(19)
(11) EP 3 151 533 A1

(12) EUROPEAN PATENT APPLICATION
published in accordance with Art. 153(4) EPC

(43) Date of publication:
05.04.2017 Bulletin 2017/14

(21) Application number: 14893604.0

(22) Date of filing: 25.05.2014
(51) International Patent Classification (IPC): 
H04N 5/232(2006.01)
(86) International application number:
PCT/CN2014/078358
(87) International publication number:
WO 2015/180004 (03.12.2015 Gazette 2015/48)
(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA ME

(71) Applicant: SZ DJI Technology Co., Ltd.
Shenzhen, Guangdong 518057 (CN)

(72) Inventors:
  • ZHU, Mingliang
    Shenzhen Guangdong 518057 (CN)
  • ZHOU, Li
    Shenzhen Guangdong 518057 (CN)
  • LU, Yueqiang
    Shenzhen Guangdong 518057 (CN)

(74) Representative: Goddar, Heinz J. 
Boehmert & Boehmert Anwaltspartnerschaft mbB Patentanwälte Rechtsanwälte Pettenkoferstrasse 20-22
80336 München
80336 München (DE)

   


(54) CRADLE HEAD SYSTEM


(57) The present invention discloses a gimbal system for carrying an imaging device. The gimbal system comprises at least one angle adjusting unit, a main controller, a gimbal control unit and a digital video transmission component. The main controller is configured to detect a posture information of the imaging device. The gimbal control unit controls the at least one angle adjusting unit according to the posture information of the imaging device. The digital video transmission component is electrically connected with an imaging device and transmits a digital video signal of the imaging device. The digital video transmission component comprises a video converter, a first differential signal transmission line and an image transmission unit. The video converter receives an HDMI signal from the imaging device, converts and compression encodes the HDMI signal to output a serial differential signal, and transmits the serial differential signal to the image transmission unit over the first differential signal transmission line.




Description

BACKGROUND OF THE INVENTION



[0001] Video images may be categorized into an analog video and a digital video. An analog video signal may be transmitted uni-directionally without a bidirectional handshake mechanism, and such relatively simple transmission may have a lower requirement on the reliability of a system. However, the analog video signal being transmitted may be susceptible to interference, thus leading to image interfering phenomena such as "a water ripple", "a white spot" and the like on an image received by a receiver of an image transmission device. The quality of an image which can be transmitted by the analog signal may be low, leading to a blurred picture and a low quality in the image received by the receiver of the image transmission device.

[0002] An image video of digital video transmission may be clear with a high image quality. However, the high-definition digital video transmission may impose a high requirement on system. The video may not be transmitted unless a handshake between devices is successful, and the transmission may proceed only if a continuous handshake signal is seen throughout the transmission to acknowledge a successful communication between devices on both ends. An interference from a gimbal motor, a defect in a material of wires and poor connectivity of a structure may all lead to interruption of video transmission.

[0003] An aerial gimbal may be complex in structure and low in system reliability. Therefore, a transmission of high-definition digital video in aerial gimbal system may not be possible in prior art.

SUMMARY OF THE INVENTION



[0004] An object of the invention is to provide a gimbal system which can stably transmit a high-definition digital video.

[0005] In order to address the technical problem as discussed hereinabove, the present invention provides a gimbal system for carrying an imaging device. The gimbal system may comprise at least one angle adjusting unit, a main controller, a gimbal control unit and a digital video transmission component. The imaging device may be arranged on the at least one angle adjusting unit. The main controller may be configured to detect a posture information of the imaging device. The gimbal control unit may be configured to control the at least one angle adjusting unit according to the posture information of the imaging device. The digital video transmission component may be electrically connected with the imaging device and transmit a digital video signal of the imaging device. The digital video transmission component may comprise a video converter, a first differential signal transmission line and an image transmission unit. The first differential signal transmission line may be electrically connected between the video converter and the image transmission unit. The video converter may receive an HDMI signal from the imaging device, convert and compression encode the HDMI signal to output a serial differential signal, and transmit the serial differential signal to the image transmission unit over the first differential signal transmission line.

[0006] Optionally, the serial differential signal may be a USB differential signal, and the first differential signal transmission line may be a shielded twisted-pair comprising a communication bus, a USB+ line and a USB- line.

[0007] Optionally, the first differential signal transmission line may be an optical fiber or a flexible circuit board.

[0008] Optionally, the digital video transmission component may further comprise a data line which is electrically connected between the imaging device and the video converter; the data line may receive a video signal from the imaging device and transmit the video signal to the video converter.

[0009] Optionally, the gimbal system may further comprise a first filter and a transmission circuit; one end of the first differential signal transmission line may be electrically connected to the video converter, and the other end of the first differential signal transmission line may be electrically connected to the first filter; one end of the transmission circuit may be connected electrically and directly to the first filter, and the other end of the transmission circuit may be connected electrically and directly to the image transmission unit; and the first angle adjusting unit may adjust a pitch angle of the imaging device.

[0010] Optionally, the at least one angle adjusting unit may comprise a first angle adjusting unit; the first angle adjusting unit may comprise a first cable, a pitch electronic adjuster and a first motor; one end of the first cable may be electrically connected to the first filter, and the other end of the first cable may be electrically connected to the pitch electronic adjuster; and the pitch electronic adjuster may be electrically connected to the first motor, and control a rotation speed of the first motor to adjust the pitch angle of the imaging device.

[0011] Optionally, the first angle adjusting unit may further comprise a carrier and a first shaft; the carrier may be movably connected with the first shaft through a rotating shaft of the first motor, and carry the imaging device; the video converter and the main controller may be arranged on the carrier; the first differential signal transmission line may be arranged in the carrier; and the first filter may be arranged within the first shaft.

[0012] Optionally, the at least one angle adjusting unit may further comprise a second angle adjusting unit; the gimbal system may further comprise a second filter and a second differential signal transmission line; one end of the second differential signal transmission line may be electrically connected to the first filter, and the other end of the second differential signal transmission line may be electrically connected to the second filter; the second filter may be electrically connected to the transmission circuit; the second angle adjusting unit may comprise a second cable, a roll electronic adjuster and a second motor; one end of the second cable may be electrically connected to the second filter, and the other end of the second cable may be electrically connected to the roll electronic adjuster; and the roll electronic adjuster may be electrically connected to the second motor, and control a rotation speed of the second motor to adjust a roll angle of the imaging device.

[0013] Optionally, the second angle adjusting unit may further comprise a second shaft; the second motor and the roll electronic adjuster may be arranged within the second shaft; and the second shaft may be movably connected with the first shaft through a rotating shaft of the second motor.

[0014] Optionally, the at least one angle adjusting unit may further comprise a third angle adjusting unit; the gimbal system may further comprise a transmission line; the third angle adjusting unit may comprise a third cable, a yaw electronic adjuster and a third motor; the gimbal control unit may be electrically connected to the transmission circuit; one end of the third cable may be electrically connected to the gimbal control unit, and the other end of the third cable may be electrically connected to the yaw electronic adjuster; the yaw electronic adjuster may be electrically connected to the third motor, and control a rotation speed of the third motor to adjust a yaw angle of the imaging device; and one end of the transmission line may be electrically connected to the gimbal control unit, and the other end of the transmission line may be electrically connected to the image transmission unit.

[0015] Optionally, a third filter may be integrated in the gimbal control unit.

[0016] Optionally, the second differential signal transmission line may comprise a communication bus, a USB+ line and a U SB- line.

[0017] Optionally, the transmission circuit may comprise an electrical slip ring; the electrical slip ring comprises a ring and a plurality of needle seats, the plurality of needle seats comprising a communication bus pin, a USB+ pin and a USB- pin.

[0018] Optionally, the gimbal system may further comprise a holder comprising a top surface and a bottom surface opposite to the top surface; the third angle adjusting unit may be pivotally connected to the holder; the third motor and the transmission circuit may be arranged respectively on the top surface and the bottom surface of the holder; a rotating shaft of the third motor may be pivotally connected with the ring of the transmission circuit; and when the third motor adjusting a yaw angle of the imaging device, the ring of the transmission circuit may rotate synchronously with the rotating shaft of the third motor.

[0019] Optionally, both the gimbal control unit and the image transmission unit may be arranged on the top surface.

[0020] Optionally, the transmission line may be a third differential signal line comprising a communication bus, a USB+ line and a USB- line.

[0021] As compared with the prior art, the video converter of present invention may receive a HGMI, AV, SDI or Ycbcr video signal taken by the imaging device, convert and compression encode the HGMI, AV, SDI or Ycbcr video signal thus outputting a serial differential signal, and transmit the serial differential signal to the image transmission unit over the first differential signal transmission line. The digital video transmission component of the gimbal system may facilitate stable transmission of the video signal by virtue of an anti-interference characteristic of the serial differential signal.

BRIEF DESCRIPTION OF THE DRAWINGS



[0022] 

Figure 1 is a schematic view of a gimbal system according to a first embodiment of the present invention;

Figure 2 is a general schematic diagram of the gimbal system according to the first embodiment of the present invention;

Figure 3 is a general schematic diagram of the gimbal system according to a second embodiment of the present invention;

Figure 4 is a general schematic diagram of the gimbal system according to a third embodiment of the present invention.


DETAILED DESCRIPTION OF THE INVENTION



[0023] Referring to FIG.1 and FIG.2, a gimbal system 100 according to a first embodiment of the present invention may serve as an auxiliary device for photographing, imaging and monitoring, and may be applied in the fields of manned aircrafts, carriers, automobiles, ships, robots, movie producers, manually set devices and the like. The gimbal system 100 may include a holder 1a, a digital video transmission component 10, a first angle adjusting unit 20, a second angle adjusting unit 30, a third adjusting unit 40 and a main controller 50. The gimbal system 100 may carry an imaging device 200. The third angle adjusting unit 40 may be pivotally connected to the holder 1a. The second angle adjusting unit 30 may be connected to the third angle adjusting unit 40, and may rotate with respect to the third angle adjusting unit 40. The first angle adjusting unit 20 may be connected to the second angle adjusting unit 30, and may rotate with respect to the second angle adjusting unit 30, thus forming a three-axis gimbal.

[0024] In some embodiments, the holder 1a may include a top surface 11a and a bottom surface 11b which is opposite to the top surface 11a.

[0025] In some embodiments, the digital video transmission component 10 may include a data line 12, a video converter 13, a first differential signal transmission line 14, a first relay element 15, a transmission circuit 16, a gimbal control unit 17, a transmission line 18 and an image transmission unit 19. The transmission circuit 16 may be arranged on the bottom surface 11b. The gimbal control unit 17 and the image transmission unit 19 may be arranged on the top surface 11a.

[0026] In some embodiments, the data line 12 may receives a video signal taken by the imaging device 200, and transmit the video signal taken by the imaging device 200 to the video converter 13.

[0027] In some embodiments, the imaging device 200 may include an interface. In some instances, the video signal may be an HDMI video signal, and correspondingly the data line 12 may be an HDMI data line over which the HDMI video signal may be transmitted.

[0028] In some embodiments, the video converter 13 may also include a data interface which receives the HDMI video signal transmitted over the data line 12, converts and compression encodes the HDMI video signal, and outputs a serial differential signal. In some instances, the serial differential signal may be a USB serial differential signal.

[0029] As can be appreciated, the video signal output by the imaging device 200 may alternatively be an AV signal, an SDI signal or a Ycbcr signal. The video converter 13 may convert the AV signal, the SDI signal or the Ycbcr signal into a USB serial differential signal. A type of the data line 12 may correspond to a type of the video signal output by the imaging device 200. The serial differential signal may not be limited to a USB serial differential signal, but can alternatively be another type of serial differential signal.

[0030] In some instances, one end of the first differential signal transmission line 14 may be electrically connected to the video converter 13, and the other end of the first differential signal transmission line 14 may be electrically connected to the first relay element 15. In some embodiments, the first differential signal transmission line 14 may be a shielded twisted-pair including a communication bus, a USB+ line and a USB- line.

[0031] In some embodiments, a high bandwidth may be required for the HDMI video signal output by the imaging device 200. Therefore, the video converter 13 may convert and compression encode the HDMI video signal upon receiving the HDMI video signal. The bandwidth required for the output video signal may be greatly lowered, that is, a bandwidth required for the gimbal system 100 may be lowered. Furthermore, a total number of signal lines of the HDMI bus may be lowered from 19 to 2 USB differential signal lines to facilitate a wiring in the gimbal system 100. With the present invention, a HDMI interface signal may be converted into a USB serial differential signal for transmission by virtue of an anti-interference characteristic of the differential signal, thus facilitating stable transmission of the video signal.

[0032] In some instances, the first relay element 15 may include a first filter 151, a second differential signal transmission line 153 and a second filter 152. The first filter 151 may be electronically connected to the first differential signal transmission line 14, and may also be electronically connected to the second filter 152 over the second differential signal transmission line 153 which may include a communication bus, a USB+ line and a USB- line.

[0033] In some embodiments, the transmission circuit 16 may include an electrical slip ring which is arranged between the holder 1a and the second angle adjusting unit 20. The electrical slip ring may include a ring 161 and a plurality of needle seats 162 which may include a communication bus pin, a USB+ pin and a USB- pin. The plurality of needle seats 162 may be in tight contact with the ring 161, thereby facilitate a stable transmission of the USB differential signal. The plurality of needle seats 162 may be electrically connected with the second filter 152.

[0034] In some embodiments, a third filter 171 with one end electrically connected to the transmission circuit 16 may be integrated in the gimbal control unit 17. The gimbal control unit 17 may be electrically connected with the plurality of needle seats 162 of the transmission circuit 16 through a Flexible Printed Circuit Board (FPCB).

[0035] In some embodiments, the transmission line 18 may be a third differential signal transmission line. One end of the transmission line 18 may be electrically connected to the gimbal control unit 17, and the other end of the transmission line 18 may be electrically connected to the image transmission unit 19. The third differential signal transmission line may include a communication bus, a USB+ line and a USB- line. As can be appreciated, the transmission line 18 may alternatively be an optical fiber, a cable and the like.

[0036] In some instances, the first angle adjusting unit 20 may adjust a pitch angle of the imaging device 200. The first angle adjusting unit 20 may includes a hollow carrier 20a, a first cable 21, a pitch electronic adjuster 22, a first motor 23 and a first shaft 24. The carrier 20a may carry the imaging device 200. The video converter 13 may be arranged on the carrier 20a. The first differential signal transmission line 14 and the data line 12 may be arranged in the carrier 20a. The first filter 151, the second filter 152 and the second differential signal transmission line 153 may be arranged in the shaft 24. One end of the first cable 21 may be electrically connected to the first filter 151 of the first relay element 15, and the other end of the first cable 21 may be electrically connected to the pitch electronic adjuster 22. The first cable 21 may include a communication bus. The first motor 23 and the pitch electronic adjuster 22 may be arranged in the first shaft 24. The carrier 20a may be movably connected with the first shaft 24 through a rotating shaft of the first motor 23. The first motor 23 may be electrically connected to the pitch electronic adjuster 22. The pitch electronic adjuster 22 may control the rotation speed of the first motor 23 to adjust the pitch angle of the imaging device 200. Alternatively, the first cable 21 may be an optical fiber or a flexible circuit board.

[0037] In some instances, the second angle adjusting unit 30 may adjust a roll angle of the imaging device 200. The second angle adjusting unit 30 may include a second shaft 30a, a second cable 31, a roll electronic adjuster 32 and a second motor 33. The second shaft 30a may be substantially vertically connected with the first shaft 20a. The second motor 33 and the roll electronic adjuster 32 may be arranged in the second shaft 34. The second shaft 34 may be movably connected with the first shaft 24 through a rotating shaft of the second motor 33. One end of the second cable 31 may be electrically connected to the second filter 152 of the first relay element 15, and the other end of the second cable 31 may be electrically connected to the roll electronic adjuster 32. In some embodiments, the second cable 31 may include a communication bus. The second motor 33 may be electrically connected to the roll electronic adjuster 32. The roll electronic adjuster 32 may control the rotation speed of the second motor 33 to adjust the roll angle of the imaging device 200. Alternatively, the second cable 31 may be an optical fiber or a flexible circuit board.

[0038] In some instances, the third angle adjusting unit 40 may adjust a yaw angle of the imaging device 200. The third angle adjusting unit 40 may include a third cable 41, a yaw electronic adjuster 42 and a third motor 43. One end of the third cable 41 may be electrically connected to the gimbal control unit 17, and the other end of the third cable 41 may be electrically connected to the yaw electronic adjuster 42. In some embodiments, the third cable 41 may also include a communication bus. The third motor 43 may be electrically connected to the yaw electronic adjuster 42 and pivotally connected with the ring 161 of the transmission circuit 16. The yaw electronic adjuster 42 and the third motor 43 may be arranged on the top surface 11a of the holder 1a. The yaw electronic adjuster 42 may control the rotation speed of the third motor 43 to adjust the yaw angle of the imaging device 200. Alternatively, the third cable 41 may be an optical fiber or a flexible circuit board.

[0039] In some embodiments, the third motor 43 and the transmission circuit 16 may be arranged on the top surface 11a and the bottom surface 11b of the holder 1a, respectively. A rotating shaft of the third motor 43 may be pivotally connected with the ring 161 of the transmission circuit 16 which is electrically connected with the gimbal control unit 17. The gimbal control unit 17 may be electrically connected with the image transmission unit 19 over the transmission line 18. When the third motor 43 adjusts the yaw angle of the imaging device 100, the ring 161 of the transmission circuit 16 may rotate synchronously with the rotating shaft of the third motor 43, and the plurality of needle seats 162 may stay stationary with respect to the holder 1a. Therefore, the gimbal control unit 17 and other components (the first filter 151, the communication bus 21, the pitch electronic adjuster 22, the second differential signal transmission line 153, the second filter 152, the communication bus 31, the roll electronic adjuster 22, the third cable 41 and the yaw electronic adjuster 42) may be pivotally connected through the ring 161 of the transmission circuit 16 without such problem as twisted and restrained cables.

[0040] In some embodiments, the main controller 50 may be fixed on the carrier 20a. The main controller 50 may be electrically connected to the video converter 13 through a fourth cable 60. The main controller 50 may include a gyroscope and an accelerometer. In some instances, the main controller 50 may be configured to sense an attitude of the imaging device 200 and transmit operational data of the gyroscope and the accelerometer to the gimbal control unit 17 over the communication bus of the first differential signal transmission line 14, the first filter 151, the communication bus of the second differential signal transmission line 153, and the communication bus pin of the transmission circuit 16. The gimbal control unit 17 may control the first angle adjusting unit 20, the second angle adjusting unit 30 and the third angle adjusting unit 40 according to the attitude information of the imaging device 200. In some embodiments, a control signal from the gimbal control unit 17 may be transmitted to the yaw electronic adjuster 42 over the communication bus of the third cable 41. The yaw electronic adjuster 42 may control the rotation of the third motor 43 upon receiving the control signal. The control signal from the gimbal control unit 17 may be transmitted to the second filter 152 over the communication bus of the transmission circuit 16 and then to the roll electronic adjuster 32 over the communication bus of the second cable 31. The roll electronic adjuster 32 may control the rotation of the second motor 33 upon receiving the control signal. The control signal from the gimbal control unit 17 may be transmitted to the pitch electronic adjuster 22 over the communication bus of the transmission circuit 16, the second filter 152, the communication bus of the second signal transmission line 153, the first filter 151, and the communication bus of the second cable 31. The pitch electronic adjuster 22 may control the rotation of the first motor 23 upon receiving the control signal.

[0041] In some embodiments, the gimbal system 100 may be a three-axis gimbal system. A plurality of interfering signals may enter the gimbal system 100 through the first cable 21, the second cable 31 and the third cable 41, respectively. The plurality of interfering signals may be introduced by the first motor 23 and the pitch electronic adjuster 22, the second motor 33 and the roll electronic adjuster 32, the third motor 43 and the yaw electronic adjuster 42. Therefore, the USB differential signal of the video transmission may be interfered, and the video transmission may be interrupted due to the interference to the differential signal. In order to address such interfering signals, in some embodiments, the first filter 151 may filter out the interference introduced by the pitch electronic adjuster 22, and the second filter 152 and the third filter 171 may filter out the interference introduced by the roll electronic adjuster 32 and the yaw electronic adjuster 42, respectively. In some embodiments, the first filter 151, the second filter 152 and the third filter 171 may suppress the interfering signals of the first, second and third motors 22, 33 and 43 by means of common mode inductors, thereby preventing the interfering signals of the first, second and third motors 22, 33 and 43 from interfering with the video serial differential signal.

[0042] In some instances, the main controller 50 may detect the attitude information of the imaging device 200. The gimbal control unit 17 may control the first angle adjusting unit 20, the second angle adjusting unit 30 and the third angle adjusting unit 40 according to the attitude information of the imaging device 200.

[0043] Referring to FIG.3, a gimbal system 100a according to a second embodiment of the present invention may be a two-axis gimbal system which is substantially similar in structure to the gimbal system 100 according to the first embodiment, except that the third angle adjusting unit, the third filter and the transmission line are omitted, and the first differential signal transmission line 14a, the second differential signal transmission line 153a and the transmission circuit 16a are flexible circuit boards. In some instances, one end of the flexible circuit board of the transmission circuit 16a of the digital video transmission component 10a may be electrically connected to the second filter 152a, and the other end may be directly and electrically connected to the image transmission unit 19a. Alternatively, the first differential signal transmission line 14a, the second differential signal transmission line 153a and the transmission circuit 16a may be optical fibers.

[0044] Referring to FIG.4, a gimbal system 100b according to a third embodiment of the present invention may be a single-axis gimbal system, which is substantially similar in structure to the gimbal system 100 according to the first embodiment, except that the third angle adjusting unit, the third filter, the transmission line, the second angle adjusting unit, the second differential signal transmission line and the second filter are omitted, and the first differential signal transmission line 14b and the transmission circuit 16b are flexible circuit boards. In some embodiments, one end of the flexible circuit board of the transmission circuit 16b of the digital video transmission component 10b may be electrically connected directly to the first filter 151b, and the other end may be directly and electrically connected to the image transmission unit 19b. Alternatively, the first differential signal transmission line 14b, the second differential signal transmission line 153b and the transmission circuit 16b may be optical fibers.

[0045] In some embodiments, when the gimbal system 100b is a single-axis gimbal system, the single-axis gimbal system may alternatively be arranged only with the second angle adjusting unit instead of the angle adjusting units, but will not be limited to the present embodiment.

[0046] The video converter may receive an HGMI, AV, SDI or Ycbcr video signal taken by the imaging device, convert and compression encode the HGMI, AV, SDI or Ycbcr video signal, output a serial differential signal, and transmit the serial differential signal to the image transmission unit over the first differential signal transmission line. The digital video transmission component of the gimbal system may facilitate a stable transmission of the video signal by virtue of an anti-interference characteristic of the serial differential signal.

[0047] The foregoing disclosure is merely illustrative of the embodiments of the invention but not intended to limit the scope of the invention. Any equivalent structural or equivalent flow changes, which are made without departing from the specification and the drawings of the invention, and an direct or indirect application in other relevant technical field, shall also fall into the scope of the invention.


Claims

1. A gimbal system for carrying an imaging device, comprising at least one angle adjusting unit, a main controller, a gimbal control unit and a digital video transmission component; the imaging device is arranged on the at least one angle adjusting unit; the main controller is configured to detect a posture information of the imaging device; the gimbal control unit is configured to control the at least one angle adjusting unit according to the posture information of the imaging device; and the digital video transmission component is electrically connected with the imaging device and transmit a digital video signal of the imaging device,
wherein the digital video transmission component comprises a video converter, a first differential signal transmission line and an image transmission unit; the first differential signal transmission line is electrically connected between the video converter and the image transmission unit; the video converter receives an HDMI signal from the imaging device, converts and compression encodes the HDMI signal to output a serial differential signal, and transmits the serial differential signal to the image transmission unit over the first differential signal transmission line.
 
2. The gimbal system of claim 1, wherein the serial differential signal is a USB differential signal, and the first differential signal transmission line is a shielded twisted-pair comprising a communication bus, a USB+ line and a USB- line.
 
3. The gimbal system of claim 1, wherein the first differential signal transmission line is an optical fiber or a flexible circuit board.
 
4. The gimbal system of claim 1, wherein the digital video transmission component further comprises a data line which is electrically connected between the imaging device and the video converter; the data line receives a video signal from the imaging device and transmits the video signal to the video converter.
 
5. The gimbal system of claim 1, wherein the gimbal system further comprises a first filter and a transmission circuit; one end of the first differential signal transmission line is electrically connected to the video converter, and the other end of the first differential signal transmission line is electrically connected to the first filter; one end of the transmission circuit is connected electrically and directly to the first filter, and the other end of the transmission circuit is connected electrically and directly to the image transmission unit; and the first angle adjusting unit adjusts a pitch angle of the imaging device.
 
6. The gimbal system of claim 5, wherein the at least one angle adjusting unit comprises a first angle adjusting unit; the first angle adjusting unit comprises a first cable, a pitch electronic adjuster and a first motor; one end of the first cable is electrically connected to the first filter, and the other end of the first cable is electrically connected to the pitch electronic adjuster; and the pitch electronic adjuster is electrically connected to the first motor, and controls a rotation speed of the first motor to adjust the pitch angle of the imaging device.
 
7. The gimbal system of claim 6, wherein the first angle adjusting unit further comprises a carrier and a first shaft; the carrier is movably connected with the first shaft through a rotating shaft of the first motor, and carries the imaging device; the video converter and the main controller are arranged on the carrier; the first differential signal transmission line is arranged in the carrier; and the first filter is arranged within the first shaft.
 
8. The gimbal system of claim 7, wherein the at least one angle adjusting unit further comprises a second angle adjusting unit; the gimbal system further comprises a second filter and a second differential signal transmission line; one end of the second differential signal transmission line is electrically connected to the first filter, and the other end of the second differential signal transmission line is electrically connected to the second filter; the second filter is electrically connected to the transmission circuit; the second angle adjusting unit comprises a second cable, a roll electronic adjuster and a second motor; one end of the second cable is electrically connected to the second filter, and the other end of the second cable is electrically connected to the roll electronic adjuster; and the roll electronic adjuster is electrically connected to the second motor, and controls a rotation speed of the second motor to adjust a roll angle of the imaging device.
 
9. The gimbal system of claim 8, wherein the second angle adjusting unit further comprises a second shaft; the second motor and the roll electronic adjuster are arranged within the second shaft; and the second shaft is movably connected with the first shaft through a rotating shaft of the second motor.
 
10. The gimbal system of claim 8, wherein the at least one angle adjusting unit further comprises a third angle adjusting unit; the gimbal system further comprises a transmission line; the third angle adjusting unit comprises a third cable, a yaw electronic adjuster and a third motor; the gimbal control unit is electrically connected to the transmission circuit; one end of the third cable is electrically connected to the gimbal control unit, and the other end of the third cable is electrically connected to the yaw electronic adjuster; the yaw electronic adjuster is electrically connected to the third motor, and controls a rotation speed of the third motor to adjust a yaw angle of the imaging device; and one end of the transmission line is electrically connected to the gimbal control unit, and the other end of the transmission line is electrically connected to the image transmission unit.
 
11. The gimbal system of claim 10, wherein a third filter is integrated in the gimbal control unit.
 
12. The gimbal system of claim 8, wherein the second differential signal transmission line comprises a communication bus, a USB+ line and a USB- line.
 
13. The gimbal system of claim 12, wherein the transmission circuit comprises an electrical slip ring; the electrical slip ring comprises a ring and a plurality of needle seats, the plurality of needle seats comprising a communication bus pin, a USB+ pin and a USB- pin are electrically connected with the gimbal control unit through a flexible circuit board.
 
14. The gimbal system of claim 13, wherein the gimbal system further comprises a holder comprising a top surface and a bottom surface opposite to the top surface; the third angle adjusting unit is pivotally connected to the holder; the third motor and the transmission circuit are arranged respectively on the top surface and the bottom surface of the holder; a rotating shaft of the third motor is pivotally connected with the ring of the transmission circuit; and when the third motor adjusts a yaw angle of the imaging device, the ring of the transmission circuit rotates synchronously with the rotating shaft of the third motor.
 
15. The gimbal system of claim 14, wherein both the gimbal control unit and the image transmission unit are arranged on the top surface.
 
16. The gimbal system of claim 10, wherein the transmission line is a third differential signal line comprising a communication bus, a USB+ line and a USB- line.
 




Drawing
















Search report