(19)
(11) EP 2 860 041 B1

(12) EUROPÄISCHE PATENTSCHRIFT

(45) Hinweis auf die Patenterteilung:
05.04.2017  Patentblatt  2017/14

(21) Anmeldenummer: 14180087.0

(22) Anmeldetag:  06.08.2014
(51) Internationale Patentklassifikation (IPC): 
B42D 25/36(2014.01)
B42D 25/328(2014.01)
B42D 25/425(2014.01)
B42D 25/45(2014.01)
B42D 25/445(2014.01)

(54)

Verfahren zur Herstellung eines Mehrschichtkörpers sowie Mehrschichtkörper

Multi-layer body and method for producing a multi-layer body

Procédé de fabrication d'un corps multicouches et corps multicouches


(84) Benannte Vertragsstaaten:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priorität: 09.08.2013 DE 102013108666

(43) Veröffentlichungstag der Anmeldung:
15.04.2015  Patentblatt  2015/16

(73) Patentinhaber:
  • Leonhard Kurz Stiftung & Co. KG
    90763 Fürth (DE)
  • OVD Kinegram AG
    6301 Zug (CH)

(72) Erfinder:
  • Staub, René
    6332 Hagendorn (CH)
  • Brehm, Ludwig
    91325 Adelsdorf (DE)
  • Attner, Juri
    90559 Burgthann (DE)
  • Seeholzer, Peter
    6005 Luzern (CH)
  • Hoffmann, Michael
    6318 Walchwil (CH)

(74) Vertreter: Louis Pöhlau Lohrentz 
Patentanwälte Postfach 30 55
90014 Nürnberg
90014 Nürnberg (DE)


(56) Entgegenhaltungen: : 
WO-A1-95/27925
DE-B3- 10 333 255
DE-A1-102006 037 431
US-A1- 2012 064 303
   
       
    Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europäischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäischen Patent Einspruch einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Einspruchsgebühr entrichtet worden ist. (Art. 99(1) Europäisches Patentübereinkommen).


    Beschreibung


    [0001] Die Erfindung betrifft Verfahren zur Herstellung eines Mehrschichtkörpers mit mindestens einer partiell ausgeformten Schicht aus einem Material mit hohem Brechungsindex, sowie einen danach erhältlichen Mehrschichtkörper. Die Erfindung betrifft weiterhin insbesondere ein Sicherheitselement für Sicherheits- und Wertdokumente mit einem derartigen Mehrschichtkörper.

    [0002] Optische Sicherheitselemente werden häufig dazu verwendet, das Kopieren und den Missbrauch von Dokumenten oder Produkten zu erschweren und möglichst zu verhindern. So finden optische Sicherheitselemente häufig Verwendung zur Sicherung von Dokumenten, von Banknoten, von Kreditkarten, von Geldkarten, von Ausweisen, von Verpackungen und dergleichen. Hierbei ist es bekannt, optisch variable Elemente zu verwenden, die mit herkömmlichen Kopierverfahren nicht dupliziert werden können. Es ist auch bekannt, Sicherheitselemente mit Schichten aus hochbrechenden Materialien (HRI = High Refractive Index = hoher Brechungsindex), wie beispielsweise ZnS, auszustatten, um spezielle optische Strukturen zu schaffen. Während vollflächige Reflexionsschichten aus HRI-Materialien relativ einfach durch gängige Auftragsverfahren, wie beispielsweise Sputtern, Bedampfen oder dgl., erzeugt werden können, sind strukturierte, partielle HRI-Schichten deutlich aufwändiger zu fertigen.

    [0003] HRI-Schichten können als Reflexionsschichten dienen, da sie gemeinsam mit benachbarten Lackschichten, die üblicherweise Brechungsindizes mittlerer Größe aufweisen, z. B. 1,5, eine optische Grenzschicht ausbilden. Diese optische Grenzschicht macht Strukturen an dieser Grenzschicht sichtbar, obwohl die Strukturen zwischen beiden Schichten eingebettet sind.

    [0004] Je mehr Fertigungsschritte zur Herstellung des Sicherheitselements vorgesehen sind, desto größere Bedeutung erhält die Passergenauigkeit der einzelnen Verfahrensschritte bzw. die Genauigkeit der Positionierung der einzelnen Werkzeuge bei der Bildung des Sicherheitselements in Bezug auf am Sicherheitselement bereits vorhandene Merkmale oder Strukturen.

    [0005] Der Begriff "Passergenauigkeit" bzw. "Registergenauigkeit" stammt aus der Drucktechnologie. Dort werden Passermarken bzw. Registermarken auf verwendet, die auf verschiedenen Schichten oder Lagen aufgebracht sind. Anhand dieser Passermarken bzw. Registermarken ist es sehr leicht möglich, die exakte relative Lagengenauigkeit der Lagen oder Schichten zueinander einzustellen und damit eine sogenannte Passergenauigkeit oder Registergenauigkeit zu erreichen. "Im Register" heißt also, dass die jeweiligen Lagen oder Schichten anhand der Passermarken bzw. Registermarken hinreichend genau zueinander lagengenau ausgerichtet sind. Im Folgenden werden diese Begrifflichkeiten in diesem Sinne verwendet. D. h. es geht darum, aufeinanderliegende Schichten möglichst genau relativ zueinander auszurichten und sie "im Register" anzuordnen.

    [0006] Aus der WO 95/27925 ist ein Verfahren bekannt, bei dem eine Metall- oder Titandioxidschicht partiell mit einem Schutzlack versehen und durch Ätzen strukturiert wird.

    [0007] Die DE 103 33 255 B3 beschreibt ein weiteres Verfahren, bei dem eine Metall- oder HRI-Schicht durch Einwirkung von Säuren oder Laugen chemisch strukturiert wird.

    [0008] Aus der US 2012/0064303 A1 ist es ebenfalls bekannt, Reflexionsschichten aus Metall oder HRI-Materialien durch Säure- oder Laugeneinwirkung chemisch zu ätzen.

    [0009] Aus der DE 10 2006 037 431 A1 ist ein Verfahren zum Herstellen eines Mehrschichtkörpers bekannt, bei dem eine Funktionsschicht im Register zu einer Replizierschicht durch chemisches Ätzen oder durch den Einsatz eines Waschlacks strukturiert wird.

    [0010] Es ist Aufgabe der vorliegenden Erfindung, ein Verfahren zum Herstellen eines Mehrschichtkörpers anzugeben, welches besonders einfach und prozesssicher durchzuführen ist. Ferner ist es Aufgabe der vorliegenden Erfindung, einen Mehrschichtkörper anzugeben, der mittels eines solchen Verfahrens erhältlich ist.

    [0011] Diese Aufgabe wird durch ein Verfahren zum Herstellen eines Mehrschichtkörpers gelöst, bei welchem eine Schicht aus einem Material mit hohem Brechungsindex zumindest teilflächig auf ein Substrat aufgebracht wird und anschließend zumindest ein Teilbereich der Schicht durch Behandlung mit einer Lauge physikalisch wieder vom Substrat entfernt wird.

    [0012] Die Schicht aus dem Material mit hohem Brechungsindex wird im Folgenden auch kurz als HRI-Schicht bezeichnet (High Refractive Index = hoher Brechungsindex).

    [0013] Es hat sich herausgestellt, dass durch eine solche Laugenbehandlung ein Ablösen der Schicht in dem zu entfernenden Teilbereich als Ganzes ausgelöst wird. Mit anderen Worten löst sich die Schicht aus dem hochbrechenden Material nicht chemisch in der Lauge, sondern platzt physikalisch vom Untergrund ab. Es handelt sich also nicht um ein Ätzverfahren. Im Gegensatz zu beispielsweise dem Auflösen von Zinksulfid durch Salzsäure entstehen hierbei keine toxischen Nebenprodukte, wie im obigen Beispiel etwa Schwefelwasserstoff. Auch bleiben keine toxischen Schwermetalllösungen zurück. Das Verfahren kann daher besonders sicher durchgeführt werden, macht keine besonderen Schutzvorkehrungen notwendig und ist zudem umweltfreundlich. Verglichen mit bekannten physikalischen Verfahren zum partiellen Abtragen von Schichten, wie beispielsweise der Laserablation, ist zudem der apparative Aufwand deutlich geringer und die erreichbare Prozessgeschwindigkeit deutlich höher.

    [0014] Diese Aufgabe wird ferner durch ein Verfahren zum Herstellen eines Mehrschichtkörpers gelöst, bei welchem in zumindest einem ersten Bereich eines oder des Substrats wenigstens eine erste Reliefstruktur in eine erste Oberfläche des Substrats abgeformt wird, anschließend eine Schicht oder die Schicht aus einem Material mit hohem Brechungsindex zumindest teilflächig auf die erste Oberfläche des Substrat aufgebracht wird, derart, dass die Schicht den zumindest einen ersten Bereich und zumindest einen zweiten Bereich des Substrat, in welchem die erste Reliefstruktur nicht in die erste Oberfläche des Substrats abgeformt ist, zumindest bereichsweise überdeckt, und anschließend ein Teilbereich der Schicht durch Behandlung mit einer Flüssigkeit physikalisch wieder vom Substrat derart entfernt wird, dass die erste Schicht in dem den zumindest einen zweiten Bereich überdeckenden Teilbereich entfernt wird und in dem den zumindest einen ersten Bereich überdeckenden Teilbereich auf dem Substrat verbleibt.

    [0015] Es hat sich herausgestellt, dass im Bereich von Reliefstrukturen die Haftung der HRI-Schicht am Substrat deutlich größer ist als auf glatten Oberflächen. Dies kann für eine bereichsweise Entfernung der HRI-Schicht genutzt werden. Hierzu werden Bedingungen geschaffen, unter denen die Zwischenschichthaftung der HRI-Schicht und der Oberfläche im glatten, zweiten Bereich gerade nicht mehr ausreicht, um die HRI-Schicht an der Oberfläche zu halten, während die größere Zwischenschichthaftung im ersten Bereich die HRI-Schicht weiterhin an die Oberfläche bindet. Diese Variante des Verfahrens kann bei besonders schonenden Bedingungen, insbesondere geringen Laugenkonzentrationen durchgeführt werden, so dass sie sich auch für empfindliche Materialkombinationen eignet. Gegebenenfalls kann auch die Verwendung von Wasser als Flüssigkeit ausreichen.

    [0016] Ein weiterer Vorteil dieser Verfahrensvariante liegt darin, dass die verbleibende HRI-Schicht im Register mit den in die Oberfläche eingeformten Reliefstrukturen verbleibt. Es können daher auch sehr filigrane Strukturen und Muster geschaffen werden, deren optischer Effekt aus dem Zusammenwirken der HRI-Schicht mit der entsprechend lagegenau angeordneten Reliefstruktur entsteht.

    [0017] Diese Aufgabe wird ferner von einem Mehrschichtkörper mit einem Substrat und einer Schicht aus einem Material mit hohem Brechungsindex gelöst, wobei in zumindest einem ersten Bereich eines oder des Substrats wenigstens eine erste Reliefstruktur in eine erste Oberfläche des Substrats abgeformt ist, die Schicht teilflächig auf die erste Oberfläche des Substrat aufgebracht ist, derart, dass die erste Schicht in dem den zumindest einen zweiten Bereich überdeckenden Teilbereich entfernt ist und in dem den zumindest einen ersten Bereich überdeckenden Teilbereich auf dem Substrat vorgesehen ist.

    [0018] Ein solcher Mehrschichtkörper kann mittels der vorstehend erläuterten Verfahren erhalten werden und zeichnet sich durch besonders gute Registerhaltigkeit zwischen der ersten Reliefstruktur und der HRI-Schicht aus.

    [0019] Diese Aufgabe wird femer von einem Mehrschichtkörper gelöst mit mindestens einer partiell ausgeformten Schicht aus einem Material mit hohem Brechungsindex im Register zu mindestens einer weiteren partiell ausgeformten Funktionsschicht. Auch ein solcher Mehrschichtkörper ist mittels der vorstehend beschriebenen Verfahrensvarianten erhältlich und ist aufgrund der Registerhaltigkeit zwischen HRI-Schicht und der partiell ausgeformten Funktionsschicht besonders fälschungssicher.

    [0020] Es ist vorteilhaft, wenn das Material mit hohem Brechungsindex aus der Gruppe Zinksulfid, Titandioxid, Niobpentoxid, ausgewählt wird.

    [0021] Es ist ferner vorteilhaft, wenn die Lauge aus der Gruppe Natriumhydroxid, Kaliumhydroxid, Natriumbicarbonat, Tetramethylammoniumhydroxid, Natrium-Ethylendiamintetraacetat ausgewählt wird.

    [0022] Vorzugsweise beträgt ein pH-Wert der Lauge mindestens 10, da bei geringeren pH-Werten keine zuverlässige Ablösung der HRI-Schicht vom Substrat mehr gewährleistet werden kann. Vorzugsweise liegt der pH-Wert der Lauge in dem Bereich von 10,5 bis 14, weiter bevorzugt von 11 bis 13.

    [0023] Der pH-Wert und Angaben zur Leitfähigkeit sind temperaturabhängig. Die vorgenannten Werte und alle nachfolgenden pH-Werte und Angaben zur Leitfähigkeit beziehen sich auf Raumtemperatur von ca. 18° C bis 22° C.

    [0024] Vorzugsweise erfolgt die Behandlung mit der Lauge bei einer Temperatur von 10° C bis 80° C.

    [0025] Typischerweise nimmt die Reaktionsgeschwindigkeit mit der Konzentration der Lauge und der Temperatur zu. Die Wahl der Prozessparameter richtet sich nach der Reproduzierbarkeit des Prozesses und der Beständigkeit des Mehrschichtkörpers. Einflussfaktoren beim Behandeln mit Lauge sind typischerweise die Zusammensetzung des Laugenbades, insbesondere die Konzentration an Lauge, die Temperatur des Laugenbades und die Anströmbedingungen der zu behandelnden HRI-Schicht im Laugenbad.

    [0026] Die Behandlung mit der Lauge kann weiterhin ein zeitliches Temperaturprofil aufweisen, um das Ergebnis zu optimieren. So kann zu Beginn kalt und mit zunehmender Einwirkdauer wärmer behandelt werden. Im Laugenbad wird dies vorzugsweise durch einen räumlichen Temperaturgradienten realisiert, wobei der Mehrschichtkörper durch ein langgestrecktes Laugenbad mit unterschiedlichen Temperaturzonen gezogen wird.

    [0027] Vorzugsweise erfolgt während und/oder nach der Behandlung mit der Lauge eine mechanische Behandlung der Schicht zur Unterstützung des Ablösens der Schicht.

    [0028] Das physikalische Ablösen der HRI-Schicht vom Substrat beruht auf dem Eindringen der Lauge in feine Poren der HRI-Schicht, wo sich gegebenenfalls auch Hydroxo-Komplexe des HRI-Materials ausbilden können. Hierdurch werden mechanische Spannungen in der HRI-Schicht aufgebaut, die schließlich zum Abplatzen der Schicht in Form feiner Flocken führt. Durch eine zusätzliche mechanische Behandlung wird daher das Abplatzen befördert und erfolgt unter kontrollierter Art und Weise.

    [0029] Vorzugsweise umfasst die mechanische Behandlung ein Bürsten und/oder ein Wischen mit einem Schwamm und/oder einer Wischwalze und/oder eine Ultraschallbehandlung und/oder ein Anströmen oder Besprühen der Schicht mit einer Flüssigkeit.

    [0030] In einer weiteren bevorzugten Ausführungsform wird vor der Behandlung mit der Lauge eine Maskenschicht zum Schutz zumindest eines nicht zu entfernenden Teilbereichs der Schicht auf die Schicht aufgebracht. Die Maskenschicht besteht dabei vorzugsweise aus einem Material, welches gegenüber der Lauge nicht reaktiv ist. Durch die Maskenschicht wird also der Kontakt zwischen der Lauge und der HRI-Schicht verhindert, so dass sich in dem von der Maskenschicht bedeckten Teilbereich die HRI-Schicht während der Laugenbehandlung nicht vom Substrat ablösen kann. Hierdurch können die gewünschten Muster und Strukturen in der HRI-Schicht erzeugt werden. Je nach dem verwendeten Auftragsverfahren können dabei Strukturauflösungen von 0,05 bis 0,2 mm erreicht werden. Diese Größe bezeichnet beispielsweise die minimale Breite einer Linie oder eines Rasterpunktes, die noch sauber realisiert werden können. Die Strukturierung einer zum Aufbringen der Maskenschicht verwendeten Druckwalze kann deutlich feiner sein. Auch kann die Maskenschicht ggf. feiner ausgedruckt werden. Die Strukturauflösung berücksichtigt den gesamten Prozess bis und mit Strukturierung der HRI-Schicht, wobei sich je nach Prozessführung und verwendeten Materialien, wie beispielsweise Drucklacke, deutliche Unterschiede ergeben können.

    [0031] Bevorzugt wird die Maskenschicht durch Drucken, insbesondere durch Tiefdruck, Flexodruck, Siebdruck oder Tintenstrahldruck eines Schutzlacks auf die Schicht aufgebracht. Insbesondere beim Tintenstrahldruck ist es möglich, jeden einzelnen hergestellten Mehrschichtkörper mit einer individuellen Kennzeichnung, beispielsweise einer Seriennummer zu versehen, was die Fälschungssicherheit bzw. die Authentifizierbarkeit des Mehrschichtkörpers verbessert.

    [0032] Dabei empfiehlt es sich, wenn der Schutzlack ein physikalisch trocknender oder chemisch vernetzender oder strahlungshärtender Lack ist.

    [0033] Insbesondere kann auch ein Schutzlack verwendet werden, der Pigmente und/oder Farbstoffe und/oder UV-aktivierbare Pigmente und/oder Nanopartikel und/oder Upconverter und/oder thermochrome Farbstoffe und/oder photochrome Farbstoffe umfasst. Ein solcher Schutzlack kann auch nach der Laugenbehandlung am Mehrschichtkörper verbleiben und zum optischen Erscheinungsbild des Mehrschichtkörpers beitragen. Da die HRI-Schicht durch den Schutzlack während der Laugenbehandlung vor Ablösung geschützt wird, ist die verbleibende HRI-Schicht zudem registergenau zu der Schutzlackschicht angeordnet.

    [0034] Es ist jedoch auch möglich, den Schutzlack nach der Behandlung mit der Lauge zumindest bereichsweise wieder zu entfernen. Gerade eine partielle Entfernung des Schutzlacks kann ebenfalls zum optischen Gesamteffekt des Mehrschichtkörpers beitragen, zumal auch hier die verbleibenden Teilbereiche des Schutzlacks ebenfalls im Register zu der HRI-Schicht angeordnet sind.

    [0035] Es ist ferner vorteilhaft, wenn die Maskenschicht durch vollflächiges Auftragen eines positiven Photoresists, Belichten des zu entfernenden Teilbereichs der Schicht und Entfernen des belichteten Photoresists gebildet wird. Bei einem positiven Photoresist lösen sich belichtete Teilbereiche des Photoresists bei einer Behandlung mit einem entsprechenden Entwickler, bei dem es sich ebenfalls um die Lauge handeln kann. In den nicht belichteten Teilbereichen verbleibt der Photoresist auf der HRI-Schicht und schützt diese während der Laugenbehandlung vor dem Einfluss der Lauge.

    [0036] Alternativ kann die Maskenschicht durch vollflächiges Auftragen eines negativen Photoresists, Belichten des nicht zu entfernenden Teilbereichs der Schicht und Entfernen des nicht belichteten Photoresists gebildet werden. Ein negativer Photoresist löst sich in den nicht belichteten Bereichen während der Entwicklung von der Schicht. Hier verbleibt der Photoresist also in den belichteten Teilbereichen auf der HRI-Schicht und schützt dort die Schicht vor dem Einfluss der Lauge. In einer weiteren Variante kann der Photoresist nur in Teilbereichen aufgebracht werden, beispielsweise durch einen Druckprozess, und anschließend durch Belichtung strukturiert werden.

    [0037] Es können auch Kombinationen aus negativen und positiven Photoresists verwendet werden, um komplexe Muster zu schaffen. Unabhängig von der Art des verwendeten Photoresists können durch die Belichtung Auflösungen von bis zu 0,01 mm erzielt werden. Wie bereits bei aufgedruckten Maskenschichten erwähnt, muss zwischen der durch Belichtung in einen Photoresist erzielbaren Auflösung (welche bis in den Sub-Mikrometer Bereich liegen kann) und der weiteren prozessbedingten Auflösung, resp. minimalen Merkrnalsgröße, der Strukturierung der HRI-Schicht unterschieden werden.

    [0038] Es ist weiter vorteilhaft, wenn ein Photoresist verwendet wird, der Farbstoffe und/oder Pigmente und/oder UV-aktivierbare Pigmente und/oder Nanopartikel und/oder Upconverter und/oder thermochrome Farbstoffe und/oder photochrome Farbstoffe enthält. Ein solcher Photoresist kann am Mehrschichtkörper verbleiben und dort ebenfalls zum gewünschten optischen Effekt beitragen. Wie auch bei der Verwendung von aufgedruckten Schutzlacken ist der Photoresist dann im Register zur verbleibenden HRI-Schicht angeordnet.

    [0039] Der Photoresist kann jedoch auch nach der Behandlung mit der Lauge zumindest bereichsweise entfernt werden. Auch hier kann ein insbesondere partielles Entfernen des Photoresists zum optischen Erscheinungsbild beitragen.

    [0040] Vorzugsweise wird das Belichten vollflächig und/oder teilflächig mittels eines Lasers durchgeführt. Beim teilflächigen Belichten ist es möglich, jeden einzelnen hergestellten Mehrschichtkörper mit einer individuellen Kennzeichnung, beispielsweise einer Seriennummer zu versehen, was die Fälschungssicherheit bzw. die Authentifizierbarkeit des Mehrschichtkörpers verbessert. Dieser Effekt kann auch durch verstellbare oder veränderbare Masken erzielt werden.

    [0041] Es ist weiter vorteilhaft, wenn die Lauge auf den zu entfernenden Teilbereich der Schicht aufgedruckt wird. Durch den direkten Druck der Lauge wird die HRI-Schicht nur dort angegriffen, wo sie in Kontakt mit der Lauge kommt, so dass auf diese Weise besonders einfach strukturierte HRI-Schichten geschaffen werden können, ohne dass eine Maske oder dergleichen notwendig ist. Ein solches Verfahren ist daher besonders einfach und schnell durchzuführen. Nach dem Ablösen der HRI-Schicht in dem bedruckten Bereich muss dann die Lauge lediglich abgespült werden. Da die Lauge bei dieser Variante des Verfahrens nur mit den abzulösenden Bereichen der HRI-Schicht in Kontakt kommt, kann das Verfahren auch angewendet werden, wenn der Mehrschichtkörper Bestandteile aufweist, die keine gute Laugenbeständigkeit aufweisen und die in einem Laugenbad eventuell angegriffen werden könnten.

    [0042] Bevorzugt wird die Lauge durch Flexodruck oder Tiefdruck aufgedruckt. Je nach verwendetem Druckverfahren können so Strukturen mit einer Auflösung von 0,1 bis 0,2 mm in die HRI-Schicht eingebracht werden.

    [0043] Vorzugsweise wird eine Lauge verwendet, die zumindest ein Zuschlagmittel zum Erhöhen der Viskosität und/oder zumindest ein Netzmittel enthält. Hierdurch wird sichergestellt, dass die aufgedruckte Lauge nicht verfließt, so dass die gewünschte Struktur in der HRI-Schicht sicher erhalten wird. Gleichzeitig wird durch die Zugabe von Netzmitteln ein guter Kontakt der Lauge mit der Oberfläche der HRI-Schicht, sowie ein erleichtertes Eindringen der Lauge in die Poren der Schicht sichergestellt.

    [0044] Als Zuschlagmittel wird dabei vorzugsweise Calciumcarbonat verwendet. Neben Calciumcarbonat können beispielsweise Kaolin, Titandioxid, Aerosil, oder Siliziumdioxid verwendet werden. Kriterium ist dabei ein gegenüber Lauge weitgehend inertes Material, das in feiner Komgröße erhältlich ist und dadurch ausreichend gut in der Lauge dispergiert werden kann. Dadurch kann die so ausgerüstete Lauge besser verdruckt werden.

    [0045] Es ist weiter vorteilhaft, wenn vor dem Aufbringen der Schicht aus dem hochbrechenden Material zumindest in einem Teilbereich des Substrats wenigstens eine Reliefstruktur abgeformt wird. Durch eine solche Reliefstruktur können weitere optische Effekte erzielt werden, die insbesondere im Zusammenwirken mit der reflektiven HRI-Schicht zum optischen Gesamteindruck und zur Fälschungssicherheit des Mehrschichtkörpers beitragen.

    [0046] Wie bereits erläutert, wurde aufgefunden, dass Reliefstrukturen in der Oberfläche des Substrats die Haftung der HRI-Schicht auf dieser Oberfläche des Substrats beeinflussen. Dies kann für eine bereichsweise Entfernung der HRI-Schicht genutzt werden. Hierzu werden Bedingungen geschaffen, unter denen die Zwischenschichthaftung der HRI-Schicht und der Oberfläche in einem zweiten Bereich gerade nicht mehr ausreicht, um die HRI-Schicht an der Oberfläche zu halten, während die größere Zwischenschichthaftung im ersten Bereich die HRI-Schicht weiterhin an die Oberfläche bindet. Diese Variante des Verfahrens kann bei besonders schonenden Bedingungen, insbesondere geringen Laugenkonzentrationen durchgeführt werden, so dass sie sich auch für empfindliche Materialkombinationen eignet. Gegebenenfalls kann auch die Verwendung von Wasser als Flüssigkeit ausreichen.

    [0047] Ein weiterer Vorteil dieser Verfahrensvariante liegt darin, dass die verbleibende HRI-Schicht im perfekten Register mit den in die Oberfläche eingeformten Reliefstrukturen verbleibt. Es können daher auch sehr filigrane Strukturen und Muster geschaffen werden, deren optischer Effekt aus dem Zusammenwirken der HRI-Schicht mit der Reliefstruktur entsteht. Die erreichbare Strukturauflösung in der der partiellen HRI-Schicht beträgt dabei etwa 0,015 mm.

    [0048] Die Reliefstruktur wird dabei typischerweise in eine so genannte Replizierschicht eingeformt. Unter einer Replizierschicht wird allgemein eine oberflächlich mit einer Reliefstruktur herstellbare Schicht verstanden. Darunter fallen beispielsweise organische Schichten wie Kunststoff- oder Lackschichten oder anorganische Schichten wie anorganische Kunststoffe (z. B. Silikone), Halbleiterschichten, Metallschichten usw., aber auch Kombinationen daraus. Die meisten dieser Schichten weisen mittlere Brechungsindizes um etwa 1,5 auf.

    [0049] In eine als Kunststoff- oder Lackschicht, insbesondere aus Thermoplasten oder aus einem unter UV-Bestrahlung härtenden Lack ausgebildete Replizierschicht wird insbesondere mittels eines Werkzeuges, insbesondere eines Stempels oder einer Walze, oberflächlich eine Reliefstruktur eingeprägt. Auch eine Bildung einer oberflächlichen Reliefstruktur mittels Spritzguss oder die Verwendung eines Photolithographieprozesses ist möglich. Je nach eingesetztem Herstellungsverfahren und dem späterem Verwendungszweck des gebildeten Mehrschichtkörpers sind transmissive oder nicht-transmissive Replizierschichten, insbesondere für das menschliche Auge transparente oder opake Replizierschichten einsetzbar.

    [0050] Es ist insbesondere vorteilhaft, wenn die erste Reliefstruktur mit einem Tiefen-zu-Breiten-Verhältnis der einzelnen Strukturelemente von mehr als 0,1, insbesondere mehr als 0,15, bevorzugt von mehr als 0,2 ausgebildet wird. Reliefstrukturen mit einem solchen Tiefen-zu-Breiten-Verhältnis haben sich als besonders wirksam bei der Erhöhung der Zwischenschichthaftung von Substrat und HRI-Schicht erwiesen. Dies ist wohl insbesondere in der vergrößerten Oberfläche und Verzahnung im Bereich der Reliefstruktur begründet. Die Reliefstruktur verhindert zudem die Fortpflanzung von Rissen in der HRI-Schicht, die zum Abplatzen der Schicht führen.

    [0051] Besonders vorteilhaft ist es weiter, wenn die Struktur eine der folgenden Reliefformen aufweist: rechteckförmig, dreieckförmig, treppenartig, sinusförmig oder auch mit unregelmäßigen, insbesondere zufälligen Erhöhungen und Vertiefungen, wie sie beispielsweise bei Mattstrukturen auftreten.

    [0052] Das dimensionslose Tiefen-zu-Breiten-Verhältnis ist ein kennzeichnendes Merkmal für die Vergrößerung der Oberfläche vorzugsweise periodischer Strukturen, beispielsweise mit sinusquadratischem Verlauf. Als Tiefe ist hier der Abstand zwischen dem höchsten und dem tiefsten aufeinanderfolgenden Punkt einer solchen Struktur bezeichnet, d. h. es handelt sich um den Abstand zwischen "Berg" und "Tal". Als Breite ist der Abstand zwischen zwei benachbarten höchsten Punkten, d. h. zwischen zwei "Bergen", bezeichnet. Je höher nun das Tiefen-zu-Breiten-Verhältnis ist, desto steiler sind die "Bergflanken° ausgebildet und desto dünner ist die auf den "Bergflanken" abgeschiedene HRI-Schicht ausgebildet. Dies führt zudem zu einer anderen mikrokristallinen Struktur der HRI-Schicht als beim Abscheiden auf eine glatte Oberfläche, was ebenfalls die Schichthaftung verbessert. Es kann sich aber auch um Strukturen handeln, auf die dieses Modell nicht anwendbar ist. Beispielsweise kann es sich um diskret verteilte linienförmige Bereiche handeln, die nur als ein "Tal" ausgebildet sind, wobei der Abstand zwischen zwei "Tälern" um ein Vielfaches höher ist als die Tiefe der "Täler". Bei formaler Anwendung der vorstehend genannten Definition würde das so berechnete Tiefen-zu-Breiten-Verhältnis annähernd Null sein und nicht das charakteristische physikalische Verhalten widerspiegeln. Deshalb ist bei diskret angeordneten Strukturen, die im Wesentlichen nur aus einem "Tal" gebildet sind, die Tiefe des "Tales" zur Breite des "Tales" ins Verhältnis zu setzen.

    [0053] In einer weiteren bevorzugten Ausführungsform wird in dem mindestens einen zweiten Bereich keine Reliefstruktur in das Substrat abgeformt oder mindestens eine zweite Reliefstruktur in das Substrat abgeformt, welche sich von der ersten Reliefstruktur unterscheidet. Auf diese Weise kann genau gesteuert werden, wo die HRI-Schicht erhalten bleiben soll. Außerdem kann durch die Verwendung unterschiedlicher Reliefstrukturen das optische Erscheinungsbild des Mehrschichtkörpers noch komplexer gestaltet werden, was zur Fälschungssicherheit beiträgt.

    [0054] Es ist insbesondere vorteilhaft, wenn die erste Reliefstruktur und die zweite Reliefstruktur so ausgebildet werden, dass durch die Reliefstrukturen bedingt in dem mindestens einen ersten Bereich die Haftung der Schicht auf dem Substrat höher als in dem mindestens einen zweiten Bereich ist, wobei insbesondere die Spatialfrequenz der ersten Reliefstruktur höher als die Spatialfrequenz der zweiten Reliefstruktur ist, das Tiefen-zu-Breiten-Verhältnis der Strukturelemente der ersten Reliefstruktur größer als das Tiefen-zu-Breiten-Verhältnis der Strukturelemente der zweiten Reliefstruktur ist und/oder das Produkt aus Spatialfrequenz und das Tiefen-zu-Breiten-Verhältnis der Strukturelemente der ersten Reliefstruktur größer als das der zweiten Reliefstruktur ist. Auf diese Weise wird im Bereich der ersten Reliefstruktur eine höhere Haftung der HRI-Schicht am Substrat erreicht als im Bereich der zweiten Reliefstruktur und im Weiteren auch ein unterschiedliches optisches variables Erscheinungsbild im ersten und zweiten Bereich.

    [0055] Es ist insbesondere vorteilhaft, wenn die wenigstens eine erste Reliefstruktur und/oder zweite Reliefstruktur als insbesondere ein- oder zweidimensionale diffraktive Gitterstruktur ausgebildet wird, insbesondere mit einer Spatialfrequenz von mehr als 500 Linien/mm, bevorzugt von mehr als 1000 Linien/mm.

    [0056] Die diffraktive Gitterstruktur der zweiten Reliefstruktur wird vorzugsweise mit einer Periode von weniger als 3 µm ausgebildet oder mit einem geringen Aspektverhältnis < 0,1.

    [0057] Bevorzugt wird die wenigstens eine erste und/oder zweite Reliefstruktur als lichtbeugende und/oder lichtbrechende und/oder lichtstreuende und/oder lichtfokussierende Mikro- oder Nanostruktur, als isotrope oder anisotrope Mattstruktur, als binäre oder kontinuierliche Fresrielllinse, als Mikroprismenstruktur, als Blazegitter, als Makrostruktur oder als Kombinationsstruktur aus diesen ausgebildet. Hierdurch lassen sich vielfältige optische Effekte realisieren.

    [0058] Es ist weiter vorteilhaft, wenn vor und/oder nach dem Aufbringen der hochbrechenden Schicht zumindest eine weitere Funktionsschicht insbesondere partiell aufgebracht wird. Unter einer Funktionsschicht wird hier eine solche verstanden, die entweder einen visuell erkennbaren Farb- oder Helligkeitseindruck zeigt oder deren Vorhandensein elektrisch, magnetisch oder chemisch detektiert werden kann. Beispielsweise kann es sich um eine Schicht handeln, die Farbmittel wie farbige Pigmente oder Farbstoffe enthält und bei normalem Tageslicht farbig, insbesondere bunt ist. Es kann sich aber auch um eine Schicht handeln, die spezielle Farbmittel beinhaltet, wie photochrome oder thermochrome Stoffe, lumineszierende Stoffe, einen optisch variablen Effekt erzeugende Stoffe, wie Interferenzpigmente, Flüssigkristalle, metamere Pigmente usw., reaktive Farbstoffe, Indikator-Farbstoffe, welche unter reversibler oder irreversibler Farbänderung mit anderen Stoffen reagieren, Ampelpigmente, welche bei Anregung mittels Strahlung unterschiedlicher Wellenlänge unterschiedliche Farbemissionen zeigen, magnetische Stoffe, elektrisch leitfähige Stoffe, im elektrischen oder magnetischen Feld einen Farbwechsel zeigende Stoffe, sogenannte E-ink® und ähnliches.

    [0059] Vorzugsweise wird die zumindest eine weitere Funktionsschicht als eine Lackschicht oder eine Polymerschicht ausgebildet.

    [0060] Die mindestens eine weitere Funktionsschicht kann auch unter Zugabe von einem oder mehreren farbigen, insbesondere bunten Funktionsschichtmaterialien ausgebildet werden. Es ist ferner möglich, zusätzlich oder alternativ mindestens eine partiell ausgeformte Funktionsschicht als hydrophobe oder hydrophile Schicht auszubilden.

    [0061] Es ist möglich, dass die mindestens eine weitere Funktionsschicht als optisch variable Schicht mit blickwinkelabhängig unterschiedlichem optischem Effekt und/oder als eine metallische Reflexionsschicht und/oder als dielektrische Reflexionsschicht ausgebildet wird.

    [0062] Dabei ist es besonders bevorzugt, wenn die optisch variable Schicht derart ausgebildet wird, dass diese mindestens einen Stoff mit blickwinkelabhängig unterschiedlichem optischem Effekt enthält und/oder durch mindestens eine Flüssigkristallschicht mit blickwinkelabhängig unterschiedlichem optischem Effekt und/oder durch einen Dünnfilm-Schichtstapel mit blickwinkelabhängigem Interferenzfarbeffekt gebildet wird.

    [0063] Bei einer weiteren bevorzugten Ausführungsform wird nach dem Entfernen des Teilbereichs der hochbrechenden Schicht eine weitere Schicht aus einem Material mit einem hohen Brechungsindex aufgetragen. Anschließend kann zumindest ein Teilbereich der Schicht durch Behandlung mit einer Lauge physikalisch wieder vom Substrat entfernt werden, wobei insbesondere eines oder mehrere der vorstehend beschriebenen Verfahren zwei- oder mehrfach angewendet wird. Auf diese Weise werden also Teilbereiche mit unterschiedlicher Schichtdicke der HRI-Schicht geschaffen. Da die Schichtdicke die optischen Eigenschaften der HRI-Schicht, insbesondere deren Reflexionsverhalten bzgl. unterschiedlicher Wellenlängen, beeinflusst, kann auch dies zur Erzeugung verschiedener optischer Effekte genutzt werden. Gegebenenfalls kann nach dem Auftragen der weiteren Schicht auch auf ein Entfernen der Schicht in einem Teilbereich verzichtet werden, so dass sich eine vollflächige Beschichtung mit lokal unterschiedlichen Schichtdicken ergibt.

    [0064] Dabei ist es insbesondere vorteilhaft, wenn der entfernte Teilbereich der hochbrechenden Schicht und der entfernte Teilbereich der weiteren hochbrechenden Schicht sich nicht oder nur teilweise überdecken. Bei einer teilweisen Überdeckung der Teilbereiche können zudem stufenartige Schichtdickengradienten erzeugt werden.

    [0065] Es ist vorteilhaft, wenn die mindestens eine oder eine partiell ausgeformte Funktionsschicht des Mehrschichtkörpers und/oder die mindestens eine partiell ausgeformte Schicht aus einem Material mit hohem Brechungsindex mit einer diffraktiven Reliefstruktur hinterlegt ist und einen holographischen oder kinegraphischen optisch variablen Effekt zeigt.

    [0066] Es ist ferner vorteilhaft, wenn sich die mindestens eine oder eine partiell ausgeformte Funktionsschicht des Mehrschichtkörpers und die mindestens eine partiell ausgeformte HRI-Schicht gegenseitig zu einer dekorativen und/oder informativen geometrischen, alphanumerischen, bildlichen, graphischen oder figürlichen Darstellung ergänzen. Dies trägt besonders zur Fälschungssicherheit des Mehrschichtkörpers bei, da es hierbei nötig ist, dass die Funktionsschicht im Register zu der HRI-Schicht angeordnet ist. Ist dies nicht der Fall, wird die gewünschte Darstellung nicht verwirklicht. Die notwendige Registerhaltigkeit ist jedoch bei Fälschungsversuchen nur schwer oder gar nicht zu erreichen.

    [0067] Vorzugsweise ist die mindestens eine oder eine partiell ausgeformte Funktionsschicht des Mehrschichtkörpers und/oder zumindest die mindestens eine partiell ausgeformte HRI-Schicht als mindestens eine Linie mit einer Linienbreite im Bereich kleiner als 100 µm, insbesondere im Bereich von 5 bis 50 µm ausgebildet, und/oder als mindestens ein Pixel mit einem Pixeldurchmesser im Bereich von kleiner als 100 µm, insbesondere im Bereich von 5 bis 50 µm ausgebildet.

    [0068] Es ist weiter vorteilhaft, wenn die mindestens eine oder partiell ausgeformte Funktionsschicht des Mehrschichtkörpers eine oder mehrere der folgenden Schichten umfasst: eine, insbesondere opake, Metallschicht, eine Schicht enthaltend Flüssigkristalle, einen Dünnfilm-Reflexionsschichtstapel mit blickwinkelabhängigem Interferenzfarbeffekt, eine eingefärbte Lackschicht, eine dielektrische Reflexionsschicht, eine Schicht enthaltend fluoreszierenden oder strahlungsanregbaren Pigment oder Farbstoff. Auch dies ermöglicht ansprechende optische Effekte sowie die Integration zusätzlicher Sicherheitsmerkmale in den Mehrschichtkörper, die beispielsweise nur in bestimmten Spektralbereichen wahrnehmbar bzw. anregbar sind.

    [0069] Bei einer weiteren bevorzugten Ausführungsform sind die mindestens eine oder eine partiell ausgeformte Funktionsschicht des Mehrschichtkörpers und die HRI-Schicht, zumindest unter einem bestimmten Blickwinkel oder unter einer bestimmten Bestrahlungsart gesehen, in Komplementärfarben ausgebildet.

    [0070] Bei einer weiteren bevorzugten Ausführungsform sind die mindestens eine oder eine partiell ausgeformte Funktionsschicht des Mehrschichtkörpers und die HRI-Schicht jeweils derart linienförmig ausgebildet, dass die Linien ohne seitlichen Versatz ineinander übergehen. Auch dies trägt zur Fälschungssicherheit bei, da auch hier bei der Herstellung des Mehrschichtkörpers eine besonders gute Registerhaltigkeit erzielt werden muss.

    [0071] Die Linien gehen dabei vorzugsweise mit einem kontinuierlichen Farbverlauf ineinander über.

    [0072] Bei einer weiteren bevorzugten Ausführungsform bilden die mindestens eine oder eine partiell ausgeformte Funktionsschicht des Mehrschichtkörpers und/oder die Schicht aus einem Material mit hohem Brechungsindex zumindest bereichsweise ein, aus für das menschliche Auge nicht einzeln auflösbaren Pixeln, Bildpunkten oder Linien aufgebautes Rasterbild. Dies ist für ansprechende optische Effekte nutzbar.

    [0073] Eine Rasterung der ersten Schicht ist auch dahingehend möglich, dass neben Rasterelementen, die mit einer Reflexionsschicht unterlegt sind und die - gegebenenfalls unterschiedliche - diffraktive Beugungsstrukturen aufweisen, neben Rasterelementen vorgesehen werden, die transparente Bereiche ohne Reflexionsschicht darstellen. Als Rasterung kann dabei eine amplituden- oder flächenmodulierte Rasterung gewählt sein. Durch eine Kombination von derartigen reflektiven/diffraktiven Bereichen und nicht-reflektiven, transparenten - unter Umständen ebenfalls diffraktiven - Bereichen lassen sich interessante optische Effekte erzielen. Wird ein solches Rasterbild beispielsweise in einem Fenster eines Wertdokuments angeordnet, so ist im Durchlicht ein transparentes Rasterbild erkennbar. Im Auflicht ist dieses Rasterbild nur bei einem bestimmten Winkelbereich sichtbar, in den kein Licht durch die reflektierenden Flächen gebeugt/reflektiert wird. Weiter ist auch möglich, derartige Elemente nicht nur in einem transparenten Fenster einzusetzen, sondern auch auf einen farbigen Aufdruck aufzubringen. Weiterhin ist es auch möglich, dass durch eine entsprechend gewählte Rasterung mehrere in ihrer Reflexionswirkung abnehmende, auslaufende Reflexionsbereiche ausgebildet werden.

    [0074] Vorzugsweise weist der Mehrschichtkörper mindestens eine weitere partiell ausgeformte Schicht aus einem hochbrechenden Material auf.

    [0075] Bei einer weiteren bevorzugten Ausführungsform ist eine erste transparente Abstandshalterschicht zwischen der mindestens einen oder einer partiell ausgeformten Funktionsschicht des Mehrschichtkörpers und der oder der weiteren partiell ausgeformten Schicht ausgebildet.

    [0076] Es ist weiter bevorzugt, wenn die mindestens eine oder eine partiell ausgeformte Funktionsschicht des Mehrschichtkörpers und die HRI-Schicht derart ausgebildet sind, das sich mindestens ein, gegebenenfalls blickwinkelabhängiger, optischer Überlagerungseffekt zeigt.

    [0077] Vorzugsweise ist der Mehrschichtkörper als ein Folienelement, insbesondere als eine Transferfolie, eine Heißprägefolie oder eine Laminierfolie ausgebildet. Es kann sich dabei auch um einen Sicherheitsfaden zum Einbringen oder Aufbringen auf ein Sicherheitspapier oder eine Karte handeln. Dabei weist das Folienelement vorzugsweise auf mindestens einer Seite eine Kleberschicht auf.

    [0078] Bei dem Mehrschichtkörper kann es sich aber nicht nur um ein Folienelement, sondern auch um einen starren Körper handeln.

    [0079] Weiter bildet der Mehrschichtkörper vorzugsweise ein Dekorelement oder Sicherheitselement aus, insbesondere zur Absicherung von Sicherheitsdokumenten, wie beispielsweise Banknoten oder ID-Dokumente. Vorteilhafterweise können auch starre Körper, wie eine Ausweiskarte, eine Grundplatte für ein Sensorelement, Halbleiterchips oder Oberflächen von elektronischen Geräten, beispielsweise eine Gehäuseschale für ein Mobiltelefon, mit einem Mehrschichtkörper der beschriebenen Art versehen werden.

    [0080] Die Erfindung wird anhand der Zeichnungen beispielhaft erläutert.

    [0081] Es zeigen
    Fig. 1
    schematische Schnittdarstellungen von drei unterschiedlichen Vorprodukten zur Herstellung eines Mehrschichtkörpers;
    Fig. 2
    eine schematische Schnittdarstellung eines Ausführungsbeispiels eines Mehrschichtkörpers;
    Fig. 3
    eine schematische graphische Darstellung der Einflüsse auf die Haftung einer HRI-Schicht bei der physikalischen Ablösung mit einer Lauge;
    Fig. 4
    eine schematische Schnittdarstellung durch einen Mehrschichtkörper während verschiedener Stadien der Durchführung eines ersten Ausführungsbeispiels eines Verfahrens zum Erzeugen des Mehrschichtkörpers;
    Fig. 5
    eine schematische Schnittdarstellung durch einen Mehrschichtkörper während verschiedener Stadien der Durchführung eines zweiten Ausführungsbeispiels eines Verfahrens zum Erzeugen des Mehrschichtkörpers;
    Fig. 6
    eine schematische Schnittdarstellung durch einen Mehrschichtkörper während verschiedener Stadien der Durchführung eines dritten Ausführungsbeispiels eines Verfahrens zum Erzeugen des Mehrschichtkörpers;
    Fig. 7-13
    unterschiedliche Design- und Sicherheitselemente, die mittels verschiedener Ausführungsbeispiele eines Verfahrens zum Erzeugen von Mehrschichtkörpern erzeugbar sind;
    Fig. 14
    eine schematische grafische Darstellung der Abhängigkeit der optischen Eigenschaften einer HRI-Schicht von der Schichtdicke;
    Fig. 15
    ein weiteres, mittels eines Ausführungsbeispiels des Verfahrens zum Erzeugen von Mehrschichtkörpem erzeugbares Design- und Sicherheitselement.


    [0082] Fig. 2 zeigt einen Mehrschichtkörper 100. Der Mehrschichtkörper 100 umfasst eine Trägerfolie 1. Auf diese sind eine erste funktionellen Schicht 2 und eine zweite funktionelle Schicht 3 aufgetragen. Die funktionellen Schichten 2, 3 können beispielsweise Ablöseschichten und/oder Schutzschichten sein. Auf der funktionellen Schicht 3 ist eine Replizierschicht 4 angeordnet. Diese weist auf ihrer Oberfläche eine erste Reliefstruktur 5 und eine zweite Reliefstruktur 6 auf. Im Register mit der ersten Reliefstruktur 5 und im teilweisen Register mit der Reliefstruktur 6 ist eine Schicht 7 aus einem hochbrechenden Material (HRI-Schicht) 7 aufgebracht. Die Replizierschicht 4 und die HRI-Schicht 7 sind von einem transparenten Schutzlack 8 abgedeckt.

    [0083] Derartige Mehrschichtkörper 100 können auf verschiedene Arten erzeugt werden. Als Ausgangsprodukt können dabei die in Fig. 1 gezeigten Vorprodukte 100a, 100b, 100c verwendet werden. Das Vorprodukt 100a weist die Trägerfolie 1, die beispielsweise aus PET oder PEN bestehen kann, funktionellen Schichten 2 und 3 und die Replizierschicht 4 auf. Die funktionellen Schichten 2 und 3 bestimmen das Ablöseverhalten der Übertragungslage von der Trägerfolie 1, die Beständigkeit gegenüber Umwelteinflüssen sowie optische Eigenschaften des Mehrschichtkörpers 100. Die funktionellen Schichten 2, 3 können auch so gewählt werden, dass die Trägerfolie 1 am fertigen Mehrschichtkörper 100 verbleibt, so dass eine Laminierfolie erhalten wird.

    [0084] Das Vorprodukt 100b ist eine Variante, bei der die Trägerfolie 1 selbst zur Aufnahme der Reliefstrukturen 5, 6 dient. Dabei kann es sich beispielsweise um eine Folie aus PET, BoPP, PVC oder PC handeln.

    [0085] Das Vorprodukt 100c zeigt eine Trägerfolie 1, die zusammen mit einer als Replizierschicht dienenden zweiten Schicht 4 coextrudiert wurde oder mit einer als Replizierschicht dienenden zweiten Folie 4 laminiert wurde.

    [0086] In allen Varianten beträgt die Dicke der Trägerfolie 6 µm bis 250 µm, vorzugsweise 10 µm bis 75 µm. Die Dicke der funktionellen Schichten und der Replizierschicht zusammen liegt im Bereich von 0,5 µm bis 20 µm, vorzugsweise 1 µm bis 5 µm.

    [0087] Die Replizierschicht 4 ist durch bekannte Verfahren oberflächlich strukturiert. Hierzu wird beispielsweise als Replizierschicht 4 ein thermoplastischer Replizierlack durch Drucken, Sprühen oder Verlacken aufgebracht und eine Reliefstruktur in den Replizierlack mittels eines beheizten Stempels oder einer beheizten Replizierwalze abgeformt.

    [0088] Bei der Replizierschicht 4 kann es sich auch um einen UV-härtbaren Replizierlack handeln, der beispielsweise durch eine Replizierwalze strukturiert ist. Die Strukturierung kann aber auch durch eine UV-Bestrahlung durch eine Belichtungsmaske hindurch erzeugt sein. Auf diese Weise können die Reliefstrukturen 5 und 6 in die Replizierschicht 4 abgeformt sein. Bei den Reliefstrukturen 5 und 6 kann es sich beispielsweise um die optisch aktiven Strukturen eines Hologramms oder eines Kinegram®-Sicherheitsmerkmals handeln.

    [0089] Um die partiellen HRI-Schichten 7 zu erzeugen, wird zunächst vollflächig eine Schicht aus einem hochbrechenden Material auf die Replizierschicht 4 aufgetragen. Bei dem Material kann es sich um Zinksulfid, Niobpentoxid oder Titandioxid handeln. Dies kann beispielsweise durch Bedampfung der Oberfläche der Replizierschicht mit dem Material erfolgen.

    [0090] Die Schichtdicke der HRI-Schicht beträgt vorzugsweise zwischen 25 nm und 500 nm. Die Schichtdicke richtet sich nach den zu erzielenden Eigenschaften, wie beispielsweise eine bestimmte Farbgebung. Dünnere Schichten im Bereich 45 nm bis 65 nm erscheinen farblich eher neutral, währenddem dickere Schichten abhängig von der Dicke ausgeprägte Farbeffekte aufweisen können.

    [0091] In der Folge muss die HRI-Schicht 7 abgetragen werden, so dass sie nur in einem ersten Teilbereich 9 erhalten bleibt und in einem zweiten Teilbereich 10 von der Replizierschicht 4 entfernt wird. Es hat sich dabei herausgestellt, dass eine Behandlung mit einer Lauge zur physikalischen Ablösung der HRI-Schicht 7 führen kann. Dieser Effekt ist insbesondere bei der Verwendung von ZnS für die HRI-Schicht sehr ausgeprägt. Die HRI-Schicht 7 wird dabei durch die Lauge nicht chemisch aufgelöst, sondern platzt auf und kann durch mechanische Einwirkung leicht in Form feiner Flocken entfernt werden. Bereits eine dünne Deckschicht aus einem Lack von einigen 100 nm, welche die Lauge von der HRI-Schicht 7 fernhält, verhindert diesen Effekt.

    [0092] Die Ursache für die physikalische Ablösung der HRI-Schicht 7 liegt in der Struktur der HRI-Schicht 7 begründet. Typischerweise wird die HRI-Schicht 7 bei relativ hohen Auftragsraten aufgedampft (mehr als 1000 nm/min). Die sich bildende HRI-Schicht 7 ist nicht perfekt geschlossen, sondern weist feine Poren auf. Weiterhin liegt keine monokristalline Phase vor, sondern zumindest eine polykristalline oder teilweise amorphe Schicht. Beispielsweise ist ZnS im Wesentlichen nicht in Wasser oder Lauge löslich, was auch auf die aufgedampften HRI-Schicht 7 zutrifft. Lässt man jedoch eine Lauge auf die HRI-Schicht 7 einwirken, so dringt sie zumindest teilweise in die Schicht ein und bildet Zink-Hydroxo-Komplexe. Dadurch wird eine mechanische Spannung in der HRI-Schicht 7 erzeugt, welche zum Abplatzen der HRI-Schicht 7 führen kann. Weiterhin kann durch das Eindringen von Feuchtigkeit in die HRI-Schicht 7 die Zwischenschichthaftung zur Replizierschicht 4 vermindert werden, was das Abplatzen weiter befördert.

    [0093] Fig. 3 zeigt schematisch die Abhängigkeit des Abplatz-Phänomens von der Schichtdicke der HRI-Schicht 7. Angenommen wird dabei eine bestimmte Prozessbedingung (Laugenkonzentration, Zusammensetzung der Lauge, Temperatur, Einwirkdauer etc.). Bei sehr geringen Dicken der HRI-Schicht 7 ist einerseits die mikrokristalline Struktur der aufgedampften Schicht verschieden von der Struktur einer dickeren HRI-Schicht 7 und andererseits kann sich nur beschränkt eine ausreichende mechanische Spannung aufbauen. Für den Prozess des Abplatzens existiert somit eine Untergrenze bezüglich der Dicke der HRI-Schicht 7. Andererseits führen bei dicken Schichten von vielen 100 nm sowohl die mikrokristalline Struktur der HRI-Schicht 7 als auch die Eigenstabilität der HRI-Schicht 7 dazu, dass die HRI-Schicht 7 nicht mehr einfach entfernt werden kann.

    [0094] Fig. 3 veranschaulicht das Haftungsvermögen der HRI-Schicht 7 auf einem Untergrund (typischerweise der Replizierschicht 4) als Funktion der Schichtdicke unter Laugeneinwirkung (Prozesskennlinie 11). Je nach Ausgestaltung der Einflussfaktoren verläuft diese Kurve unterschiedlich. Die Dynamik des Abplatzens wird wesentlich bestimmt durch mechanische Einwirkung auf die HRI-Schicht 7 während oder nach der Laugeneinwirkung. Werden sich bildenden Schuppen mechanisch entfernt, wird ein unkontrolliertes Abplatzen und unerwünschtes Unterwandern der HRI-Schicht 7 durch die Lauge verhindert. Zudem wird verhindert, dass bereits abgelöste Schuppen auf der Replizierschicht verbleiben. Die Prozesskennlinie 12 stellt dar, dass Schichten mit einem Haftungsvermögen unterhalb einer bestimmten Schwelle mechanisch entfernt werden können. Es ergibt sich somit ein Schichtdickenbereich 13, in dem eine Entfernung der HRI-Schicht 7 mit dem beschriebenen Verfahren möglich ist.

    [0095] Der tatsächliche Verlauf der Kennlinie 11 hängt dabei von einer Vielzahl von Einflussfaktoren ab. Von Bedeutung sind zunächst mechanische Eigenschaften und Dicke der Trägerfolie 1.

    [0096] Auch die Replizierschicht 4 hat einen Einfluss auf die Kennlinie 11. Von Bedeutung sind hier insbesondere die chemische Zusammensetzung, eine eventuelle Vorbehandlung der Oberfläche der Replizierschicht, (SiOx, Cr-Bekeimung, Corona, Plasma, Beflammung etc.) und die Gestaltung der Reliefstrukturen 5 und 6 (Spatialfrequenz, Relieftiefe, Tiefen-zu-Breiten-Verhältnis, Profilform der Reliefstruktur etc.).

    [0097] Auch die Art des Auftrags der HRI-Schicht 7, insbesondere durch Bedampfung beeinflusst die Haftung der HRI-Schicht unter Laugeneinfluss. Wesentliche Einflussgrößen sind hier die Aufdampfrate, sowie das für die HRI-Schicht 7 verwendete Material, die Schichtdicke, die Temperatur und Vakuumbedingungen während des Bedampfens, sowie die Bedingungen der vorgenannten Vorbehandlung (beispielsweise Plasma).

    [0098] Schließlich wird die Zwischenschichthaftung noch durch die chemische Zusammensetzung, Konzentration, Temperatur und Einwirkzeit der Lauge auf den Mehrschichtkörper 100 beeinflusst. Auch mechanische Einwirkungen während und/oder nach der Laugenbehandlung, die Struktur der Oberfläche, Spannungen in Trägerfolie 1, sowie verschieden Vorbehandlungstechniken vor der Laugenbehandlung beeinflussen den Verfahrensverlauf.

    [0099] Eine wichtige Zielgröße bei der Einstellung der Verfahrensparameter stellt die Charakteristik des Abplatzens (Größe und Form der gebildeten Flocken, Stabilität von gegebenenfalls mit einem Schutzlack bedeckten Bereichen gegenüber Unterwandern durch die Lauge, Einfachheit des Entfernens der abgeplatzten Flocken etc.) dar, sowie die Selektivität des Einflusses der Reliefstrukturen 5 und 6 auf die Haftung der HRI-Schicht 7.

    [0100] Vorzugsweise werden Laugenkonzentrationen im Bereich 0,01 % - 15 % verwendet. Die weiter bevorzugten Bereiche sind jedoch von der Art der eingesetzten Lauge abhängig, sowie von der verwendeten Verfahrensvariante. Wichtig dabei ist es, dass ein pH-Wert von mehr als 10 eingestellt wird. Als Lauge eignet sich z. B. Metallhydroxide, wie beispielsweise NaOH oder KOH, aber auch Natriumbicarbonat, TMAH (Tetramethylammoniumhydroxid) oder EDTA (Na2EDTA) (Ethylendiamintetraacetat). Die Temperaturen liegen vorzugsweise im Bereich 10° C bis 80° C. Einwirkzeiten können vorzugsweise im Bereich weniger Sekunden liegen aber auch bis zu einige Minuten betragen.

    [0101] Das Ablösen der HRI-Schicht 7 kann durch mechanische Einwirkung unterstützt werden, wie beispielsweise durch Bürsten oder Wischen mit Schwämmen oder einer Wischwalze. Ein starkes Anströmen in einem Bad oder Ansprühen kann dieselbe Wirkung entfalten. Ausserdem kann das Entfernen der HRI-Schicht 7 durch Ultraschall unterstützt werden.

    [0102] Um eine lediglich partielle Ablösung der HRI-Schicht 7 in den Bereichen 10 sicherzustellen, existieren verschiedene Möglichkeiten, die entweder einzeln oder in Kombination anwendbar sind.

    [0103] Eine erste Verfahrensvariante ist in Fig. 4 dargestellt. Gezeigt sind ausschnittsweise Schnittdarstellungen durch einen Mehrschichtkörper 100 während verschiedener Verfahrensschritte. Gezeigt ist jeweils nur die Replizierschicht 4. Auch hier können selbstverständlich noch die Trägerfolie 1 und die funktionellen Schichten 2 und 3 vorhanden sein. Fig. 4A zeigt die Replizierschicht 4, in die mit den oben beschriebenen Techniken bereits die Reliefstrukturen eingebracht wurden. Die Replizierschicht 4 wird nun vollflächig mit der HRI-Schicht 7 bedampft oder besputtert, um das in Fig. 4B gezeigte Zwischenprodukt zu erhalten. Wie Fig. 4C zeigt, wird nun eine Laugenschicht 14 in den Bereichen 10 auf die HRI-Schicht 7 aufgedruckt. Die Lauge kann also nur lokal dort wirken, wo die Laugenschicht 14 in direktem Kontakt mit der HRI-Schicht 7 steht, so dass diese lediglich in den Bereichen 10 von der Oberfläche der Replizierschicht 4 abgelöst wird und in den Bereichen 9 erhalten bleibt. Nach dem Einwirken der Lauge wird diese abgewaschen und die Ablösung der HRI-Schicht 7 in den Bereichen 10 durch Wischen, Bürsten, Ultraschallbehandlung oder Anströmen mit dem Waschmedium unterstützt, so dass schließlich die in Fig. 4D gezeigte Struktur erhalten wird.

    [0104] Zum Aufdrucken der Lauge wird dabei vorzugsweise der Flexodruck oder Tiefdruck verwendet. Mit diesen Druckverfahren lässt sich eine Auflösung (sauber gedruckte Linien positiv wie negativ) der aufgedruckten Laugenschichten 14 von 0,1 nm bis 0,2 mm erreichen. Die erreichbare Registertoleranz der verbleibenden HRI-Schichten 7 in den Bereichen 9 zu den Reliefstrukturen 5 und 6 beträgt etwa 0,5 mm. Die Registertoleranz hängt dabei im Wesentlichen von der verwendeten Drucktechnik ab, sowie von der Maßhaltigkeit des Substrats (d. h. die Widerstandsfähigkeit gegen Verzüge durch thermische und/oder mechanische Einflüsse während der Prozesse) und der eingesetzten Anlagentechnik. So können auch deutlich geringere Registertoleranzen erreicht werden.

    [0105] Um die Lauge druckbar zu machen, können ihr Zuschlagstoffe, wie beispielsweise CaCO3 und/oder Netzmittel beigefügt werden. Für diese Verfahrensvariante ist beispielsweise Natronlauge in einer Konzentration von 15 % verwendbar.

    [0106] Ein zweites Ausführungsbeispiel des Verfahrens ist in Fig. 5 gezeigt.

    [0107] Gezeigt sind ausschnittsweise Schnittdarstellungen durch einen Mehrschichtkörper 100 während verschiedener Verfahrensschritte. Gezeigt ist jeweils nur die Replizierschicht 4. Auch hier können selbstverständlich noch die Trägerfolie 1 und die funktionellen Schichten 2 und 3 vorhanden sein. Fig. 5A zeigt die Replizierschicht 4, in die mit den oben beschriebenen Techniken bereits die Reliefstrukturen eingebracht wurden. Die Replizierschicht 4 wird nun vollflächig mit der HRI-Schicht 7 bedampft oder besputtert, um das in Fig 5B gezeigte Zwischenprodukt zu erhalten. Anschließend wird ein Schutzlack 15 auf die Bereiche 9 aufgedruckt, um dort die HRI-Schicht 7 vor der Laugeneinwirkung zu schützen (Fig. 5C). Bei der nachfolgenden Laugenbehandlung, beispielsweise in einem Bad, löst sich die HRI-Schicht 7 nur in den ungeschützten Bereichen 10 von der Replizierschicht 4 ab, so dass nach Waschen und mechanischer Behandlung auf die geschilderte Art das in Fig. 5D gezeigte Produkt erhalten wird.

    [0108] Zum Aufbringen des Schutzlacks wird vorzugsweise der Flexo-, Offset- oder Tiefdruck verwendet. Mit diesem Druckverfahren lässt sich eine Auflösung des aufgedruckten Schutzlacks von 0,1 mm bis 0,2 mm erreichen. Die erreichbare Registertoleranz der verbleibenden HRI-Schichten 7 in den Bereichen 9 zu den Reliefstrukturen 5 und 6 beträgt etwa 0,1 mm bis 0,2 mm, während eine Registertoleranz zu gegebenenfalls noch vorhandenen Strukturen in den Funktionsschichten von 0,025 mm erreicht werden kann. Die Registertoleranz hängt dabei im Wesentlichen von der verwendeten Drucktechnik ab. Ferner beeinflussen verbleibende Flocken des HRI-Materials an der Druckkante, sowie eine mögliche Unterwanderung der Schutzlackschicht 15 Auflösung und Registerhaltigkeit der verbleibenden HRI-Schichten.

    [0109] Für diese Verfahrensvariante wird als Lauge vorzugsweise Natronlauge mit einer Leitfähigkeit von etwa 30 mS/cm, also mit einem pH-Wert von etwa 13 bei einer Temperatur von 40°C, oder aber Natronlauge mit einer Leitfähigkeit von 80 mS/cm, also einem pH-Wert von etwa 13,5 bei einer Temperatur von 22° C verwendet.

    [0110] Der Schutzlack 15 kann nach dem partiellen Entfernen der HRI-Schicht 7 auf der verbleibenden HRI-Schicht belassen werden, oder aber beispielsweise durch Lösemittelbehandlung wieder entfernt werden. Soll der Schutzlack am Mehrschichtkörper 100 verbleiben, so kann der Schutzlack noch weitere Funktionen übernehmen, beispielsweise als Kleber wirken oder wenigstens eine UV-anregbare oder visuell erkennbare Farbe aufweisen oder als Schutzschicht für weitere Verarbeitungsschritte dienen.

    [0111] Ein drittes Ausführungsbeispiel des Verfahrens ist in Fig. 6 gezeigt. Dargestellt sind ausschnittsweise Schnittdarstellungen durch einen Mehrschichtkörper 100 während verschiedener Verfahrensschritte. Gezeigt ist jeweils nur die Replizierschicht 4. Auch hier können selbstverständlich noch die Trägerfolie 1 und die funktionellen Schichten 2 und 3 vorhanden sein. Fig. 6A zeigt wieder die Replizierschicht 4, in die mit den oben beschriebenen Techniken bereits die Reliefstrukturen eingebracht wurden. Die Replizierschicht 4 wird nun vollflächig mit der HRI-Schicht 7 bedampft oder besputtert, um das in Fig. 6B gezeigte Zwischenprodukt zu erhalten.

    [0112] Es hat sich herausgestellt, dass die Haftung der HRI-Schicht 7 auf der Replizierschicht 4 und insbesondere deren Abplatzverhalten unter Laugeneinwirkung in großem Maße durch die Art der Reliefstrukturen 5, 6 der Replizierschicht 4 beeinflusst wird. So kann die Art der Reliefstrukturen 5, 6 benutzt werden, um das Abplatzverhalten gezielt zu beeinflussen.

    [0113] So zeigt sich, dass insbesondere beugungsoptische Strukturen 5,6 mit hohem Tiefen-zu-Breiten-Verhältnis und/oder einer hohen Spatialfrequenz zu einer deutlich erhöhten Haftung der HRI-Schicht 7 führen. Das Tiefen-zu-Breiten-Verhältnis wird vorzugsweise im Bereich von 0,1 bis 1,0 gewählt. Die Spatialfrequenz beträgt vorzugweise zwischen 1000 und 4000 l/mm.

    [0114] Wird die HRI-Schicht 7 mit Lauge beaufschlagt, so beginnt die HRI-Schicht 7 außerhalb der Bereiche 9 mit hohem Tiefen-zu-Breiten-Verhältnis aufzubrechen und kann mechanisch entfernt werden. Hierbei ist es besonders vorteilhaft, den pH-Wert der Lauge in folgendem Bereich zu wählen: 11 bis 13.

    [0115] Nach diesem Prozessschritt liegt die HRI-Schicht nurmehr in den Bereichen 9 im perfekten Register zu den Reliefstrukturen 5, 6 vor, wie Fig. 6C zeigt. Dabei sind auch sehr filigrane Muster möglich.

    [0116] Für dieses Verhalten dürfte eine Kombination verschiedener Effekte verantwortlich sein. Zunächst führt die vergrößerte Oberfläche im Bereich der Reliefstrukturen 5,6 zu einer erhöhten Zwischenschichthaftung zwischen HRI-Schicht 7 und Replizierschicht 4. Die Fortpflanzung des Abplatzens der HRI-Schicht 7 wird ferner durch die Reliefstrukturen 5, 6 verhindert, indem sie als Sollbruchstellen fungieren. Darüber hinaus wird die Ausgestaltung der laugeninduzierten Spannung in der HRI-Schicht 7 verändert, so dass die das Abplatzen der HRI-Schicht 7 befördernden Kräfte anders verteilt werden. Auch ist die mikrokristalline Struktur der HRI-Schicht 7, die beim Aufdampfen gebildet wird, aufgrund der unterschiedlichen Wandneigungen von Reliefstrukturen 5, 6 und glatten Oberflächen unterschiedlich.

    [0117] Für diesen Prozessschritt haben sich relativ geringe Laugenkonzentrationen bewährt. Für NaOH als Lauge wurden Konzentrationen von etwa 0,02 - 0,06 %, also ein pH-Wert von etwa 12,1 bis 12,8, und eine Temperatur von etwa 35 - 55° C als vorteilhaft ermittelt. Bei hohen Konzentrationen (> 0.5 %) erfolgt das Abplatzen der HRI-Schicht 7 weniger kontrolliert und es können auch Ausbrüche in den zu erhaltenden Bereichen 9 auftreten.

    [0118] Wichtig für ein präzises Ausbrechen der HRI-Schicht 7 ist eine geeignete mechanische Einwirkung. Durch das Entfernen bereits kleiner Flocken wird die Fortpflanzung des Abplatzens kontrolliert. Bewährt haben sich Sprühdüsen (kontinuierlich oder gepulst), Ultraschall, aber auch in verschiedene Richtungen drehende Schrubbwalzen (Bürsten, Tücher, Schwämme) oder Vorrichtungen nach Art eines Schwingschleifers.

    [0119] Besonders gut zur Erhöhung der Haftung der HRI-Schicht 7 an der Replizierschicht 4 bewährt haben sich Reliefstrukturen 5, 6 in Form von Gitterstrukturen (1-dimensional oder 2-dimensiönal) mit Perioden im Bereich < 3 µm. Die Profilformen der Gitterstrukturen können sinusförmig, rechteckförmig oder dreieckförmig sein aber auch komplexere Profilformen aufweisen. Weiterhin ist das Aspektverhältnis bevorzugt größer als 0,1 und insbesondere größer als 0,15.

    [0120] Neben geordneten Gitterstrukturen erhöhen auch stochastische Mikrostrukturen, beispielsweise Mattstrukturen, in den Reliefstrukturen 5, 6 die Zwischenschichthaftung besonders gut.

    [0121] Fig. 7 zeigt eine Mehrzahl von Motiven 16a - 16e, die mittels des oben beschriebenen 2. Ausführungsbeispiels des Verfahrens erzeugt wurden. Auf eine replizierte und vollflächig mit ZnS bedampfte Replizierschicht 4 wurde ein Schutzlack 15 mittels Tiefdruck aufgebracht. Die schwarz gefärbten Bereiche der Motive 16a - e zeigen dabei den Schutzlack 15. Das Entfernen der HRI-Schicht 7 außerhalb der überdruckten Bereiche erfolgt durch eine Einwirkung in einem Laugenbad und anschließendem Abspülen mittels Sprühdüsen und Wischen mittels Bürsten.

    [0122] Je nach verwendetem Drucklack 15, Druckverfahren und Prozessführung zum Entfernen der HRI-Schicht 7 sind ggf. gewisse Einschränkungen zu berücksichtigen. So hat es sich herausgestellt, dass eine negative (nicht bedruckt) Flächenausdehnung mindestens 0,8 mm und eine positive (bedruckt) Flächenausdehnung mindestens 0,4 mm betragen muss. Je nach Prozessführung können diese Werte jedoch auch deutlich unterschritten werden. Kleine Sujets in den Motiven 16a - e müssen miteinander verbunden sein und dürfen nicht frei stehen, da sonst die Gefahr des Ausbrechens der HRI-Schicht 7 besteht. Das beschriebene Ausführungsbeispiel ist daher nicht für feinziselierte Sujets geeignet. Dies trifft bei den gezeigten Motiven 16a - e insbesondere auf die Motive 16a und 16b zu. Für diese sind die weiteren hier beschriebenen Verfahren besser geeignet.

    [0123] Der Drucklack 15 kann neben dem Schutz der HRI-Schicht 7 vor der Laugeneinwirkung noch weitere Funktionen erfüllen. Beispielsweise kann der Schutzlack 15 als Haftvermittler zwischen HRI-Schicht 7 und einer Kleberschicht dienen. Auch eine zusätzliche Funktion als eine mechanisch stabilisierende Schicht um eine Degradation des visuellen Eindrucks der optischen Effekte beim Applizieren auf ein Substrat oder Laminieren in einem Schichtverbund (beispielsweise bei Kunststoffkarten aus Polykarbonat, PET oder PVC) zu vermeiden, ist möglich. Der Schutzlack 15 kann ferner als Kleber für das nachfolgende Aufbringen des Mehrschichtkörpers 100 auf ein Substrat oder Einbringen in einen Schichtverbund dienen.

    [0124] Der Drucklack 15 kann ein physikalisch trocknendes, chemisch vernetzendes oder mittels Strahlung, insbesondere ultravioletter oder Elektronenstrahlung, gehärtetes System sein.

    [0125] Weiterhin kann der Drucklack 15 mittels Farbstoffen oder Pigmenten eingefärbt sein, um den Kontrast und die Erkennbarkeit der optischen Effekte der HRI-Schicht 7 zu verbessern. Der Drucklack 15 kann jedoch auch hier, wie beschrieben, wieder entfernt werden.

    [0126] Fig. 8 zeigt einen Mehrschichtkörper 100, der nach einem vierten Ausführungsbeispiel des Verfahrens gefertigt wurde und welcher als KINEGRAM® TKO zum Schutz der Datenseiten eines Passes dient. Ein KINEGRAM®TKO ist eine transparente Schutzschicht mit Sicherheitsmerkmalen, die als Folienlaminat oder als Transferelement auf ein Substrat aufgebracht wird.

    [0127] In diesem Ausführungsbeispiel wird ebenfalls, wie bereits beschrieben, die Replizierschicht 4 mit den Reliefstrukturen 5, 6 versehen und vollflächig mit Bedampfung mit ZnS, um die HRI-Schicht 7 zu bilden. Anschließend wird die HRI-Schicht 7 vollflächig mit einem Photoresist beschichtet. Der Auftrag kann jedoch auch nur partiell erfolgen, beispielsweise mittels eines Druckverfahrens. Dies bietet sich insbesondere in jenen Fällen an, wenn größere Bereiche ohne HRI-Schicht 7 erzeugt werden sollen.

    [0128] Bei dem Photoresist kann es sich beispielsweise um einen positiven Photoresist, wie AZ 1512 oder AZ P4620 von Clariant oder S1822 von Shipley, handeln, welcher in einer Flächendichte von 0,1 g/m2 bis 50 g/m2 auf die erste Schicht 3m aufgebracht wird. Die Schichtdicke richtet sich nach der gewünschten Auflösung und dem Prozess. Bevorzugte Flächengewichte liegen im Bereich von 0,2 g/m2 bis 10 g/m2.

    [0129] Nach dem Auftrag wird der Photoresist mittels einer Maske belichtet, wobei eine der funktionellen Schichten 2 und 3 als Maske dienen kann, beispielweise wenn diese Schichten 2, 3 eine entsprechende Modifizierung, Einfärbung oder Pigmentierung enthalten, die als Maskierung einer Belichtungswellenlänge dienen kann, und die belichteten Bereiche des Photoresists durch Entwickeln entfernt. Anschließend wird die HRI-Schicht 7 in denjenigen Bereichen, in denen der Photoresist entfernt wurde, mit Lauge behandelt, wobei der verbliebene Photolack als Schutzschicht gegenüber der Lauge dient. Die HRI-Schicht 7 wird also nur in den Bereichen entfernt, in denen der Photoresist belichtet wurde und/oder im Falle eines partiellen Drucks nicht aufgebracht wurde.

    [0130] Der Photoresist kann analog zum Schutzlack 15 die dort beschriebenen weiteren Funktionen übernehmen, optional jedoch auch in einem weiteren Verfahrensschritt wieder entfernt werden.

    [0131] Die Fig. 8 zeigt eine schematische Darstellung des Mehrschichtkörpers 100 für Passanwendungen in Aufsicht. Die schwarz dargestellten Bereiche 9 zeigen eine vollflächige Bedeckung mit der HRI-Schicht 7, währenddem in den weiß dargestellten Bereichen 10 die HRI-Schicht 7 komplett entfernt ist. Grau dargestellte Bereiche (Weltkarte 17, Portrait 18) zeigen eine partielle Flächenbelegung mit der HRI-Schicht 7 unterhalb des Auflösungsvermögens des menschlichen Auges. In der stilisierten Weltkarte in der Form eines 2-dimensionalen feinen Rasters und im Portrait 18 in der Form einer Mikroschrift mit lokal variierender Strichstärke.

    [0132] Bei diesem beispielhaften Verfahren wird insbesondere die hohe Auflösung ausgenutzt, die bei einer Photostrukturierung mittels eines Photoresists erreicht werden kann. So können beispielsweise Photolacke mit bis zu sub-Mikrometer-Auflösung strukturiert werden, wobei die realisierbare Auflösung wesentlich durch die Dicke des Photolacks, die Auflösung der Belichtungsmaske und die Prozessführung bestimmt sind. Durch die binäre Ausgestaltung des Photoresists als Schutzlack kann durch geeignete Prozessführung auch eine hohe Auflösung der partiellen -HRI-Schicht 7 sichergestellt werden. Insbesondere kann mit dem beschriebenen Verfahren eine Auflösung der HRI-Schicht 7 von 0,03 mm oder besser erreicht werden. Die erreichbare Registertoleranz zu Reliefstrukturen 5, 6 beträgt etwa 0.1 - 0,3 mm, während die Registertoleranz der HRI-Schicht 7 zu weiteren Funktionsschichten, sofern der Photoresist selbst als Funktionsschicht verbleibt oder die funktionellen Schichten 2, 3 als Maske verwendet werden, von 0,01 mm oder besser erreicht werden kann.

    [0133] Weiterhin ist es möglich, eine individuelle Kennzeichnung, zum Beispiel eine fortlaufenden Nummer, einzubringen. Hierzu wird der Photoresist durch einen Laser oder eine steuerbare Maske belichtet.

    [0134] Weiterhin kann der Photoresist auch ein- oder mehrfarbig eingefärbt (beispielsweise mittels gelösten Farbstoffen oder Pigmenten) sein, um den Kontrast und die Erkennbarkeit zu verbessern oder auch um als weiteres Sicherheitselement zu dienen.

    [0135] Zur partiellen Entfernung der HRI-Schicht wird in diesem Ausführungsbeispiel Natronlauge mit einer Leitfähigkeit von etwa 12 mS/cm, also einem pH-Wert von etwa 12,6, bei einer Temperatur von 45° C verwendet. Unter diesen Bedingungen kann die Natronlauge gleichzeitig zur Entwicklung, bzw. zur Entfernung des belichteten Photoresists dienen, so dass sich eine besonders einfache Verfahrensführung ergibt.

    [0136] Fig. 9 zeigt ein weiteres Ausführungsbeispiel eines Mehrschichtkörpers 100, der mittels des oben beschriebenen zweiten Ausführungsbeispiels des Verfahrens herstellbar ist. Der Mehrschichtkörper 100 weist wieder ein Kinegram® auf und dient zum Schutz der Datenseiten eines Passes.

    [0137] Wiederum zeigen die schwarz eingefärbten Bereiche 9 eine vollflächige Bedeckung mit der HRI-Schicht 7 an, währenddem in den weißen Bereichen 10 die HRI-Schicht 7 komplett entfernt ist. In der rechten oberen Ecke findet sich ein Rechteck, in dem großflächig die HRI-Schicht 7 entfernt wurde. In diesem Bereich wurde die HRI-Schicht 7 entfernt, um eine hohe Transparenz für UV-Strahlung bei einer Wellenlänge von 254 nm sicherzustellen. Auf der zu schützenden Datenseite des Passes befinden sich in dieser Region UV-aktive Pigmente, die zur Überprüfung bei dieser Wellenlänge angeregt werden sollen.

    [0138] In diesem rechteckförmigen Bereich finden sich zudem vier Schriftzüge "VALID", die jeweils eine HRI-Schicht 7 aufweisen. Jeder der Schriftzüge ist im Register hinterlegt mit einer anderen, unter UV-Bestrahlung (z. B. 365 nm) fluoreszierenden Farbe, z. B. rot, grün, gelb & blau. Der jeweilige Schutzlack 15, welcher verwendet wurde, um die HRI-Schicht 7 vor der Lauge zur Entfernung der HRI-Schicht 7 zu schützen, weist jeweils somit eine weitere Funktion auf und liegt im Register zur HRI-Schicht 7 vor. Nur in diesen Bereichen mit HRI-Schicht 7 sind auch die in der Replizierschicht 4 abgeformten diffraktiven Strukturen optisch aktiv.

    [0139] Die zusätzlichen Funktionen des Schutzlacks 15 können unterschiedlich sein. Beispielsweise kann hier der Schutzlack 15 mit UV-aktiven Pigmenten versehen sein, Nanopartikel oder Upconverter aufweisen. Es kann sich aber auch um einen Schutzlack 15 mit OVI-Pigmenten, mit thermo- oder photochromen Farbstoffen handeln. Ferner kann der Schutzlack 15 auch im visuellen Bereich eingefärbt sein.

    [0140] Der Schutzlack kann durch verschiedenste Druckverfahren aufgebracht werden, z. B. mittels Tiefdruck, Offset-, Flexo- oder Siebdruck. Weiterhin ist ein Druck mittels Digitaldruck, beispielsweise Inkjet, möglich, wobei dabei insbesondere eine individuelle Kennzeichnung aufgebracht werden kann, die sich auch in der partiellen Ausgestaltung der HRI-Schicht 7 zeigt.

    [0141] Besonders vorteilhaft sind Kombinationen verschiedener Drucktechniken und -farben.

    [0142] Fig. 10 zeigt einen Mehrschichtkörper 100 mit einem Kinegram® für eine Kartenanwendung. Dargestellt sind die linienförmigen Designelementen mit typischen Linienbreiten um 50 µm. Der Hintergrund weist keine Strukturen auf und ist im Wesentlichen ein Spiegel. Zur Herstellung dieses Ausführungsbeispiels des Mehrschichtkörpers 100 eignet sich insbesondere die oben beschriebene dritte Ausführungsvariante des Verfahrens, d. h. die HRI-Schicht 7 wird anhand der in die Replizierschicht 4 eingebrachten Strukturen - hier der linienförmigen Designelemente - ohne die Verwendung eines Schutzlacks 15 oder Photoresists strukturiert. Für das hier gezeigte Ausführungsbeispiel sind die oben angeführten Prozessparameter geeignet. Zu den Vorteilen dieses Beispiels gehören die sehr hohe Registerhaltigkeit der HRI-Schicht zum diffraktiven Design, währenddem in den von der HRI-Schicht entfernten Bereichen eine ungehinderte Sicht auf das Substrat besteht.

    [0143] Fig. 11 zeigt ein weiteres Ausführungsbeispiel eines Mehrschichtkörpers 100, der ein Kinegram® für eine Kartenanwendung umfasst. Die grau hinterlegte Fläche 9 wurde gemäß dem oben beschriebenen zweiten Ausführungsbeispiel des Verfahrens durch einen Drucklack 15 geschützt und weist eine vollflächige HRI-Schicht 7 auf. Die schwarzen geschwungenen Linien 19 weisen beugungsoptische Strukturen auf. Im zentralen Rechteck 10 fehlt die HRI-Schicht 7 im Hintergrund ohne beugungsoptische Strukturen komplett, jedoch sind die diffraktiven Strukturen der geschwungenen Linien 19 im perfekten Register mit einer HRI-Schicht 7 hinterlegt. Die Laugenbehandlung erfolgte in diesem Ausführungsbeispiel mit NaOH bei einer Leitfähigkeit von 2 mS/cm, also einem pH-Wert von etwa 11,9, und einer Temperatur von 45° C.

    [0144] Einem Betrachter erschließt sich das KINEGRAM® vollständig ohne Unterbrechungen über die gesamte Fläche. Im Hintergrund des zentralen Rechtecks ist jedoch keine HRI-Schicht 7 vorhanden und erlaubt eine ungehinderte Sicht auf das Substrat.

    [0145] Diese Kombination kann auch angewendet werden, um Teilbereiche eines KINEGRAM®, deren HRI-Schicht 7 aufgrund der in diesen Bereichen vorliegendenden Strukturen einer Laugeneinwirkung nicht widerstehen, gezielt zu schützen, währenddem die restlichen Bereiche die HRI-Schicht 7 im Register zu den beugungsoptischen Strukturen aufweisen.

    [0146] Fig. 12 zeigt eine weitere Ausführungsform eines Mehrschichtkörpers 100 mit einem KINEGRAM®TKO für eine Kartenanwendung. Die gesamte Fläche weist beugungsoptische Strukturen auf, wobei nur ein Teilbereich 20 (Kreis mit Buchstabe K) dargestellt ist. In diesem Bereich finden sich hochfrequente lineare Gitterstrukturen, welche eine Beugungsstruktur Nullter Ordnung ausbildet.

    [0147] Um einen optimalen optischen Effekt zu erzeugen, soll die Schichtdicke der HRI-Schicht 7 im Bereich 20 der Beugungsstruktur Nullter Ordnung relativ groß sein, sodass eine vollflächig aufgebrachte HRI-Schicht 7 dieser Dicke in den umliegenden Bereichen aufgrund der Interferenz in der HRI-Schicht 7 zu einer störenden Farbgebung führen würde. Auch die Diffraktionsefflzienz anderer Strukturen zur Erzeugung von Effekten in erster oder höherer Beugungsordnung (Regenbogeneffekte, aber auch beispielsweise diffraktive Strukturen zur Erzeugung makroskopischer Reliefeffekte) kann sinken. Ein optimal ausgestaltetes Merkmal für die Karte soll somit im Bereich 20 des Kreises eine gegenüber dem weiteren Bereich 21 erhöhte Schichtdicke aufweisen, jedoch nur dort. Vorzugsweise beträgt die Schichtdicke im Bereich 20 dabei 70 nm bis 200 nm.

    [0148] Um eine solche HRI-Schicht 7 mit variierender Schichtdicke zu erzeugen, wird in einem ersten Schritt auf die Replizierschicht 4 eine HRI-Schicht 7 mit einer Schichtdicke aufgebracht, welche der Zieldifferenz der beiden Dicken in den beiden Bereichen 20, 21 entspricht. Unter Ausnutzung der höheren Hafteigenschaft der hochfrequenten Gitterstruktur, also gemäß der oben beschriebenen dritten Ausführungsform des Verfahrens, wird diese erste HRI-Schicht 7 in den umliegenden Bereich 21 registerhaltig entfernt. In einem zweiten Schritt wird anschließend vollflächig eine zweite Bedampfung mit HRI-Material durchgeführt, so dass sowohl im Hintergrund 21 als auch im Kreis 20 die jeweils optimale Schichtdicke erzielt wird.

    [0149] Gegebenenfalls kann auch ein mehrfach wiederholtes Auftragen und Entfernen von HRI-Schichten 7 erfolgen, um eine Mehrzahl von Bereichen mit jeweils unterschiedlichen Schichtdicken der HRI-Schicht 7 zu schaffen.

    [0150] Fig. 13 zeigt eine weitere Ausführungsform eines Mehrschichtkörpers 100 mit einer HRI-Schicht 7 mit lokal unterschiedlicher Schichtdicke. Der Mehrschichtkörper 100 umfasst wiederum ein KINEGRAM®TKO für eine Kartenanwendung. Nur durch lokal unterschiedliche Ausgestaltung der Schichtdicke der HRI-Schicht erscheint in Reflexion der Schriftzug "VALID" 22 in einer vorbestimmten Interferenz-Farbe, während der Hintergrund 23 weiterhin farbneutral wirkt.

    [0151] Die Schichtdicke der HRI-Schicht 7 bestimmt den Farbeindruck, welche ein Betrachter in Reflexion erkennt. Der Zusammenhang zwischen Schichtdicke und Farbeindruck ist in Fig. 14 graphisch dargestellt. Die drei Graphen zeigen dabei simulierte Lab-Werte in Reflexion unter D65-Beleuchtung und einem normierten Betrachter (10°, CIE1964).

    [0152] Bei sehr geringen Schichtdicken von 10 nm bis 40 nm erscheint die HRI-Schicht 7 bläulich. Standarddicken um ca. 55 nm sind typischerweise so gewählt, dass das Erscheinungsbild farbneutral ist. Nimmt die Schichtdicke weiter zu, können im Dickenbereich von 65 nm bis zu mehreren 100 nm verschiedene Farbeindrücke (gelb, orange, grün, blau etc.) erzeugt werden. Die oben beschriebenen Verfahren erlauben nun, Bereiche mit gezielt unterschiedlichen Farbeindrücken zu erzeugen.

    [0153] In einem ersten Schritt wird eine HRI-Schicht 7 mit einer ersten Schichtdicke vollflächig aufgebracht und im Hintergrund 23 des VALID-Schriftzugs 22 wieder entfernt. Durch das vollflächiges Aufdampfen einer zweiten HRI-Schicht 7 wird erreicht, dass im Schriftzug 22 die Addition beider Schichtdicken vorliegt und im Hintergrund 23 die gewünschte farbneutrale Schichtdicke.

    [0154] Der Farbeindruck in Reflexion dient als zusätzliches Sicherheitsmerkmal zur Verifikation der Echtheit. Im Gegensatz zu einer nur aufgedruckten Farbe ist der Farbeindruck aufgrund der Dicke der HRI-Schicht 7 hauptsächlich in Reflexion zu erkennen. Die Farbgebung kann weiter durch Aufbringen einer Metallschicht, wie z. B. einer Chromschicht, verändert werden. Bei sehr dünnen Ausgestaltungen der Metallschichten von wenigen Nanometern bildet sich keine geschlossene Schicht aus, so dass solche Metallschichten keinen Schutz gegenüber der Laugeneinwirkung darstellen. Solche Schichten können somit zusammen mit einer darunter liegenden HRI-Schicht 7 entfernt werden. Bei dickeren Metallschichten kann in einem ersten Schritt die Metallschicht entfernt und anschließend die Metallschicht als Maske für das Entfernen der darunterliegenden HRI-Schicht 7 verwendet werden.

    [0155] Fig. 15 zeigt schematisch ein weiteres Motiv 24 für einen Mehrschichtkörper 100, welches mittels der oben beschriebenen Verfahren erzeugt werden kann. Das Motiv 24 umfasst eine Kombination von metallischen Bereichen und Bereichen mit einer HRI-Schicht 7, welche passergenau zueinander partiell strukturiert sind. Zunächst wird zur Herstellung des Motivs 24, wie auf der linken Seite von Fig. 15 gezeigt, eine Anordnung 25 von einer HRI-Schicht 7 und einer Metallschicht 26 durch Aufdampfen auf ein Substrat geschaffen. Diese Anordnung kann beispielsweise durch partielles Aufdampfen oder durch vollflächiges Aufdampfen und partielles Strukturieren der beiden Schichten erfolgen. Anschließend wird, wie in der Mitte von Fig. 15 gezeigt, der Schutzlacks 15 in dem dargestellten Druckbild aufgetragen. Nach Laugenbehandlung ergibt sich das rechts in der Figur dargestellte Motiv 24.

    [0156] Da nur ein einziger Druckschritt erfolgt und die von dem Schutzlack 15 nicht geschützten Bereiche der Metallschicht 26 und HRI-Schicht 7 gleichzeitig durch die Laugenbehandlung entfernt werden, sind die Übergänge zwischen metallischer Reflexionsschicht 26 und HRI-Schicht 7 perfekt aufeinander abgestimmt. Lässt sich die Metallschicht nicht durch eine Lauge strukturieren, können auch zwei getrennte Behandlungen mit unterschiedlichen Medien erfolgen. Die Schichten 7, 26 können dabei nebeneinander angeordnet sein oder sich auch überlappen.

    [0157] Die Laugenbehandlung erfolgt in diesem Ausführungsbeispiel mit Natronlauge mit einer Leitfähigkeit von 12 mS/cm, also einem pH-Wert von etwa 12,7, bei einer Temperatur von 45° C. Alternativ kann Natronlauge mit einer Leitfähigkeit von 5 mS/cm, also einem pH-Wert von etwa 12,3, bei 55° C, oder auch Kalilauge mit einer Leitfähigkeit von 20 mS/cm, also einem pH-Wert von ca. 13, bei einer Temperatur von 30° C verwendet werden.

    Bezugszeichenliste



    [0158] 
    1
    Trägerfolie
    2
    funktionelle Schicht
    3
    funktionelle Schicht
    4
    Replizierschicht
    5
    Reliefstruktur
    6
    Reliefstruktur
    7
    HRI-Schicht
    8
    transparenter Schutzlack
    9
    Bereich
    10
    Bereich
    11
    Prozesskennlinie
    12
    Kennlinie
    13
    Dickenbereich
    14
    Laugenschicht
    15
    Schutzlack
    16
    Motiv
    17
    Weltkarte
    18
    Portrait
    19
    Linie
    20
    Bereich
    21
    Hintergrund
    22
    Schriftzug
    23
    Hintergrund
    24
    Motiv
    25
    Anordnung
    26
    Metallschicht
    100
    Mehrschichtkörper



    Ansprüche

    1. Verfahren zum Herstellen eines Mehrschichtkörpers (100), bei welchem eine HRI-Schicht (7), welche aus einem Material mit hohem Brechungsindex, insbesondere aus der Gruppe Zinksulfid, Niobpentoxid, Titandioxid, besteht, zumindest teilflächig auf ein Substrat (4) aufgebracht wird und anschließend zumindest ein Teilbereich (10) der Schicht (7) durch Behandlung mit einer Lauge physikalisch wieder vom Substrat (4) entfernt wird, wobei sich die Schicht durch eine solche Laugenbehandlung nicht chemisch in der Lauge löst und wobei ein pH-Wert der Lauge mindestens 10, bevorzugt von 10,5 bis 14, beträgt und die Behandlung mit der Lauge bei einer Temperatur von 10°C bis 80°C erfolgt, und wobei zumindest ein weiterer Teilbereich der Schicht (7) auf dem Substrat verbleibt.
     
    2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Lauge aus der Gruppe Natriumhydroxid, Kaliumhydroxid, Natriumbicarbonat, Tetramethylammoniumhydroxid, Natrium-Ethylendiamintetraacetat ausgewählt wird.
     
    3. Verfahren nach einem der Ansprüche 1 oder 2,
    dadurch gekennzeichnet,
    dass während und/oder nach der Behandlung mit der Lauge eine mechanische Behandlung der HRI-Schicht (7) zur Unterstützung des Ablösens der HRI-Schicht (7) erfolgt, wobei die mechanische Behandlung insbesondere ein Bürsten und/oder ein Wischen mit einem Schwamm und/oder einer Wischwalze und/oder eine Ultraschallbehandlung und/oder ein Anströmen und/oder ein Besprühen der HRI-Schicht (7) mit einer Flüssigkeit umfasst.
     
    4. Verfahren nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    dass vor der Behandlung mit der Lauge eine Maskenschicht (15) zum Schutz zumindest eines nicht zu entfernenden Teilbereichs (9) der HRI-Schicht (7) insbesondere durch Drucken, insbesondere durch Tiefdruck, Offsettdruck, Flexodruck, Siebdruck oder Tintenstrahldruck eines Schutzlacks (15) auf die HRI-Schicht (7) aufgebracht wird, wobei der Schutzlack (15) ein physikalisch trocknender oder chemisch vernetzender oder strahlungshärtender Lack ist und/oder Pigmente und/oder Farbstoffe und/oder UV-aktivierbare Pigmente und/oder Nanopartikel und/oder Upconverter und/oder thermochrome . Farbstoffe und/oder photochrome Farbstoffe umfasst.
     
    5. Verfahren nach Anspruch 4,
    dadurch gekennzeichnet,
    dass die Maskenschicht durch vollflächiges oder partielles Auftragen eines positiven Photoresists, Belichten des zu entfernenden Teilbereichs (10) der HRI-Schicht (7) und Entfernen des belichteten Photoresists oder durch vollflächiges oder partielles Auftragen eines negativen Photoresists, Belichten des nicht zu entfernenden Teilbereichs (9) der HRI-Schicht (7) und Entfernen des nicht belichteten Photoresists gebildet wird, wobei jeweils ein Photoresist verwendet wird, der Farbstoffe und/oder Pigmente und/oder UV-aktivierbare Pigmente und/oder Nanopartikel und/oder Upconverter und/oder thermochrome Farbstoffe und/oder photochrome Farbstoffe enthält.
     
    6. Verfahren nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet,
    dass die Lauge auf den zu entfernenden Teilbereich (10) der HRI-Schicht (7) insbesondere durch Flexodruck oder Tiefdruck aufgedruckt wird, wobei insbesondere eine Lauge verwendet wird, die zumindest ein Zuschlagmittel zum Erhöhen der Viskosität und/oder zumindest ein Netzmittel enthält, wobei als Zuschlagmittel insbesondere Calciumcarbonat, Kaolin, Titandioxid, Aerosil oder Siliciumdioxid verwendet wird.
     
    7. Verfahren zum Herstellen eines Mehrschichtkörpers (100), insbesondere nach einem der vorgehenden Ansprüche, bei welchem in zumindest einem ersten Bereich eines oder des Substrats (4) wenigstens eine erste Reliefstruktur (5) in eine erste Oberfläche des Substrats (4) abgeformt wird, anschließend eine HRI-Schicht (7) oder die HRI-Schicht (7), welche aus einem Material mit hohem Brechungsindex besteht, zumindest teilflächig auf die erste Oberfläche des Substrats (4) aufgebracht wird, derart, dass die HRI-Schicht (7) den zumindest einen ersten Bereich und zumindest einen zweiten Bereich des Substrats (4), in welchem die erste Reliefstruktur (5) nicht in die erste Oberfläche des Substrats (4) abgeformt ist, zumindest bereichsweise überdeckt, und anschließend ein Teilbereich (10) der HRI-Schicht (7) durch Behandlung mit einer Flüssigkeit in Form von Wasser oder einer Lauge physikalisch wieder vom Substrat (4) derart entfernt wird, dass die HRI-Schicht (7) in dem den zumindest einen zweiten Bereich überdeckenden Teilbereich (10) entfernt wird und in dem den zumindest einen ersten Bereich überdeckenden Teilbereich (9) auf dem Substrat (4) verbleibt, wobei sich die Schicht durch eine Laugenbehandlung nicht chemisch in der Lauge löst und wobei die erste Reliefstruktur (5) insbesondere mit einem Tiefen-zu-Breiten-Verhältnis der einzelnen Strukturelemente von mehr als 0,1, insbesondere mehr als 0,15, bevorzugt von mehr als 0,2 ausgebildet wird, wobei die Zwischenschichthaftung der HRI-Schicht (7) und der Oberfläche im glatten zweiten Bereich gerade nicht mehr ausreicht, um die HRI-Schicht (7) an der Oberfläche zu halten, während die größere Zwischenschichthaftung im ersten Bereich die HRI-Schicht (7) an die Oberfläche bindet.
     
    8. Verfahren nach Anspruch 7,
    dadurch gekennzeichnet,
    dass in dem mindestens einen zweiten Bereich keine Reliefstruktur in das Substrat (4) abgeformt wird oder mindestens eine zweite Reliefstruktur (6) in das Substrat (4) abgeformt wird, welche sich von der ersten Reliefstruktur (5) unterscheidet, wobei die erste Reliefstruktur (5) und die zweite Reliefstruktur (6) insbesondere so ausgebildet werden, dass durch die Reliefstrukturen (5, 6) bedingt in dem mindestens einen ersten Bereich die Haftung der Schicht (7) auf dem Substrat (4) höher als in dem mindestens einen zweiten Bereich ist, wobei insbesondere die Spatialfrequenz der ersten Reliefstruktur (5) höher als die Spatialfrequenz der zweiten Reliefstruktur (6) ist, das Tiefen-zu-Breiten-Verhältnis der Strukturelemente der ersten Reliefstruktur (5) größer als das Tiefen-zu-Breiten-Verhältnis der Strukturelemente der zweiten Reliefstruktur (6) ist und/oder das Produkt aus Spatialfrequenz und das Tiefen-zu-Breiten-Verhältnis der Strukturelemente der ersten Reliefstruktur (5) größer als das der zweiten Reliefstruktur (6) ist.
     
    9. Verfahren nach einem der Ansprüche 7 oder 8,
    dadurch gekennzeichnet,
    dass die wenigstens eine erste Reliefstruktur (5) und/oder zweite Reliefstruktur (6) als insbesondere ein- oder zweidimensionale diffraktive Gitterstruktur ausgebildet wird, insbesondere mit einer Spatialfrequenz von mehr als 1000 Linien/mm, bevorzugt von mehr als 1500 Linien/mm, und/oder dass die diffraktive Gitterstruktur der zweiten Reliefstruktur (6) mit einer Periode von weniger als 3 µm ausgebildet wird, und/oder dass die wenigstens eine erste (5) und/oder zweite Reliefstruktur (6) als lichtbeugende und/oder lichtbrechende und/oder lichtstreuende und/oder lichtfokussierende Mikro- oder Nanostruktur, als isotrope oder anisotrope Mattstruktur, als binäre oder kontinuierliche Fresnelllinse, als Mikroprismenstruktur, als Blazegitter, als Makrostruktur oder als Kombinationsstruktur aus diesen ausgebildet wird.
     
    10. Verfahren nach einem der Ansprüche 1 bis 9,
    dadurch gekennzeichnet,
    dass vor und/oder nach dem Aufbringen der HRI-Schicht (7) zumindest eine weitere funktionelle Schicht (2, 3) aufgebracht wird, die insbesondere als eine Lackschicht oder eine Polymerschicht und/oder unter Zugabe von einem oder mehreren farbigen, insbesondere bunten Funktionsschichtmaterialien ausgebildet wird, und/oder dass mindestens eine partiell ausgeformte Funktionsschicht (2, 3) als hydrophobe oder hydrophile Schicht und/oder als optisch variable Schicht mit blickwinkelabhängig unterschiedlichem optischem Effekt und/oder als eine metallische Reflexionsschicht und/oder als dielektrische Reflexionsschicht ausgebildet wird, wobei die optisch variable Schicht insbesondere derart ausgebildet wird, dass diese mindestens einen Stoff mit blickwinkelabhängig unterschiedlichem optischem Effekt enthält und/oder durch mindestens eine Flüssigkristallschicht mit blickwinkelabhängig unterschiedlichem optischem Effekt und/oder durch einen Dünnfilm-Schichtstapel mit blickwinkelabhängigem Interferenzfarbeffekt gebildet wird.
     
    11. Verfahren nach einem der Ansprüche 1 bis 9,
    dadurch gekennzeichnet,
    dass nach dem Entfernen des Teilbereichs (10) der HRI-Schicht (7) eine weitere HRI-Schicht (7) aufgetragen und anschließend insbesondere zumindest ein Teilbereich (10) der HRI-Schicht (7) durch Behandlung mit einer Lauge physikalisch wieder vom Substrat (4) entfernt wird, wobei insbesondere das Verfahren nach einem der Ansprüche 1 bis 10 ein- oder mehrfach wiederholt wird, wobei der entfernte Teilbereich (10) der HRI-Schicht (7) und der entfernte Teilbereich (10) der weiteren HRI-Schicht (7) sich insbesondere nicht oder nur teilweise überdecken.
     
    12. Mehrschichtkörper (100), hergestellt oder herstellbar nach einem der Ansprüche 1 bis 11,
    mit einem Substrat (4) und mindestens einer partiell ausgeformten HRI-Schicht (7), welche aus einem Material mit hohem Brechungsindex besteht, im Register zu mindestens einer weiteren partiell ausgeformten funktionellen Schicht (2, 3, 15).
     
    13. Mehrschichtkörper (100), herstellbar nach einem der Ansprüche 7 bis 9, mit einem Substrat (4) und einer HRI-Schicht (7), welche aus einem Material mit hohem Brechungsindex besteht, wobei in zumindest einem ersten Bereich eines oder des Substrats (4) wenigstens eine erste Reliefstruktur (5) in eine erste Oberfläche des Substrats (4) abgeformt ist, die HRI-Schicht (7) teilflächig auf die erste Oberfläche des Substrats (4) aufgebracht ist, derart, dass die HRI-Schicht (7) in dem den zumindest einen zweiten Bereich überdeckenden Teilbereich (10) entfernt ist und in dem den zumindest eine ersten Bereich überdeckenden Teilbereich (9) auf dem Substrat (4) vorgesehen ist.
     
    14. Mehrschichtkörper (100) nach einem der Ansprüche 12 und 13,
    dadurch gekennzeichnet,
    dass die mindestens eine oder eine partiell ausgeformte funktionelle Schicht (2, 3, 15) des Mehrschichtkörpers (100) und/oder die mindestens eine partiell ausgeformte HRI-Schicht (7) mit einer diffraktiven Reliefstruktur (5,6) hinterlegt ist und einen holographischen oder kinegraphischen optisch variablen Effekt zeigt, und/oder dass sich die mindestens eine oder eine partiell ausgeformte. funktionelle Schicht (2, 3, 15) des Mehrschichtkörpers (100) und die mindestens eine partiell ausgeformte HRI-Schicht (7) gegenseitig zu einer dekorativen und/oder informativen geometrischen, alphanumerischen, bildlichen, graphischen oder figürlichen farbigen Darstellung ergänzen, und/oder dass die mindestens eine oder eine partiell ausgeformte funktionelle Schicht (2, 3, 15) des Mehrschichtkörpers (100) und/oder zumindest die mindestens eine partiell ausgeformte HRI-Schicht (7) als mindestens eine Linie mit einer Linienbreite im Bereich < 200 µm, insbesondere im Bereich von 5 bis 100 µm ausgebildet ist, und/oder als mindestens ein Pixel mit einem Pixeldurchmesser im Bereich von < 200 µm, insbesondere im Bereich von 5 bis 100 µm ausgebildet ist, und/oder dass die mindestens eine oder partiell ausgeformte funktionelle Schicht (2, 3, 15) des Mehrschichtkörpers (100) eine oder mehrere der folgenden Schichten umfasst: eine insbesondere opake, Metallschicht, eine Schicht enthaltend Flüssigkristalle, einen Dünnfilm-Reflexionsschichtstapel mit blickwinkelabhängigern interferenzfarbeffekt, eine eingefärbte Lackschicht, eine dielektrische Reflexionsschicht, eine Schicht enthaltend fluoreszierenden oder strahlungsanregbaren Pigment oder Farbstoff, und/oder dass die mindestens eine oder eine partiell ausgeformte funktionelle Schicht (2, 3, 15) des Mehrschichtkörpers (100) und die HRI-Schicht (7), zumindest unter einem bestimmten Blickwinkel oder unter einer bestimmten Bestrahlungsart gesehen, in Komplementärfarben ausgebildet sind.
     
    15. Mehrschichtkörper (100) nach einem der Ansprüche 12 bis 14,
    dadurch gekennzeichnet,
    dass die mindestens eine oder eine partiell ausgeformte funktionelle Schicht (2, 3, 15) des Mehrschichtkörpers (100) und die HRI-Schicht (7) jeweils derart linienförmig ausgebildet sind, dass die Linien ohne seitlichen Versatz insbesondere mit einem kontinuierlichen Farbverlauf ineinander übergehen, und/oder dass die mindestens eine oder eine partiell ausgeformte funktionelle Schicht (2, 3) des Mehrschichtkörpers (100) und/oder die HRI-Schicht (7) zumindest bereichsweise ein, aus für das menschliche Auge nicht einzeln auflösbaren Pixeln, Bildpunkten oder Linien aufgebautes Rasterbild bildet/bilden.
     


    Claims

    1. Method for producing a multilayer body (100), in which an HRI layer (7), which consists of a material with a high refractive index, in particular from the group zinc sulphide, niobium pentoxide, titanium dioxide, is applied to a substrate (4) at least over part of the surface, and, subsequently, at least one partial region (10) of the layer (7) is again physically removed from the substrate (4) by treatment with a lye, wherein the layer does not chemically dissolve in the lye during such a lye treatment and wherein a pH value of the lye amounts to at least 10, preferably from 10.5 to 14, and the treatment with the lye takes place at a temperature of 10°C to 80°C, and wherein at least one further partial region of the layer (7) remains on the substrate.
     
    2. Method according to claim 1,
    characterised in that
    the lye is selected from the group sodium hydroxide, potassium hydroxide, sodium bicarbonate, tetramethylammonium hydroxide, sodium-ethylenediaminetetraacetate.
     
    3. Method according to one of claims 1 or 2,
    characterised in that
    during and/or after the treatment with the lye, a mechanical treatment of the HRI layer (7) takes place to support the dissolution of the HRI layer (7), wherein the mechanical treatment in particular comprises brushing and/or wiping with a sponge and/or a wiping roller and/or an ultrasonic treatment and/or blasting and/or spraying the HRI layer (7) with a liquid.
     
    4. Method according to one of claims 1 to 3,
    characterised in that
    before the treatment with the lye, a mask layer (15) for protecting at least one partial region (9) of the HRI layer (7) that is not to be removed, is applied to the HRI layer (7), in particular by printing, in particular by gravure printing, offset printing, flexographic printing, silk-screen printing or inkjet printing of a protective varnish (15), wherein the protective varnish (15) is a physically drying or chemically crosslinking or beam-hardening varnish and/or comprises pigments and/or dyes and/or UV-activatable pigments and/or nanoparticles and/or upconverters and/or thermochromic dyes and/or photochromic dyes.
     
    5. Method according to claim 4,
    characterised in that
    the mask layer is formed by completely or partially applying a positive photoresist, exposing the partial region (10) of the HRI layer (7) to be removed and removing the exposed photoresist, or by completely or partially applying a negative photoresist, exposing the partial region (9) of the HRI layer (7) that is not to be removed and removing the unexposed photoresist, wherein a photoresist is respectively used which contains dyes and/or pigments and/or UV-activatable pigments and/or nanoparticles and/or upconverters and/or thermochromic dyes and/or photochromic dyes.
     
    6. Method according to one of claims 1 to 5,
    characterised in that
    the lye is imprinted on the partial region (10) of the HRI layer (7) to be removed, in particular by flexographic printing or gravure printing, wherein, in particular, a lye is used that contains at least one additive for increasing the viscosity and/or at least one wetting agent, wherein in particular calcium carbonate, kaolin, titanium dioxide, Aerosil or silicon dioxide is used as an additive.
     
    7. Method for producing a multilayer body (100), in particular according to one of the preceding claims, in which, in at least one first region of one or the substrate (4), at least one first relief structure (5) is moulded into a first surface of the substrate (4), then one HRI layer (7) or the HRI layer (7), which consists of a material with a high refractive index, is applied to the first surface of the substrate (4) at least over part of the surface in such a way that the HRI layer (7) at least regionally covers the at least one first region and at least one second region of the substrate (4), in which the first relief structure (5) is not moulded into the first surface of the substrate (4), and then a partial region (10) of the HRI layer (7) is again physically removed from the substrate (4) by treatment with a liquid in the form of water or a lye in such a way that the HRI layer (7) is removed in the partial region (10) covering the at least one second region and remains on the substrate (4) in the partial region (9) covering the at least one first region, wherein the layer does not chemically dissolve in the lye by a lye treatment and wherein the first relief structure (5) is formed in particular with a depth-to-width ratio of the individual structural elements of more than 0.1, in particular more than 0.15, preferably of more than 0.2, wherein the interlayer adhesion of the HRI layer (7) and the surface in the flat second region is no longer quite sufficient to hold the HRI layer (7) on the surface, while the greater interlayer adhesion in the first region binds the HRI layer (7) to the surface.
     
    8. Method according to claim 7,
    characterised in that
    a relief structure is not moulded into the substrate (4) in the at least one second region or at least one second relief structure (6) is moulded into the substrate (4), said second relief structure differing from the first relief structure (5), wherein the first relief structure (5) and the second relief structure (6) are formed in such a way in particular that, as a result of the relief structures (5, 6), the adhesion of the layer (7) on the substrate (4) in the at least one first region is greater than in the at least one second region, wherein, in particular, the spatial frequency of the first relief structure (5) is greater than the spatial frequency of the second relief structure (6), the depth-to-width ratio of the structural elements of the first relief structure (5) is greater than the depth-to-width ratio of the structural elements of the second relief structure (6) and/or the product of the spatial frequency and the depth-to-width ratio of the structural elements of the first relief structure (5) is greater than that of the second relief structure (6).
     
    9. Method according to one of claims 7 or 8,
    characterised in that
    the at least one first relief structure (5) and/or second relief structure (6) is formed in particular as a one- or two-dimensional diffractive lattice structure, in particular with a spatial frequency of more than 1000 lines/mm, preferably of more than 1500 lines/mm, and/or the diffractive lattice structure of the second relief structure (6) is formed having periods of less than 3µm, and/or the at least one first (5) and/or second relief structure (6) is formed as a light-diffracting and/or light-refracting and/or light-scattering and/or light-focusing micro or nanostructure, as an isotropic or anisotropic matt structure, as a binary or continuous Fresnel lens, as a micro-prism structure, as a blazed grating, as a macrostructure or a combination structure of these.
     
    10. Method according to one of claims 1 to 9,
    characterised in that
    before and/or after applying the HRI layer (7), at least one further functional layer (2, 3) is applied, which is formed in particular as a varnish layer or a polymer layer and/or by adding one or more coloured, in particular multi-coloured functional layer materials, and/or at least one partially formed functional layer (2, 3) is formed as a hydrophobic or hydrophilic layer and/or as an optically variable layer with a different optical effect depending on perspective and/or as a metallic reflection layer and/or as a dielectric reflection layer, wherein the optically variable layer is formed in such a way in particular that it contains at least one substance with a different optical effect depending on the perspective and/or is formed by at least one liquid crystal layer with a different optical effect depending on the perspective and/or by a thin film layer stack with an interference colour effect depending on the perspective.
     
    11. Method according to one of claims 1 to 9,
    characterised in that,
    after removing the partial region (10) of the HRI layer (7), a further HRI layer (7) is applied and then in particular at least one partial region (10) of the HRI layer (7) is again physically removed from the substrate (4) by treatment with a lye, wherein in particular the method according to one of claims 1 to 10 is repeated one or more times, wherein the removed partial region (10) of the HRI layer (7) and the removed partial region (10) of the further HRI layer (7) are in particular not or only partially covered.
     
    12. Multilayer body (100), produced or able to be produced according to one of claims 1 to 11,
    having a substrate (4) and at least one partially formed HRI layer (7) which consists of a material with a high refractive index, in register with at least one further partially formed functional layer (2, 3, 15).
     
    13. Multilayer body (100), able to be produced according to one of claims 7 to 9, having a substrate (4) and an HRI layer (7) which consists of a material with a high refractive index, wherein, in at least a first region of a or the substrate (4), at least one first relief structure (5) is moulded into a first surface of the substrate (4), the HRI layer (7) is applied to the first surface of the substrate (4) over part of the surface in such a way that the HRI layer (7) is removed in the partial region (10) covering the at least one second region and is provided on the substrate (4) in the partial region (9) covering the at least one first region.
     
    14. Multilayer body (100) according to one of claims 12 and 13,
    characterised in that
    the at least one or one partially formed functional layer (2, 3, 15) of the multilayer body (100) and/or the at least one partially formed HRI layer (7) is deposited with a diffractive relief structure (5, 6) and shows a holographic or kinegraphic optically variable effect, and/or the at least one or one partially formed functional layer (2, 3, 15) of the multilayer body (100) and the at least one partially formed HRI layer (7) are mutually added to a decorative and/or informative geometric, alphanumerical, visual, graphical or figurative coloured depiction, and/or the at least one or one partially formed functional layer (2, 3, 15) of the multilayer body (100) and/or at least the at least one partially formed HRI layer (7) is formed as at least one line having a line width ranging from < 200µm, in particular ranging from 5 to 100µm, and/or the at least one or one partially formed functional layer (2, 3, 15) of the multilayer body (100) comprises one or more of the following layers: a particularly opaque metal layer, a layer containing liquid crystals, a thin film reflection layer stack with an interference colour effect, a dyed varnish layer, a dielectric reflection layer, a layer containing fluorescent or a radiation excitable pigment or dye, and/or the at least one or one partially formed functional layer (2, 3, 15) of the multilayer body (100) and the HRI layer (7), at least seen from certain perspective or under a certain type of radiation, are formed in complementary colours.
     
    15. Multilayer body (100) according to one of claims 12 to 14,
    characterised in that
    the at least one or one partially formed functional layer (2, 3, 15) of the multilayer body (100) and the HRI layer (7) are respectively formed to be linear in such a way that the lines without lateral offset cross over one another in particular with a continual colour gradient, and/or the at least one or one partially formed functional layer (2, 3) of the multilayer body (100) and/or the HRI layer (7) at least regionally forms/form a raster display constructed from pixels, image points or lines that are not able to be individually resolved by a human eye.
     


    Revendications

    1. Procédé de fabrication d'un corps multicouche (100), dans lequel une couche d'indice de réfraction élevé (7), laquelle est constituée d'un matériau à indice de réfraction élevé, notamment du groupe constitué du sulfure de zinc, du pentoxyde de niobium, du dioxyde de titane, est rapportée au moins partiellement sur un substrat (4) et ensuite au moins une zone partielle (10) de la couche (7) est enlevée de nouveau du substrat (4) de manière physique par un traitement avec une lessive, où la couche ne se dissout pas chimiquement dans la lessive, par un tel traitement avec une lessive, et où un pH de la lessive est au moins de 10, de préférence de 10,5 à 14, et le traitement avec la lessive est effectué à une température de 10 °C à 80 °C, et où au moins une autre zone partielle de la couche (7) reste sur le substrat.
     
    2. Procédé selon la revendication 1,
    caractérisé en ce
    que la lessive est choisie dans le groupe constitué de l'hydroxyde de sodium, de l'hydroxyde de potassium, du bicarbonate de sodium, de l'hydroxyde de tétraméthylammonium, de l'éthylène diamine tétra acétate de sodium.
     
    3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce
    que, pendant et/ou après le traitement avec la lessive, un traitement mécanique de la couche d'indice de réfraction élevé (7) est effectué pour l'aide au détachement de la couche d'indice de réfraction élevé (7), où le traitement mécanique comprend notamment un brossage et/ou un essuyage avec une éponge et/ou un rouleau d'essuyage et/ou un traitement par ultrasons et/ou un passage de fluide et/ou une pulvérisation de la couche d'indice de réfraction élevé (7) avec un liquide.
     
    4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce
    que, avant le traitement avec la lessive, une couche de masquage (15) est rapportée pour la protection d'au moins une zone partielle (9) de la couche d'indice de réfraction élevé (7) ne devant pas être enlevée, notamment par une impression, notamment par une gravure, une impression offset, une flexographie, une sérigraphie ou une impression à jet d'encre d'une laque de protection (15) sur la couche d'indice de réfraction élevé (7), où la laque de protection (15) est une laque séchant de manière physique ou réticulant de manière chimique ou durcissant par rayonnement, et/ou comprend des pigments et/ou des colorants et/ou des pigments activables par UV et/ou des nanoparticules et/ou des convertisseurs de fréquence ascendants et/ou des colorants thermochromiques et/ou des colorants photochromiques.
     
    5. Procédé selon la revendication 4,
    caractérisé en ce
    que la couche de masquage est formée par une application sur la surface totale ou partielle d'une résine photosensible positive, une illumination de la zone partielle (10) de la couche d'indice de réfraction élevé (7) à enlever et un enlèvement de la résine photosensible illuminée ou par une application sur la surface totale ou partielle d'une résine photosensible négative, une illumination de la zone partielle (9) de la couche d'indice de réfraction élevé (7) à ne pas enlever et un enlèvement de la résine photosensible non illuminée, où, chaque fois, une résine photosensible est employée qui contient des colorants et/ou des pigments et/ou des pigments activables par UV et/ou des nanoparticules et/ou des convertisseurs de fréquence ascendants et/ou des colorants thermochromiques et/ou des colorants photochromiques.
     
    6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce
    que la lessive est imprimée sur la zone partielle (10) de la couche d'indice de réfraction élevé (7) à enlever notamment par une flexographie ou une gravure, où, notamment, une lessive qui contient au moins un produit supplémentaire pour augmenter la viscosité et/ou au moins un produit mouillant est employée, où, en tant que produit supplémentaire, du carbonate de calcium, du kaolin, du dioxyde de titane, de l'Aérosil ou du dioxyde de silicium sont employés.
     
    7. Procédé de fabrication d'un corps multicouche (100), notamment selon l'une des revendications précédentes, dans lequel, dans au moins une première zone d'un ou du substrat (4), au minimum une première structure en relief (5) est moulée dans une première surface du substrat (4), ensuite, une couche d'indice de réfraction élevé (7) ou la couche d'indice de réfraction élevé (7), laquelle est constituée d'un matériau avec un indice de réfraction élevé, est rapportée au moins partiellement sur la première surface du substrat (4) de sorte que la couche d'indice de réfraction élevé (7) recouvre au moins une première zone et au moins une deuxième zone du substrat (4) dans laquelle la première structure en relief (5) n'est pas moulée dans la première surface du substrat (4), et, ensuite, une zone partielle (10) de la couche d'indice de réfraction élevé (7) est enlevée de nouveau du substrat (4) de manière physique par un traitement avec un liquide sous forme d'eau ou d'une lessive de sorte que la couche d'indice de réfraction élevé (7) est enlevée dans la zone partielle (10) recouvrant l'au moins une deuxième zone et reste dans la zone partielle (9) recouvrant l'au moins une première zone sur le substrat (4), où la couche ne se dissout pas chimiquement dans la lessive par un traitement avec une lessive et où la première structure en relief (5) est conçue notamment avec un rapport profondeur sur largeur des éléments de structure individuels supérieur à 0,1, notamment supérieur à 0,15, de préférence supérieur à 0,2, où l'adhésion de la couche intermédiaire de la couche d'indice de réfraction élevé (7) et de la surface dans la deuxième zone lisse, ne suffit tout juste plus pour maintenir la couche d'indice de réfraction élevé (7) sur la surface alors que l'adhésion de la couche intermédiaire supérieure dans la première zone lie la couche d'indice de réfraction élevé (7) à la surface.
     
    8. Procédé selon la revendication 7,
    caractérisé en ce
    que, dans l'au moins une deuxième zone, aucune structure en relief n'est moulée dans le substrat (4) ou au moins une deuxième structure en relief (6) est moulée dans le substrat (4), laquelle se différencie de la première structure en relief (5), où la première structure en relief (5) et la deuxième structure en relief (6) sont notamment formées de telle sorte que, du fait des structures en relief (5, 6), l'adhésion de la couche (7) sur le substrat (4) dans l'au moins une première zone est plus élevée que dans l'au moins une deuxième zone, où notamment la fréquence spatiale de la première structure en relief (5) est supérieure à la fréquence spatiale de la deuxième structure en relief (6), le rapport profondeur sur largeur des éléments de structure de la première structure en relief (5) est supérieur au rapport profondeur sur largeur des éléments de structure de la deuxième structure en relief (6) et/ou le produit de la fréquence spatiale et du rapport profondeur sur la largeur des éléments de structure de la première structure en relief (5) est supérieur à celui de la deuxième structure en relief (6).
     
    9. Procédé selon l'une des revendications 7 ou 8, caractérisé en ce
    que l'au moins une première structure en relief (5) et/ou deuxième structure en relief (6) est conçue sous la forme d'une structure de diffraction en grille notamment monodimensionnelle ou bidimensionnelle, notamment avec une fréquence spatiale de plus de 1000 lignes/mm, de préférence de plus de 1500 lignes/mm, et/ou que la structure de diffraction en grille de la deuxième structure en relief (6) est conçue avec une période de moins de 3 µm, et/ou que l'au moins une première (5) et/ou deuxième (6) structure(s) en relief est conçue sous forme d'une microstructure ou d'une nanostructure diffractant la lumière et/ou réfléchissant la lumière et/ou diffusant la lumière et/ou focalisant la lumière, sous forme d'une structure mate isotrope ou anisotrope, sous forme d'une lentille de Fresnel binaire ou continue, sous forme d'une structure en microprismes, sous forme d'une grille de type blaze, sous forme d'une macrostructure ou sous forme d'une structure de combinaison de celles-ci.
     
    10. Procédé selon l'une des revendications 1 à 9, caractérisé en ce
    que, avant et/ou après l'apport de la couche d'indice de réfraction élevé (7), au moins une autre couche fonctionnelle (2, 3) est rapportée, laquelle est notamment conçue sous la forme d'une couche de laque ou d'une couche de polymère et/ou moyennant l'ajout d'un ou de plusieurs matériaux de couche fonctionnelle colorés, notamment multicolores, et/ou qu'au moins une couche fonctionnelle (2, 3) partiellement moulée est créée sous la forme d'une couche hydrophobe ou hydrophile et/ou sous la forme d'une couche optiquement variable avec un effet optique différent dépendant de l'angle de vision et/ou sous la forme d'une couche de réflexion métallique et/ou sous la forme d'une couche de réflexion diélectrique, où la couche optiquement variable est notamment conçue de telle façon que celle-ci contient au moins une substance avec un effet optique différent dépendant de l'angle de vision et/ou est formée par au moins une couche de cristaux liquides avec un effet optique différent dépendant de l'angle de vision et/ou par un empilement de couches en films minces avec un effet d'interférence de couleurs dépendant de l'angle de vision.
     
    11. Procédé selon l'une des revendications 1 à 9, caractérisé en ce
    que, après l'enlèvement de la zone partielle (10) de la couche d'indice de réfraction élevée (7), une autre couche d'indice de réfraction élevée (7) est appliquée et ensuite notamment au moins une zone partielle (10) de la couche d'indice de réfraction élevé (7) est enlevée de nouveau du substrat (4) de manière physique par un traitement avec une lessive, où notamment le procédé selon l'une des revendications de 1 à 10 est répété une ou plusieurs fois, où la zone partielle (10) de la couche d'indice de réfraction élevé (7) enlevée et la zone partielle (10) de l'autre couche d'indice de réfraction élevé (7) enlevée ne se recouvrent notamment pas ou que partiellement.
     
    12. Corps multicouche (100), fabriqué ou pouvant être fabriqué selon l'une des revendications 1 à 11, avec un substrat (4) et au moins une couche d'indice de réfraction élevé (7) partiellement moulée qui consiste en un matériau présentant un indice de réfaction élevé, qui coïncident avec au moins une autre couche fonctionnelle (2, 3, 15) moulée partiellement.
     
    13. Corps multicouche (100) pouvant être fabriqué selon l'une des revendications 7 à 9,
    avec un substrat (4) et une couche d'indice de réfraction élevé (7), laquelle est constituée d'un matériau avec un indice de réfraction élevé,
    où dans au moins une première zone d'un ou du substrat (4), au moins une première structure en relief (5) est moulée dans une première surface du substrat (4), la couche d'indice de réfraction élevé (7) est rapportée partiellement sur la première surface du substrat (4) de sorte que la couche d'indice de réfraction élevé (7) est enlevée dans la zone partielle (10) recouvrant l'au moins une deuxième zone et est prévue dans la zone partielle (9) recouvrant l'au moins une première zone sur le substrat (4).
     
    14. Corps multicouche (100) selon l'une des revendications 12 et 13,
    caractérisé en ce
    que l'au moins une couche fonctionnelle (2, 3, 15) ou une couche fonctionnelle moulée partiellement du corps multicouche (100) et/ou l'au moins une couche d'indice de réfraction élevé (7) partiellement moulée est déposée avec une structure de diffraction en relief (5, 6) et présente un effet optiquement variable holographique ou cinégraphique,
    et/ou que l'au moins une couche fonctionnelle (2, 3, 15) ou une couche fonctionnelle partiellement moulée du corps multicouche (100)
    et l'au moins une couche d'indice de réfraction élevé (7) partiellement moulée se complètent l'une l'autre pour une représentation en couleur décorative et/ou informative géométrique, alphanumérique, imagée, graphique ou figurative, et/ou que l'au moins une couche fonctionnelle (2, 3, 15) ou une couche fonctionnelle partiellement moulée du corps multicouche (100) et/ou au moins l'au moins une couche d'indice de réfraction élevé (7) partiellement moulée est conçue sous la forme d'au moins une ligne avec une largeur de ligne dans la plage < 200 µm, notamment dans la plage de 5 à 100 µm, et/ou est conçue sous la forme d'au moins un pixel avec un diamètre de pixel dans la plage < 200 µm, notamment dans la plage de 5 à 100 µm, et/ou que l'au moins une couche fonctionnelle (2, 3, 15) ou la couche fonctionnelle partiellement moulée du corps multicouche (100) comprend une ou plusieurs parmi les couches suivantes : une couche métallique particulièrement opaque, une couche contenant des cristaux liquides, un empilement de couches de réflexion à films minces avec un effet d'interférence de couleurs dépendant de l'angle de vision, une couche de laque teintée dans la masse, une couche de réflexion diélectrique, une couche contenant un pigment ou un colorant fluorescent ou stimulant le rayonnement, et/ou que l'au moins une couche fonctionnelle (2, 3, 15) ou une couche fonctionnelle partiellement moulée du corps multicouche (100) et la couche d'indice de réfraction à indice élevé (7) sont formées dans des couleurs complémentaires, au moins vu sous un angle de vision défini ou sous un type d'illumination défini.
     
    15. Corps multicouche (100) selon l'une des revendications 12 à 14,
    caractérisé en ce
    que l'au moins une couche fonctionnelle (2, 3, 15) ou une couche fonctionnelle partiellement moulée du corps multicouche (100) et la couche d'indice de réfraction élevé (7) sont conçues chacune en forme de ligne de sorte que les lignes se superposent sans décalage latéral notamment dans une évolution de couleurs continue les unes dans les autres, et/ou que l'au moins une couche fonctionnelle (2, 3) ou une couche fonctionnelle partiellement moulée du corps multicouche (100) et/ou la couche d'indice de réfraction élevé (7) forme/forment au moins par zone une image matricielle construite par des pixels, des points d'image ou des lignes ne pouvant pas être résolus individuellement par l'oeil humain.
     




    Zeichnung





























    Angeführte Verweise

    IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE



    Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

    In der Beschreibung aufgeführte Patentdokumente