(19)
(11) EP 2 445 119 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
05.04.2017 Bulletin 2017/14

(21) Application number: 11183789.4

(22) Date of filing: 04.10.2011
(51) International Patent Classification (IPC): 
H04B 3/54(2006.01)

(54)

Interference mitigation for broadband over power line

Interferenzunterdrückung für breitbandige Trägerübertragung über Netzleitungen

Réduction des interférences pour courant porteur en ligne à large bande


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 25.10.2010 US 911625

(43) Date of publication of application:
25.04.2012 Bulletin 2012/17

(73) Proprietor: The Boeing Company
Chicago, IL 60606-1596 (US)

(72) Inventors:
  • Mitchell, Timothy M
    Seattle, WA Washington 98116 (US)
  • Kumar, Anil L
    Sammamish, WA Washington 98075 (US)
  • Vondoenhoff, Roger C.
    Federal Way, WA Washington 98003 (US)
  • Beck, Matthias
    SN 04769 Muegeln (DE)

(74) Representative: Boult Wade Tennant 
Verulam Gardens 70 Gray's Inn Road
London WC1X 8BT
London WC1X 8BT (GB)


(56) References cited: : 
EP-A1- 1 956 726
US-A1- 2006 114 925
WO-A1-2008/097983
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] The subject matter described herein relates to communication networks, and more particularly to offboard communications at airport terminals. Vehicles such as commercial air, marine and land vehicles may include one or more performance monitoring systems that record data regarding various aspects of vehicle operation and performance. For example, the performance data may include a record of performance events that occur during the operation of the vehicle. The performance monitoring system may collect data and report the data to a remote system. Maintenance needs for the vehicle may be determined from the data.

    [0002] For example, an aircraft may include one or more central maintenance computer(s) (CMC) and/or an aircraft condition monitoring system (ACMS). The central maintenance computer collects, consolidates and reports performance data for the components of the air vehicle. Certain maintenance messages are associated with one or more types of performance data, and are stored in the CMC. When the CMC receives performance data, it analyzes the data to determine if the received data meets the criteria associated with the maintenance messages. An ACMS also collects, monitors, records and reports real-time aircraft system data. For example, the data collected by the ACMS is used to perform cabin pressure and temperature monitoring, hard landing detection, flight crew monitoring, and engine monitoring in addition to many other aircraft performance functions. The reported data may be utilized to analyze aircraft performance and trends in aircraft performance, report significant flight events, and troubleshoot faults.

    [0003] Data collected and generated by ACMS may be downloaded from the aircraft to a ground-based computer system while the plane is being serviced at a gate. Similarly, data generated by one or more ground-based systems may be uploaded to the aircraft while the plane is being serviced at a gate. Accordingly, systems and methods to download data from and upload data to an aircraft may find utility.

    [0004] WO 2008/097983 discloses a power line communication system for a vehicle such as an aircraft.

    [0005] US 2006/0114925 discloses a broadband power line communication system which makes use of knowledge of the spectrum characteristics of a local radio environment in order to improve the performance of the system.

    SUMMARY



    [0006] Embodiments of systems and methods in accordance with the present disclosure may provide a broadband connection over a power line between a vehicle and one or more remote computer systems. In one embodiment a system to exchange data between a vehicle to a remote computer system comprises at least one power line adapted to couple to the vehicle, a local area network, a modem coupled to the local area network and the at least one power line, and a power line interference server comprising logic to allocate communication channels within a specified frequency range on the power line.

    [0007] In another embodiment, a method to exchange data between a vehicle to a remote computer system comprises coupling at least one power line to the vehicle, coupling a modem to the power line and to a local area network, and allocating one or more communication channels within a specified frequency range on the power line and exchanging data between the vehicle on the one or more communication channels.

    [0008] In yet another embodiment, a computer program product stored a tangible computer readable medium comprising logic instructions which, when executed by a process, configure the process to facilitate the exchange of data between a vehicle and a remote computer system by performing operations comprising allocating one or more communication channels within a specified frequency range on a power line which couples a modem to the vehicle, and exchanging data between the vehicle and a remote computer system on the one or more communication channels.

    [0009] Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0010] Embodiments of methods and systems in accordance with the teachings of the present disclosure are described in detail below with reference to the following drawings.

    Fig. 1 is a schematic illustration of a system for interference mitigation for broadband communication over power lines according to embodiments.

    Fig. 2 is a schematic illustration of a computing device which may be adapted to implement a system and method for vehicle condition monitoring and reporting in accordance with some embodiments.

    Fig. 3 is a flowchart illustrating operations in a method for interference mitigation for broadband communication over power lines according to embodiments.

    Fig. 4 is a frequency diagram illustrating aspects of a frequency allocation algorithm, according to embodiments.


    DETAILED DESCRIPTION



    [0011] Systems and methods for vehicle condition monitoring and reporting are described herein. Specific details of certain embodiments are set forth in the following description and figures to provide a thorough understanding of such embodiments. One skilled in the art will understand, however, that alternate embodiments may be practiced without several of the details described in the following description.

    [0012] Various embodiments described here are set in the context of downloading data from and uploading data to an aircraft over a broadband connection implemented on a power line coupled to the aircraft. By way of example, commercial aircraft are commonly coupled to a power line to provide electrical power to the aircraft when the aircraft is stationed at a gate at an airport. Electrical power may be used to power electrical systems on the aircraft while the aircraft is at the gate and/or to charge battery systems on the aircraft. One skilled in the art will recognize, however, that the systems and methods described herein are not limited to aircraft, but are equally applicable to other vehicles and contexts, e.g., waterborne vessels such as ships or submarines or land-based vehicles such as automobiles, trucks, or military vehicles. As used herein, the term "vehicle" should be construed to include any of these vehicles.

    [0013] Fig. 1 is a schematic illustration of a system for interference mitigation for broadband communication over power lines according to embodiments. Referring to Fig. 1, in one embodiment a power supply 125 is coupled to one or more vehicles 115 via a power line(s) 110. The system 100 comprises a broadband over power line (BPL) modem 120 which may be coupled to one or more vehicles, e.g., aircraft 115, via the one or more power lines 110. BPL modem 120 also couples to a communication network 130. An airline data server 140 and an interference management server 150 are coupled to communication network 130. Airline data server 140 may be coupled to a data store for airline data 145. Interference management server 150 may be coupled to a data store for location specific search data 160 and a data store for sensing data 170.

    [0014] In some embodiments the power supply 125 may be implemented as an alternating current (AC) power source which supplies 3-phase electrical power at a frequency of approximately 400 Hz. One or more transformers may be provided to step-down the electrical power from a higher voltage (e.g., 380V) to 115VAC. The power lines 115 may be embodied as shielded wire cables capable of carrying at least 225 amperes (A) per aircraft 115.

    [0015] Communication network 130 may be embodied as a as a Personal Area Network (PAN), Local Area Network (LAN), Metropolitan Area Network (MAN) or a Wide Area Network (WAN) or the like. Furthermore, communication network 220 may comprise one or more sub-networks. By way of example, and not by limitation, communication network 130 may comprise one or more access points (APs) that establish access to a LAN or directly to a backbone network such as the Internet. Additionally, the communication network 130 may include a variety of input/output transports such as, but not limited to; wired USB or serial links, Wireless 802.11x link, wireless USB, Blue-tooth, infra red link or the like.

    [0016] BPL modem 120 may be embodied as a processor-based device which converts communication signals from one or more signal formats used on the communication network to a signal format for use on power lines 110, and vise-versa. In some embodiments BPL modem 120 converts signals from communication network 130 into analog signals operating in a frequency range between about 1.7 MHz and 80 MHz, which encompasses the frequency ranges commonly referred to as the MF, HF, and VHF frequency ranges. In some embodiments one or more sub-ranges within these frequency ranges may be used. By way of example, a sub range from about 30MHz to 50MHz is relatively free from external interference in most airport environments in the world.

    [0017] Airline data server 140 may be embodied as a computer-based device coupled to the communication network 130. In some embodiments the airline data server 140 may be associated with one or more central maintenance computer(s) (CMC) and/or an aircraft condition monitoring system (ACMS), which may download performance data from the aircraft 115, process the data, and generate one or more alerts. In addition, the airline data server 140 may store data collected from the aircraft 115 in the airline data store 145, and may upload data to the aircraft 115.

    [0018] Interference management server 150 may be embodied as a computer-based device coupled to the communication network 130. In some embodiments the interference management server 150 is coupled to a location specific search data store 160 which contains data relating to local sources of interference in the frequency range over which the BPL modem 120 transmits signals on the power lines 110. The interference management server 150 may also be coupled to a sensing data store 170 which contains data relating to interference parameters collected by a sensing routines used to detect interference in the frequency range over which the BPL modem 120 transmits signals on the power lines 110.

    [0019] In some embodiments the interference management server 150 depicted in Fig. 1 may be implemented in a computer system environment. Figure 2 is a schematic illustration of a computing system 200 which may be adapted to implement an interference management server 150 in accordance with some embodiments. In one embodiment, system 200 includes a computing device 208 and one or more accompanying input/output devices including a display 202 having a screen 204, one or more speakers 206, a keyboard 210, one or more other I/O device(s) 212, and a mouse 214. The other I/O device(s) 212 may include a touch screen, a voice-activated input device, a track ball, and any other device that allows the system 200 to receive input from a user.

    [0020] The computing device 208 includes system hardware 220 and memory 230, which may be implemented as random access memory and/or read-only memory. A file store 280 may be communicatively coupled to computing device 208. File store 280 may be internal to computing device 108 such as, e.g., one or more hard drives, CD-ROM drives, DVD-ROM drives, or other types of storage devices. File store 180 may also be external to computer 208 such as, e.g., one or more external hard drives, network attached storage, or a separate storage network.

    [0021] System hardware 220 may include one or more processors 222, a graphics processor(s) 224, network interfaces 226, and bus structures 228. As used herein, the term "processor" means any type of computational element, such as but not limited to, a microprocessor, a microcontroller, a complex instruction set computing (CISC) microprocessor, a reduced instruction set (RISC) microprocessor, a very long instruction word (VLIW) microprocessor, or any other type of processor or processing circuit.

    [0022] Graphics processor(s) 224 may function as adjunct processors that manage graphics and/or video operations. Graphics processor(s) 224 may be integrated onto the motherboard of computing system 200 or may be coupled via an expansion slot on the motherboard.

    [0023] In one embodiment, network interface 226 could be a wired interface such as an Ethernet interface (see, e.g., Institute of Electrical and Electronics Engineers/IEEE 802.3-2002) or a wireless interface such as an IEEE 802.11 a, b, g or n-compliant interface (see, e.g., IEEE Standard for IT-Telecommunications and information exchange between systems LAN/MAN--Part II: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications Amendment 4: Further Higher Data Rate Extension in the 2.4 GHz Band, 802.11G-2003). Another example of a wireless interface would be a general packet radio service (GPRS) interface (see, e.g., Guidelines on GPRS Handset Requirements, Global System for Mobile Communications/GSM Association, Ver. 3.0.1, December 2002).

    [0024] Bus structures 228 connect various components of system hardware 220]. In one embodiment, bus structures 228 may be one or more of several types of bus structure(s) including a memory bus, a peripheral bus or external bus, and/or a local bus using any variety of available bus architectures including, but not limited to, 11-bit bus, Industrial Standard Architecture (ISA), Micro-Channel Architecture (MSA), Extended ISA (EISA), Intelligent Drive Electronics (IDE), VESA Local Bus (VLB), Peripheral Component Interconnect (PCI), Universal Serial Bus (USB), Advanced Graphics Port (AGP), Personal Computer Memory Card International Association bus (PCMCIA), and Small Computer Systems Interface (SCSI).

    [0025] Memory 230 may include an operating system 240 for managing operations of computing device 208. In one embodiment, operating system 240 includes a hardware interface module 254 that provides an interface to system hardware 220. In addition, operating system 240 may include a file system 250 that manages files used in the operation of computing device 208 and a process control subsystem 252 that manages processes executing on computing device 208.

    [0026] Operating system 240 may include (or manage) one or more communication interfaces that may operate in conjunction with system hardware 220 to transceive data packets and/or data streams from a remote source. Operating system 240 may further include a system call interface module 242 that provides an interface between the operating system 240 and one or more application modules resident in memory 130. Operating system 240 may be embodied as a Windows® brand operating system or as a UNIX operating system or any derivative thereof (e.g., Linux, Solaris, etc.), or other operating systems.

    [0027] In one embodiment, memory 230 includes an interference mitigation module 260, which may include logic instructions encoded in a computer-readable medium which, when executed by processor 222, cause the processor 222 to manage data transmission on the power lines 110 in a way that mitigates interference in the local environment. Fig. 3 is a flowchart illustrating operations in a method for interference mitigation for broadband communication over power lines according to embodiments. In some embodiments the interference mitigation module 260 may implement (or initiate) the operations depicted in Fig. 3 to manage data transmission on the power lines 110 in a way that mitigates interference in the local environment.

    [0028] Referring now to Fig. 3, at operation 310 a vehicle arrives at a facility. By way of example, in one embodiment an aircraft 115 may arrive at an airport. If, at operation 315, a broadband over power line connection is not available at the airport, then control passes to operation 320 and a separate communication utility may be invoked to pass data between the aircraft 115 and a remote computer system. By contrast, if at operation 315 a broadband over power line connection is available at the airport, then at operation 325 the power line 110 is coupled to the aircraft.

    [0029] At operation 330 a channel sweep is initiated to search the bandwidth allocated for the communication link for the communication channels which provide the best available transmission conditions. In some embodiments the channel sweep may be initiated by the interference mitigation module 260, but may be implemented by logic in the BPL modem 120. The channel sweep may determine one or more frequency ranges or defined communication channels within the frequency band which exhibit good transmission qualities, e.g., channels which have strong resonance points. The channels may be stored in the sensing data store 170.

    [0030] In addition, the interference mitigation module 260 may initiate a process to detect local RF emissions. By way of example, an RF scanner may be coupled to interference management server to scan the local environment for RF sources. The RF scanner may collect information pertaining to RF interference sources, e.g., the frequency range of the source(s) and the signal strength of the interference. The data may be stored in the sensing data store 170.

    [0031] At operation 345 the interference mitigation module may initiate a process to retrieve local regulatory frequency restrictions. By way of example, some localities restrict RF transmissions above specific power thresholds in particular frequency ranges. The frequency ranges and restrictions may be stored in the location specific search data store 160 and may be retrieved from the data store 160.

    [0032] If, at operation 350, the channel sweep does not identify one or more qualifying frequencies then control passes back to operation 330 and a new channel sweep is initiated. Operation 330 may be repeated until one or more qualifying frequencies are located, at which point control passes to operation 360 and the interference management module 360 implements operations to blend qualifying frequencies with local restrictions determined in operation 345.

    [0033] In some embodiments the blending operation 360 may comprise a number of sub-operations. The interference management server 150 may retrieve information about location-specific sources of interference from the location-specific search data 160 and may retrieve sensing data for the specific location from the sensing data store 170. The interference management server then allocates available bandwidth on the power lines 110 to implement one or more interference mitigation strategies to reduce interference with existing RF sources operating in the frequency range selected for transmission over the power lines 110.

    [0034] In some embodiments the interference management server 150 may implement an interference management technique referred to as a "search and avoid" strategy which relies only on the location specific search data 160. In a search and avoid strategy the interference management server 150 retrieves the restricted frequency ranges marked as interference sources in the location specific search data 160 and marks those frequency ranges as excluded for communication transmissions between the BPL modem 120 and the aircraft 115. The excluded frequency ranges may be transmitted to the BPL modem 120, which blocks out the excluded frequency ranges.

    [0035] In other embodiments the interference management server 150 may implement an interference management technique referred to as a "search, sense, and avoid" technique. In this technique the interference management server 150 retrieves the restricted frequency ranges marked as interference sources in the location specific search data 160 and marks those frequency ranges as excluded for communication transmissions between the BPL modem 120 and the aircraft 115. In addition, the interference management server 150 cooperates with the BPL modem 120 to detect the presence of other radio communication services transmitting on the power lines 110 and to block new transmissions on frequency ranges that are already being used.

    [0036] The mitigation strategies may use either static notching techniques or dynamic notching techniques to block frequency ranges. Static notching techniques completely block out frequency ranges from transmission between the BPL modem 120 and the aircraft 115. By contrast, dynamic frequency notching techniques use both search and sense techniques to dynamically notch user frequencies over time in response to changing interference conditions. In some embodiments a combination of static and dynamic techniques may be used. For example, frequencies which are used by aviation applications may be statically notched, thereby precluding the possibility of interference from communication over the power line between the BPL modem 120 and the aircraft 115 over the power line 110, while frequencies which are used by other aircraft 115 or other applications may be dynamically notched.

    [0037] In some embodiments the frequency allocation algorithm implemented by the interference management server 150 may allocate the frequency resources available on the power line 110 between dynamically notched frequencies and statically notched frequencies. Fig. 4 is a frequency diagram illustrating aspects of a frequency allocation algorithm, according to embodiments. Referring to Fig. 4, in some embodiments the 78 MHz bandwidth is divided into a number of elements, M. Some number of the elements, Nc, may be unavailable for use as a communication channel due to channel imperfections. Some number of elements, Nf, may be statically notched due to local restrictions on interference. Some number of elements, Nd, may be dynamically notched based on sensing data at the specific location.

    [0038] The interference management server 150 may allocate the available bandwidth such that the number of available elements, M, is maximized for a given time interval. By way of example, if the loss in throughput due to the time lost in collecting sensing data to determine the availability of Nd is greater than the throughput achievable, then the bandwidth allocation routine may cease sensing and the elements Nd may be placed into the pool of bandwidth which is statically notched, Nf. Similarly, if the ambient noise level at a particular frequency is high then any RF interference generated by the BPL modem 120 is relatively unimportant. Thus, in some embodiments if the ambient noise level at a particular frequency exceeds a threshold, e.g., -95 dBm, based on average measurements then the frequency may be included for transmission by the BPL modem 120.

    [0039] In the foregoing discussion, specific implementations of exemplary processes have been described, however, it should be understood that in alternate implementations, certain acts need not be performed in the order described above. In alternate embodiments, some acts may be modified, performed in a different order, or may be omitted entirely, depending on the circumstances. Moreover, in various alternate implementations, the acts described may be implemented by a computer, controller, processor, programmable device, firmware, or any other suitable device, and may be based on instructions stored on one or more computer-readable media or otherwise stored or programmed into such devices (e.g. including transmitting computer-readable instructions in real time to such devices). In the context of software, the acts described above may represent computer instructions that, when executed by one or more processors, perform the recited operations. In the event that computer-readable media are used, the computer-readable medium can be any available medium that can be accessed by a device to implement the instructions stored thereon.

    [0040] While various embodiments have been described, those skilled in the art will recognize modifications or variations which might be made without departing from the present disclosure. The examples illustrate the various embodiments and are not intended to limit the present disclosure. Therefore, the description and claims should be interpreted liberally with only such limitation as is necessary in view of the pertinent prior art.


    Claims

    1. A system (100) to exchange data between a vehicle (115) to a remote computer system, comprising:

    at least one power line (110) adapted to couple to the vehicle;

    a local area network (130); and

    a modem (120) coupled to the local area network and the at least one power line;

    characterised in that the system comprises a power line interference server (150) comprising logic to allocate communication channels within a specified frequency range on the power line, wherein the power line interference server is configured to:

    define a plurality of communication channels in the predetermined frequency range;

    initiate a channel sweep to search the predetermined frequency range to determine one or more frequency ranges or communication channels which have good transmission qualities, and store the determined one or more communication channels in a sensing data store (170),

    wherein, if the channel sweep does not identify one or more frequency ranges having good transmission qualities, initiating a further channel sweep;

    initiate a process to scan the local environment to determine information pertaining to RF interference sources, and store the information in the sensing data store (170);

    maintain a database of local regulatory frequency ranges and restrictions in a location specific search data store (160);

    retrieve information about location-specific sources of interference from the location specific search data store (160) and retrieve sensing data for the specific location from the sensing data store (170);

    blend the determined one or more frequency ranges with the retrieved information about location-specific sources of interference from the location specific search data store (160) and the sensing data for the specific location from the sensing data store (170);

    implement an algorithm to allocate available bandwidth in the predetermined frequency range, the available bandwidth determined from the step of blending, the algorithm being configured to maximize a number of available frequency elements (M) for a given time interval;

    dynamically notch user frequencies on the power line over time in response to changing interference conditions using both search and sense techniques, based on information in the sensing data store (170) on interference sources ;

    statically notch user frequencies on the power line based on local regulatory frequency restrictions retrieved from the location specific search data store (160),

    wherein if the loss in throughput due to the time lost in collecting sensing data to determine availability by dynamic notching is greater than the throughput achievable, then the bandwidth allocation routine ceases sensing and the dynamically notched frequencies are placed into a pool of bandwidth which is statically notched.


     
    2. The system of claim 1, wherein the predetermined frequency range extends from 1.7 MHz to 80 MHz.
     
    3. A method to exchange data between a vehicle (115) and a remote computer system, comprising:

    coupling (325) at least one power line (110) to the vehicle;

    coupling a modem (120) to the power line and to a local area network (130); and

    allocating one or more communication channels within a specified frequency range on the power line;

    characterised in that the method comprises:

    initiating a channel sweep to search the specified frequency range to determine one or more frequency ranges or communication channels which have good transmission qualities, and storing the determined one or more communication channels in a sensing data store (170),

    wherein, if the channel sweep does not identify one or more frequency ranges having good transmission qualities, initiating a further channel sweep;

    initiating a process to scan the local environment to determine information pertaining to RF interference sources, and storing the information in the sensing data store (170);

    maintaining a database of local regulatory frequency ranges and restrictions in a location specific search data store (160);

    retrieving information about location-specific sources of interference from the location specific search data store (160) and retrieve sensing data for the specific location from the sensing data store (170);

    blend the determined one or more frequency ranges with the retrieved information about location-specific sources of interference from the location specific search data store (160) and the sensing data for the specific location from the sensing data store (170);

    implement an algorithm to allocate available bandwidth in the predetermined frequency range, the available bandwidth determined from the step of blending, the algorithm being configured to maximize a number of available frequency elements (M) for a given time interval;

    dynamically notching user frequencies on the power line based on information in the sensing data store (170);

    statically notching user frequencies on the power line based on local regulatory frequency restrictions retrieved from the location specific search data store (160); and

    exchanging data between the vehicle and the remote computer system on the one or more communication channels,

    wherein if the loss in throughput due to the time lost in collecting sensing data to determine availability by dynamic notching is greater than the throughput achievable, then the bandwidth allocation routine ceases sensing and the dynamically notched frequencies are placed into a pool of bandwidth which is statically notched.


     
    4. the method of claim 3, wherein the predetermined frequency range extends from 1.7 MHz to 80 MHz.
     


    Ansprüche

    1. System (100) zum Austauschen von Daten zwischen einem Fahrzeug (115) und einem Remote-Computer-System, wobei das System aufweist:

    zumindest eine zur Verbindung mit dem Fahrzeug ausgebildete Stromversorgungsleitung (110);

    ein lokales Netzwerk (130); und

    ein Modem (120), das mit dem lokalen Netzwerk und der zumindest einen Stromversorgungsleitung verbunden ist;

    dadurch gekennzeichnet, dass das System einen Stromversorgungsleitungs-Interferenzserver (150) umfasst, der eine Logik zum Zuweisen von Übertragungskanälen innerhalb eines vorgegebenen Frequenzbereichs an die Stromversorgungsleitung aufweist, wobei der Stromversorgungsleitungs-Interferenzserver dazu ausgebildet ist:

    in dem vorgegebenen Frequenzbereich mehrere Übertragungskanäle zu definieren;

    einen Kanaldurchlauf zu initiieren, um den vorgegebenen Frequenzbereich nach einem oder nach mehreren Frequenzbereichen oder Übertragungskanälen mit guten Übertragungsgüten zu durchsuchen, und den einen oder die mehreren ermittelten Kanäle in einem Abtastdatenspeicher (170) zu speichern, wobei, wenn der Kanaldurchlauf zu keiner Identifizierung von einem oder mehreren Frequenzbereichen mit guten Übertragungsgüten führt, ein weiterer Kanaldurchlauf initiiert wird;

    einen Vorgang zum Absuchen der lokalen Umgebung zu initiieren, um HF-Störquellen betreffende Informationen zu ermitteln, und die Informationen in dem Abtastdatenspeicher (170) zu speichern;

    eine Datenbank über lokale genehmigungspflichtige Frequenzbereiche und Beschränkungen in einem ortsspezifischen Suchdatenspeicher (160) zu pflegen;

    Informationen über ortsspezifische Störquellen aus dem ortsspezifischen Suchdatenspeicher (160) abzurufen und Abtastdaten für den bestimmten Ort aus dem Abtastdatenspeicher (170) abzurufen;

    den ermittelten einen oder die ermittelten mehreren Frequenzbereiche mit den aus dem ortsspezifischen Suchdatenspeicher (160) abgerufenen Informationen über ortsspezifische Störquellen und den Abtastdaten für den bestimmten Ort aus dem Abtastdatenspeicher (170) zu mischen;

    einen Algorithmus für die Zuteilung einer verfügbaren Bandbreite in dem vorgegebenen Frequenzbereich zu implementieren, wobei die verfügbare Bandbreite aus dem Mischschritt bestimmt wird und der Algorithmus zum Maximieren einer Anzahl der in einem bestimmten Zeitintervall verfügbaren Frequenzelemente (M) ausgebildet ist;

    Benutzerfrequenzen an der Stromversorgungsleitung in Reaktion auf sich verändernde Störungsbedingungen unter Verwendung von Durchsuchungs- und Abtasttechniken über der Zeit auf Basis von Informationen über Störquellen in dem Abtastdatenspeicher (170) dynamisch kerbzufiltern;

    Benutzerfrequenzen an der Stromversorgungsleitung auf Basis von lokalen behördlichen Frequenzbeschränkungen, die aus dem ortsspezifischen Suchdatenspeicher (160) abgerufen wurden, statisch kerbzufiltern;

    wobei die Bandbreitenzuteilungsroutine, wenn der Verlust an Datendurchsatz infolge der durch die beim Erheben von Abtastdaten zum Ermitteln der Verfügbarkeit durch dynamisches Kerbfiltern verloren gegangenen Zeit größer ist als der erzielbare Datendurchsatz, das Abtasten beendet und die dynamisch kerbgefilterten Frequenzen in einen Bandbreitenpool eingebracht werden, der statisch kerbgefiltert ist.


     
    2. System nach Anspruch 1, wobei sich der vorgegebene Frequenzbereich von 1,7 bis 80 MHz erstreckt.
     
    3. Verfahren zum Austauschen von Daten zwischen einem Fahrzeug (115) und einem Remote-Computer-System, wobei das Verfahren umfasst:

    Verbinden (325) von zumindest einer Stromversorgungsleitung (110) mit dem Fahrzeug;

    Verbinden eines Modems (120) mit der zumindest einen Stromversorgungsleitung und mit einem lokalen Netzwerk (130); und

    Zuweisen von einem oder mehreren Kanälen innerhalb eines vorgegebenen Frequenzbereichs an die Stromversorgungsleitung;

    dadurch gekennzeichnet, dass das Verfahren aufweist:

    Initiieren eines Kanaldurchlaufs zum Durchsuchen des vorgegebenen Frequenzbereichs, um einen oder mehrere Frequenzbereiche oder Übertragungskanäle mit guten Übertragungsgüten zu ermitteln, und Speichern des ermittelten einen oder der ermittelten mehreren Kanäle in einem Abtastdatenspeicher (170), wobei, wenn der Kanaldurchlauf zu keiner Identifizierung von einem oder mehreren Frequenzbereichen mit guten Übertragungsgüten führt, ein weiterer Kanaldurchlauf initiiert wird;

    Initiieren eines Vorgangs zum Absuchen der lokalen Umgebung, um HF-Störquellen betreffende Informationen zu ermitteln, und Speichern der Informationen in dem Abtastdatenspeicher (170); Pflegen einer Datenbank über lokale genehmigungspflichtige Frequenzbereiche und Beschränkungen in einem ortsspezifischen Suchdatenspeicher (160);

    Abrufen von Informationen über ortsspezifische Störquellen aus dem ortsspezifischen Suchdatenspeicher (160) und Abrufen von Abtastdaten für den bestimmten Ort aus dem Abtastdatenspeicher (170);

    Mischen der ermittelten einen oder der ermittelten mehreren Frequenzbereiche mit den aus dem ortsspezifischen Suchdatenspeicher (160) abgerufenen Informationen über ortsspezifische Störquellen und den Abtastdaten für den bestimmten Ort aus dem Abtastdatenspeicher (170);

    Implementieren eines Algorithmus für die Zuteilung einer verfügbaren Bandbreite in dem vorgegebenen Frequenzbereich, wobei die verfügbare Bandbreite aus dem Mischschritt bestimmt wird und der Algorithmus zum Maximieren einer Anzahl der in einem bestimmten Zeitintervall verfügbaren Frequenzelemente (M) ausgebildet ist;

    Dynamisch kerbfiltern von Benutzerfrequenzen an der Stromversorgungsleitung auf Basis von Informationen in dem Abtastdatenspeicher (170);

    Statisch kerbfiltern von Benutzerfrequenzen an der Stromversorgungsleitung auf Basis von lokalen behördlichen Frequenzbeschränkungen, die aus dem ortsspezifischen Suchdatenspeicher (160) abgerufen wurden; und

    Austauschen von Daten zwischen dem Fahrzeug und dem Remote-Computer-System über den einen oder die mehreren Übertragungskanäle,

    wobei die Bandbreitenzuteilungsroutine, wenn der Verlust an Datendurchsatz infolge der durch die beim Erheben von Abtastdaten zum Ermitteln der Verfügbarkeit durch dynamisches Kerbfiltern verloren gegangenen Zeit größer ist als der erzielbare Datendurchsatz, das Abtasten beendet und die dynamisch kerbgefilterten Frequenzen in einen Bandbreitenpool eingebracht werden, der statisch kerbgefiltert ist.


     
    4. Verfahren nach Anspruch 3, wobei sich der vorgegebene Frequenzbereich von 1,7 bis 80 MHz erstreckt.
     


    Revendications

    1. Système (100) pour échanger des données entre un véhicule (115) et un système informatique distant, comprenant :

    au moins une ligne électrique (110) adaptée pour être couplée au véhicule ;

    un réseau local (130) ; et

    un modem (120) couplé au réseau local et à là au moins une ligne électrique ;

    caractérisé en ce que le système comprend un serveur d'interférence de ligne électrique (150) comprenant une logique pour allouer des canaux de communication dans une plage de fréquence spécifiée sur la ligne électrique, dans lequel le serveur d'interférence de ligne électrique est configuré pour :

    définir une pluralité de canaux de communication dans la plage de fréquence prédéterminée ;

    initier un balayage de canal pour rechercher la plage de fréquence prédéterminée pour déterminer une ou plusieurs plages de fréquence ou canaux de communication qui ont de bonnes qualités de transmission et stocker les un ou plusieurs canaux de communication dans une mémoire de données de détection (170),

    dans lequel, si le balayage de canal n'identifie pas une ou plusieurs plages de fréquence ayant de bonnes qualités de transmission, l'initiation d'un autre balayage de canal ;

    initier un processus pour balayer l'environnement local afin de déterminer des informations concernant des sources d'interférence RF, et stocker les informations dans la mémoire de données de détection (170) ;

    maintenir une base de données des plages et des restrictions de fréquence réglementaires locales dans une mémoire de données de recherche spécifique à un emplacement (160) ;

    récupérer des informations sur des sources d'interférence spécifique à un emplacement à partir de la mémoire de données de recherche spécifiques à un emplacement (160) et récupérer des données de détection spécifiques à un emplacement à partir de la mémoire de données de détection (170) ;

    mélanger les une ou plusieurs plages de fréquence déterminées avec les informations récupérées sur les sources d'interférences spécifiques à un emplacement à partir de la mémoire de données de recherche spécifiques à un emplacement (160) et des données de détection spécifiques à un emplacement à partir de la une mémoire de données de détection (170) ;

    mettre en oeuvre un algorithme pour allouer de la largeur de bande disponible dans la plage de fréquence prédéterminée, la largeur de bande disponible étant déterminée à partir de l'étape de mélange, l'algorithme étant configuré pour maximiser un nombre d'éléments de fréquence disponibles (M) pour un intervalle de temps donné;

    encocher de manière dynamique des fréquences d'utilisateur sur la ligne électrique dans le temps en réponse à des conditions d'interférence changeantes en utilisant à la fois des techniques de recherche et de détection, sur la base d'informations dans la mémoire de données de détection (170) sur des sources d'interférence ;

    encocher de manière statique des fréquences d'utilisateur sur la ligne électrique sur la base de restrictions de fréquence réglementaires locales récupérées à partir de la mémoire de données de recherche spécifiques à un emplacement (160),

    dans lequel si la perte de débit due au temps perdu à la collecte de données de détection pour déterminer la disponibilité par encochage dynamique est supérieure au débit alors la routine d'allocation de largeur de bande cesse de détecter et les fréquences encochées de manière dynamique sont placées dans un ensemble de largeurs de bande qui est statique.


     
    2. Système selon la revendication 1, dans lequel la plage de fréquence prédéterminée s'étend de 1,7 MHz à 80 MHz.
     
    3. Procédé pour échanger des données entre un véhicule (115) et un ordinateur distant, comprenant les étapes consistant à :

    coupler (325) au moins une ligne électrique (110) au véhicule ;

    coupler un modem (120) à la ligne électrique et à un réseau local (130) ; et

    allouer un ou plusieurs canaux de communication dans une plage de fréquence spécifiée sur la ligne électrique ;

    caractérisé en ce que le procédé comprend les étapes consistant à :

    initier un balayage de canal pour rechercher la plage de fréquence déterminée afin de déterminer une ou plusieurs plages de fréquence ou canaux de communication qui ont de bonnes qualités de transmission et stocker les uns ou plusieurs canaux de communication dans une mémoire de données de détection (170),

    si le balayage de canal n'identifie pas une ou plusieurs plages de fréquence ayant de bonnes qualités de transmission, initier un autre balayage de canal ;

    initier un processus pour balayer l'environnement local afin de déterminer des informations se rapportant à des sources d'interférence RF, et stocker les informations dans la mémoire de données de détection (170) ;

    maintenir une base de données de plages de fréquence et de restrictions réglementaires locales dans une mémoire de données de recherche spécifiques à un emplacement (160) ;

    récupérer des informations sur les sources d'interférence spécifiques à un emplacement (160) à partir de la mémoire de données de recherche spécifiques à un emplacement (160), et récupérer les données de détection pour emplacement à partir de la mémoire de données de détection (170) ;

    mélanger les une ou plusieurs plages de fréquence déterminées avec les informations récupérées concernant des sources d'interférence spécifiques à un emplacement à partir de la mémoire de données de recherche spécifiques à un emplacement (160) et des données de détection spécifiques à un emplacement à partir de la mémoire de données de détection (170) ;

    mettre en oeuvre un algorithme pour allouer de la largeur de bande disponible dans la plage de fréquences prédéterminée, la largeur de bande disponible étant déterminée à partir de l'étape de mélange, l'algorithme étant configuré pour maximiser un nombre d'éléments de fréquence disponibles (M) pendant un intervalle de temps donné ;

    encocher de manière dynamique des fréquences d'utilisateur sur la ligne électrique sur la base des informations dans la mémoire de données de détection (170) ;

    encocher de manière statique des fréquences d'utilisateur sur la ligne électrique sur la base des restrictions de fréquence réglementaires locales récupérées à partir de la mémoire de données de recherche spécifiques à un emplacement (160) ; et

    échanger des données entre le véhicule et le système informatique distant sur les un ou plusieurs canaux de communication,

    dans lequel si la perte de débit due au temps perdu à la collecte de données de détection pour déterminer la disponibilité par encochage de manière dynamique est supérieure au débit pouvant être atteint, alors la routine d'allocation de largeur de bande cesse de détecter et les fréquences encochées de manière dynamique sont placées dans un ensemble de largeurs de bande qui est encoché de manière statique.


     
    4. Procédé selon la revendication 3,
    dans lequel la plage de fréquence prédéterminée s'étend de 1,7 MHz à 80 MHz.
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description