooling gas supply unit disposed in the lower portion of the chamber, and is then discharged from a coke discharge port disposed in the lower end plane of the conical portion of the chamber,
    the coke dry quenching equipment being characterized by placing a cap-shaped main head of a blast head having a diameter D on a supporting member disposed so as to penetrate a side wall of the conical portion in the lower portion of the chamber, changing a direction of a flow of the coke descending in a central portion of the chamber in the conical portion to a circumferentially outward direction by the main head, suspending at least one cap-shaped small head of the blast head having a diameter d smaller than the diameter D of the main head so as to be disposed below the main head, and disposing the small head such that an angle (θ1) between a horizontal axis line passing through the lower end plane of the conical portion and a line (T1) connecting an outer peripheral edge of the small head to the center of the coke discharge port is in a range of 60° to 80°.
     
    2. The coke dry quenching equipment according to claim 1, wherein a longitudinally extending supporting member is disposed from the supporting member below the main head, and the small head is suspended from the longitudinally extending supporting member, so as to dispose and fix the small head below the main head.
     
    3. The coke dry quenching equipment according to claim 2, wherein the longitudinally extending supporting member from the supporting member below the main head is disposed and extended along a central axis of the main head and the small head.
     
    4. The coke dry quenching equipment according to claim 1, wherein the main head is disposed such that an angle (θ2) between a horizontal axis line and a line (T2) connecting an outer peripheral edge of the main head to the center of the coke discharge port is in a range of 60° to 80°.
     
    5. The coke dry quenching equipment according to any one of claims 1 to 4, wherein an inclination angle θ3 of the conical portion is in a range of θ4 to θ4 - 25°, where θ4 is a smaller one of angles (θ1, θ2) between a horizontal axis line and lines (T1, T2) connecting outer peripheral edges of the small head and the main head to the center of the coke discharge port.
     
    6. The coke dry quenching equipment according to any one of claims 1 to 5, wherein a bore Dh of the coke discharge port is one-half or more of the diameter d of the small head (Dh ≥ 0.5d).
     
    7. The coke dry quenching equipment according to any one of claims 1 to 6, wherein the small head is disposed at a position at which H is 1 to 5 times the bore Dh of the coke discharge port, where H is a distance from a repose angle lower plane of the coke that is formed below the small head to the coke discharge port.
     
    8. The coke dry quenching equipment according to any one of claims 1 to 7, wherein a gas flow passage for injecting the cooling gas is provided in the main head or in each of the main head and the small head.
     
    9. The coke dry quenching equipment according claim 8, wherein the gas flow passage to provide the cooling gas to small head is formed inside the longitudinally extending supporting member.
     
    10. A coke dry quenching method comprising charging red-hot coke from an upper portion of a chamber formed to have a lower conical portion, allowing the red-hot coke to descend inside the chamber and cooling the coke by a cooling gas injected from a cooling gas supply unit disposed in a lower portion of the chamber, and discharging the coke from a coke discharge port disposed in the lower end plane of the conical portion of the chamber,
    the method being characterized by placing a cap-shaped main head having a diameter D of a blast heads on a supporting member disposed so as to penetrate a side wall of the conical portion in the lower portion of the chamber, changing a direction of a flow of the coke descending in a central portion of the chamber in the conical portion to a circumferentially outward direction by the main head, suspending at least one cap-shaped small head having a diameter d smaller than the diameter D of the main head so as to dispose said small head below the main head, and disposing the small head such that an angle (θ1) between a horizontal axis line passing through the lower end plane of the conical portion and a line (T1) connecting an outer peripheral edge of the small head to the center of the coke discharge port is in a range of 60° to 80°.
     
    11. The coke dry quenching method according to claim 10, wherein the cooling gas is injected from the main head or from the main head and the small head via the supporting member to cool the red-hot coke.
     


    Ansprüche

    1. Kokstrockenlöschvorrichtung, wobei glühender Koks aus einem oberen Abschnitt einer Kammer aufgegeben wird, die so gebildet ist, dass sie einen unteren konischen Abschnitt hat, sich innerhalb der Kammer herabbewegt, während er durch ein Kühlgas gekühlt wird, das aus einer Kühlgas-Zufuhreinheit eingeblasen wird, die im unteren Abschnitt der Kammer angeordnet ist, und dann aus einer Koksabgabeöffnung abgegeben wird, die in der unteren Endebene des konischen Abschnitts der Kammer angeordnet ist,
    wobei die Kokstrockenlöschvorrichtung gekennzeichnet ist durch Platzieren eines kappenförmigen Hauptkopfs eines Einblaskopfs mit einem Durchmesser D auf einem Stützbauteil, das so angeordnet ist, dass es eine Seitenwand des konischen Abschnitts im unteren Abschnitt der Kammer durchdringt, Ändern einer Richtung einer Strömung des sich in einem Mittelabschnitt der Kammer herabbewegenden Kokses im konischen Abschnitt zu einer Umfangsauswärtsrichtung durch den Hauptkopf, Abhängen mindestens eines kappenförmigen kleinen Kopfs des Einblaskopfs mit einem Durchmesser d, der kleiner als der Durchmesser D des Hauptkopfs ist, so dass er unter dem Hauptkopf angeordnet ist, und Anordnen des kleinen Kopfs, so dass ein Winkel (θ1) zwischen einer horizontalen Achsenlinie, die die untere Endebene des konischen Abschnitts durchläuft, und einer Linie (T1), die eine Außenumfangskante des kleinen Kopfs mit der Mitte der Koksabgabeöffnung verbindet, in einem Bereich von 60° bis 80° liegt.
     
    2. Kokstrockenlöschvorrichtung nach Anspruch 1, wobei ein sich längs erstreckendes Stützbauteil vom Stützbauteil unter dem Hauptkopf angeordnet ist und der kleine Kopf vom sich längs erstreckenden Stützbauteil so abgehängt ist, dass der kleine Kopf unter dem Hauptkopf angeordnet und befestigt ist.
     
    3. Kokstrockenlöschvorrichtung nach Anspruch 2, wobei das sich vom Stützbauteil unter dem Hauptkopf längs erstreckende Stützbauteil entlang einer Mittelachse des Hauptkopfs und des kleinen Kopfs angeordnet ist und sich daran entlang erstreckt.
     
    4. Kokstrockenlöschvorrichtung nach Anspruch 1, wobei der Hauptkopf so angeordnet ist, dass ein Winkel (θ2) zwischen einer horizontalen Achsenlinie und einer Linie (T2), die eine Außenumfangskante des Hauptkopfs mit der Mitte der Koksabgabeöffnung verbindet, in einem Bereich von 60° bis 80° liegt.
     
    5. Kokstrockenlöschvorrichtung nach einem der Ansprüche 1 bis 4, wobei ein Neigungswinkel θ3 des konischen Abschnitts in einem Bereich von θ4 bis θ4 - 25° liegt, wobei θ4 ein kleinerer von Winkeln (θ1, θ2) zwischen einer horizontalen Achsenlinie und Linien (T1, T2) ist, die Außenumfangskanten des kleinen Kopfs und des Hauptkopfs mit der Mitte der Koksabgabeöffnung verbinden.
     
    6. Kokstrockenlöschvorrichtung nach einem der Ansprüche 1 bis 5, wobei ein Innendurchmesser Dh der Koksabgabeöffnung mindestens halb so groß wie der Durchmesser d des kleinen Kopfs ist (Dh ≥ 0,5d).
     
    7. Kokstrockenlöschvorrichtung nach einem der Ansprüche 1 bis 6, wobei der kleine Kopf an einer Position angeordnet ist, an der H das 1- bis 5-fache des Innendurchmessers Dh der Koksabgabeöffnung beträgt, wobei H ein Abstand von einer unteren Schüttwinkelebene des Kokses, die unter dem kleinen Kopf gebildet ist, zur Koksabgabeöffnung ist.
     
    8. Kokstrockenlöschvorrichtung nach einem der Ansprüche 1 bis 7, wobei ein Gasströmungskanal zum Einblasen des Kühlgases im Hauptkopf oder jeweils im Hauptkopf und im kleinen Kopf vorgesehen ist.
     
    9. Kokstrockenlöschvorrichtung nach Anspruch 8, wobei der Gasströmungskanal zum Führen des Kühlgases zum kleinen Kopf innerhalb des sich längs erstreckenden Stützbauteils gebildet ist.
     
    10. Kokstrockenlöschverfahren, das aufweist: Aufgeben von glühendem Koks aus einem oberen Abschnitt einer Kammer, die so gebildet ist, dass sie einen unteren konischen Abschnitt hat, Herabbewegenlassen des glühenden Kokses innerhalb der Kammer und Kühlen des Kokses durch ein Kühlgas, das aus einer Kühlgas-Zufuhreinheit eingeblasen wird, die im unteren Abschnitt der Kammer angeordnet ist, und Abgeben des Kokses aus einer Koksabgabeöffnung, die in der unteren Endebene des konischen Abschnitts der Kammer angeordnet ist,
    wobei das Verfahren gekennzeichnet ist durch: Platzieren eines kappenförmigen Hauptkopfs mit einem Durchmesser D eines Einblaskopfs auf einem Stützbauteil, das so angeordnet ist, dass es eine Seitenwand des konischen Abschnitts im unteren Abschnitt der Kammer durchdringt, Ändern einer Richtung einer Strömung des sich in einem Mittelabschnitt der Kammer herabbewegenden Kokses im konischen Abschnitt zu einer Umfangsauswärtsrichtung durch den Hauptkopf, Abhängen mindestens eines kappenförmigen kleinen Kopfs mit einem Durchmesser d, der kleiner als der Durchmesser D des Hauptkopfs ist, so dass der kleine Kopf unter dem Hauptkopf angeordnet ist, und Anordnen des kleinen Kopfs, so dass ein Winkel (θ1) zwischen einer horizontalen Achsenlinie, die die untere Endebene des konischen Abschnitts durchläuft, und einer Linie (T1), die eine Außenumfangskante des kleinen Kopfs mit der Mitte der Koksabgabeöffnung verbindet, in einem Bereich von 60° bis 80° liegt.
     
    11. Kokstrockenlöschverfahren nach Anspruch 10, wobei das Kühlgas aus dem Hauptkopf oder aus dem Hauptkopf und dem kleinen Kopf über das Stützbauteil eingeblasen wird, um den glühenden Koks zu kühlen.
     


    Revendications

    1. Equipement d'extinction à sec de coke dans lequel du coke rouge-chaud est chargé à partir d'une portion supérieure d'une chambre formée pour présenter une portion conique inférieure, descend à l'intérieur de la chambre tout en étant refroidi par un gaz réfrigérant injecté à partir d'une unité d'alimentation en gaz réfrigérant disposée dans la portion inférieure de la chambre, et est ensuite évacué à partir d'un orifice d'évacuation de coke disposé dans le plan d'extrémité inférieure de la portion conique de la chambre,
    l'équipement d'extension à sec de coke étant caractérisé en plaçant une tête principale en forme de calotte d'une tête de soufflage ayant un diamètre D sur un élément de support disposé afin de pénétrer une paroi latérale de la portion conique dans la portion inférieure de la chambre, en modifiant une direction d'un écoulement du coke descendant dans une portion centrale de la chambre dans la portion conique vers une direction circonférentiellement extérieure par la tête principale, en suspendant au moins une petite tête en forme de calotte de la tête de soufflage ayant un diamètre d inférieur au diamètre D de la tête principale afin d'être disposée sous la tête principale, et en disposant la petite tête de sorte qu'un angle (θ1) entre une ligne d'axe horizontal passant à travers le plan d'extrémité inférieur de la portion conique et une ligne (T1) connectant un bord périphérique externe de la petite tête au centre de l'orifice d'évacuation de coke se trouve dans un intervalle de 60° à 80°.
     
    2. Equipement d'extinction à sec de coke selon la revendication 1, dans lequel un élément de support s'étendant longitudinalement est disposé à partir de l'élément de support sous la tête principale, et la petite tête est suspendue à partir de l'élément de support s'étendant longitudinalement afin de disposer et fixer la petite tête sous la tête principale.
     
    3. Equipement d'extinction à sec de coke selon la revendication 2, dans lequel l'élément de support s'étendant longitudinalement à partir de l'élément de support sous la tête principale est disposé et étendu le long d'un axe central de la tête principale et de la petite tête.
     
    4. Equipement d'extinction à sec de coke selon la revendication 1, dans lequel la tête principale est disposée de sorte qu'un angle (θ2) entre une ligne d'axe horizontal et une ligne (T2) connectant un bord périphérique externe de la tête principale au centre de l'orifice d'évacuation de coke se trouve dans un intervalle de 60° à 80°.
     
    5. Equipement d'extinction à sec de coke selon l'une quelconque des revendications 1 à 4, dans lequel un angle d'inclinaison θ3 de la portion conique se trouve dans un intervalle de θ4 à θ4 - 25°, où θ4 est le plus petit des angles (θ1, θ2) entre une ligne d'axe horizontal et des lignes (T1, T2) connectant des bords périphériques externes de la petite tête et de la tête principale au centre de l'orifice d'évacuation de coke.
     
    6. Equipement d'extinction à sec de coke selon l'une quelconque des revendications 1 à 5, dans lequel une perforation Dh de l'orifice d'évacuation de coke est la moitié ou plus du diamètre d de la petite tête (Dh ≥ 0,5 d).
     
    7. Equipement d'extinction à sec de coke selon l'une quelconque des revendications 1 à 6, dans lequel la petite tête est disposée à une position à laquelle H est de 1 à 5 fois la perforation Dh de l'orifice d'évacuation de coke, où H est une distance à partir d'un plan inférieur d'angle de talus naturel du coke qui est formé sous la petite tête jusqu'à l'orifice d'évacuation de coke.
     
    8. Equipement d'extinction à sec de coke selon l'une quelconque des revendications 1 à 7, dans lequel un passage d'écoulement de gaz pour l'injection du gaz réfrigérant est fourni dans la tête principale ou dans chacune de la tête principale et de la petite tête.
     
    9. Equipement d'extinction à sec de coke selon la revendication 8, dans lequel le passage d'écoulement de gaz pour fournir le gaz réfrigérant à la petite tête est formé à l'intérieur de l'élément de support s'étendant longitudinalement.
     
    10. Procédé d'extinction à sec de coke comprenant le chargement de coke rouge-chaud à partir d'une portion supérieure d'une chambre formée pour présenter une portion conique inférieure, le laisser le coke rouge-chaud descendre à l'intérieur de la chambre et le refroidissement du coke par un gaz réfrigérant injecté à partir d'une unité d'alimentation en gaz réfrigérant disposée dans une portion inférieure de la chambre, et l'évacuation du coke à partir d'un orifice d'évacuation de coke disposé dans le plan d'extrémité inférieur de la portion conique de la chambre,
    le procédé étant caractérisé en plaçant une tête principale en forme de calotte ayant un diamètre D d'une tête de soufflage sur un élément de support disposé afin de pénétrer une paroi latérale de la portion conique dans la portion inférieure de la chambre, en modifiant une direction d'un écoulement du coke descendant dans une portion centrale de la chambre dans la portion conique vers une direction circonférentiellement extérieure par la tête principale, en suspendant au moins une petite tête en forme de calotte ayant un diamètre d inférieur au diamètre D de la tête principale afin de disposer la petite tête sous la tête principale, et en disposant la petite tête de sorte qu'un angle (θ1) entre une ligne d'axe horizontal passant à travers le plan d'extrémité inférieur de la portion conique et une ligne (T1) connectant un bord périphérique externe de la petite tête au centre de l'orifice d'évacuation de coke se trouve dans un intervalle de 60° à 80°.
     
    11. Procédé d'extinction à sec de coke selon la revendication 10, dans lequel le gaz réfrigérant est injecté à partir de la tête principale ou à partir de la tête principale et de la petite tête via l'élément de support pour refroidir le coke rouge-chaud.
     




    Drawing























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description