(19)
(11) EP 2 785 969 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
21.06.2017 Bulletin 2017/25

(21) Application number: 12809890.2

(22) Date of filing: 30.11.2012
(51) International Patent Classification (IPC): 
E21B 44/00(2006.01)
(86) International application number:
PCT/US2012/067402
(87) International publication number:
WO 2013/082498 (06.06.2013 Gazette 2013/23)

(54)

AUTOMATED DRILLING SYSTEM

AUTOMATISIERTES BOHRSYSTEM

SYSTÈME DE FORAGE AUTOMATISÉ


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 01.12.2011 US 201161565736 P

(43) Date of publication of application:
08.10.2014 Bulletin 2014/41

(73) Proprietor: National Oilwell Varco, L.P.
Houston, Texas 77036 (US)

(72) Inventors:
  • PINK, Tony
    Houston, Texas 77018 (US)
  • REID, David
    Spring, Texas 77379 (US)
  • BRUCE, Andrew
    Houston, Texas 77036 (US)

(74) Representative: Lucas, Brian Ronald 
Lucas & Co. 135 Westhall Road
Warlingham, Surrey CR6 9HJ
Warlingham, Surrey CR6 9HJ (GB)


(56) References cited: : 
WO-A1-02/092966
US-A1- 2004 211 595
WO-A1-2010/101473
US-A1- 2011 155 461
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] This disclosure relates generally to methods and apparatus for automating drilling processes. More specifically, this disclosure relates to methods and apparatus for automating drilling processes utilizing input data from an external surface drilling rig interface with drilling machinery from a third party source as well as interacting with third party information downhole to facilitate a single closed loop control of a plurality of drilling parameters within the drilling system using a networked control system that can be customized based on the equipment being utilized and the processes being performed to have the user drive all the machinery drilling the well in an automated fashion with the users downhole sensing devices.

    [0002] To recover hydrocarbons from subterranean formations, wells are generally constructed by drilling into the formation using a rotating drill bit attached to a drill string. A fluid, commonly known as drilling mud, is circulated down through the drill string to lubricate the drill bit and carry cuttings out of the well as the fluid returns to the surface. The particular methods and equipment used to construct a particular well can vary extensively based on the environment and formation in which the well is being drilled. Many different types of equipment and systems are used in the construction of wells including, but not limited to, rotating equipment for rotating the drill bit, hoisting equipment for lifting the drill string, pipe handling systems for handling tubulars used in construction of the well, including the pipe that makes up the drill string, pressure control equipment for controlling wellbore pressure, mud pumps and mud cleaning equipment for handling the drilling mud, directional drilling systems, and various downhole tools.

    [0003] The overall efficiency of constructing a well generally depends on all of these systems operating together efficiently and in concert with the requirements in the well to effectively drill any given formation. One issue faced in the construction of wells is that maximizing the efficiency of one system can have undesirable effects on other systems. For example, increasing the weight acting on the drill bit, known as weight on bit (WOB), can often result in an increased rate of penetration (ROP) and faster drilling but can also decrease the life of the drill bit, which can increase drilling time due to having to more frequently replace the drill bit. Therefore, the performance of each system being used in constructing a well must be considered as part of the entire system in order to safely and efficiently construct the well.

    [0004] Many conventional automated drilling systems are "closed loop" systems that attempt to improve the drilling process by sensing a limited number of conditions and adjusting system performance, manually or automatically, based upon the sensed conditions. Often these closed loop systems don't have the ability to monitor or consider the performance of all of the other systems being used or adjust the performance of multiple systems simultaneously. It is therefore left to human intervention to ensure that the entire system operates efficiently/satisfactorily.

    [0005] Relying on human intervention can become complicated due to the fact that multiple parties are often involved in well construction. For example, constructing a single well will often involve the owner of the well, a drilling contractor tasked with drilling well, and a multitude of other companies that provide specialized tools and services for the construction of the well. Because of the significant coordination and cooperation that is required to integrate multiple systems from multiple companies, significant human intervention is required for efficient operation. Integrating multiple systems and companies becomes increasingly problematic as drilling processes advance in complexity. WO2010/101473 discloses a system which operates by automatically determining safe operating limits.

    [0006] WO2010/101473 discloses a method of imposing a safeguard during well drilling, wherein performance process control parameters are controlled through machine controllers, a driller drilling the well by controlling said process control parameters through said machine controllers with driller instructions, and wherein process values are measured and input to a safeguard calculation unit which then calculates safeguard limits for process control parameters, derived from process limits, such that at least some of said safeguard limits constitute boundary values of performance process parameter related safeguard envelopes, characterized in restricting controller output to remain within said safeguard envelopes, as said controllers are adapted to keep said controller output within said safeguard envelopes, thereby preventing driller instructions from resulting in performance process parameters beyond said safeguard envelopes; wherein said safeguard calculation unit comprises continuously calibrated drilling process models which enable calculation of safeguard limits for said performance process control parameters, the calculation being based on at least one of wellbore pressure limits, wellbore stability limits and mechanical tubing limits as constraints, as well as current process values, and wherein said safeguard calculations are performed by iterative calculations until the safeguard limits converge.

    [0007] Thus, there is a continuing need in the art for methods and apparatus for automating drilling processes that overcome these and other limitations of the prior art.

    BRIEF SUMMARY OF THE DISCLOSURE



    [0008] One embodiment of the disclosure provides a drilling system having a drilling parameter sensor in communication with a sensor application that generates processed data from raw data that is received from the drilling parameter sensor. A process application is in communication with the sensor application and generates an instruction based on the processed data. A priority controller is in communication with the process application and evaluates the instruction for release to an equipment controller that then issues the instruction to one or more drilling components.

    [0009] According to a first aspect of the present invention therefore there is provided a drilling system comprising:

    a plurality of drilling parameter sensors;

    a plurality of sensor applications in communication with the drilling parameter sensors and

    operable to generate processed data from raw data received from the drilling parameter sensors;

    a priority controller operable to evaluate and selectively release the operating instructions; and

    an equipment controller in communication with the priority controller and operable to receive operating instructions from the priority controller and issue the instructions to one or more drilling components when the instruction is released by the priority controller (30) and characterized by a plurality of process applications in communication with the sensor applications and operable to generate operating instructions based on the processed data generated by the sensor applications,

    the priority controller being operable to evaluate a plurality of instructions issued by the plurality of process applications.

    According to a second aspect of the invention there is provided a method of controlling a drilling process comprising:

    collecting data using a plurality of drilling parameter sensors;

    transmitting the data to a control system including a plurality of sensor applications and process applications;

    processing the data using the sensor application to provide a representation of a drilling parameter;

    generating an instruction by analyzing the representation of a drilling condition using the process applications;

    evaluating the instruction with a priority controller to determine if the instruction can be released; and

    transmitting the instruction to one or more drilling components when the instruction is released by the priority controller and characterized by

    a plurality of process applications in communication with the sensor applications and operable to generate operating instructions based on the processed data generated by the sensor applications, the priority controller being operable to evaluate a plurality of instructions issued by the plurality of process applications.


    BRIEF DESCRIPTION OF THE DRAWINGS



    [0010] For a more detailed description of the embodiments of the present disclosure, reference will now be made to the accompanying drawings.

    Figure 1 is a simplified diagram of an automatic drilling system.

    Figure 2 is a simplified schematic diagram of a drill string used as part of an automatic drilling system.

    Figure 3 is a simplified diagram of a control system for an automatic drilling system.


    DETAILED DESCRIPTION



    [0011] It is to be understood that the following disclosure describes several exemplary embodiments for implementing different features, structures, or functions of the invention. Exemplary embodiments of components, arrangements, and configurations are described below to simplify the present disclosure; however, these exemplary embodiments are provided merely as examples and are not intended to limit the scope of the invention. Additionally, the present disclosure may repeat reference numerals and/or letters in the various exemplary embodiments and across the Figures provided herein. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various exemplary embodiments and/or configurations discussed in the various Figures. Moreover, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed interposing the first and second features, such that the first and second features may not be in direct contact. Finally, the exemplary embodiments presented below may be combined in any combination of ways, i.e., any element from one exemplary embodiment may be used in any other exemplary embodiment, without departing from the scope of the disclosure.

    [0012] Additionally, certain terms are used throughout the following description and claims to refer to particular components. As one skilled in the art will appreciate, various entities may refer to the same component by different names, and as such, the naming convention for the elements described herein is not intended to limit the scope of the invention, unless otherwise specifically defined herein. Further, the naming convention used herein is not intended to distinguish between components that differ in name but not function. Additionally, in the following discussion and in the claims, the terms "including" and "comprising" are used in an open-ended fashion, and thus should be interpreted to mean "including, but not limited to." All numerical values in this disclosure may be exact or approximate values unless otherwise specifically stated. Accordingly, various embodiments of the disclosure may deviate from the numbers, values, and ranges disclosed herein without departing from the intended scope. Furthermore, as it is used in the claims or specification, the term "or" is intended to encompass both exclusive and inclusive cases, i.e., "A or B" is intended to be synonymous with "at least one of A and B," unless otherwise expressly specified herein. For the purposes of this application, the term "real-time" means without significant delay.

    [0013] Referring initially to Figure 1, automated drilling system 10 can include a drilling parameter sensor 12 that is in bidirectional communication with a control system 14 via a highspeed communication system 16 that can be capable of real-time, or near real-time communication. The drilling parameter sensor 12 can be any sensor operable to sense at least one drilling parameter and provide raw data regarding the drilling parameter to the control system 14. The drilling parameter sensor 12 may also be configured to receive operating instructions from the control system 14.

    [0014] The drilling parameter sensor 12 can be mounted to any location necessary to sense the drilling parameter being monitored. For example, drilling parameter sensor 12 may be a downhole sensor or a rig-mounted sensor. A downhole drilling parameter sensor 12 may be disposed at the bottom hole assembly (BHA) or at any location along a drillstring and may include sensors for measuring downhole drilling parameters including, but not limited to, WOB, torque, revolutions per minute (RPM), temperature, vibration, acceleration, pressure, formation characterization, borehole condition, and drilling fluid condition. A rig-mounted drilling parameter sensor 12 may be configured to monitor a component of the drilling system, including, but not limited to, top drives, draw works, pipe handling equipment, pressure control equipment, mud cleaning equipment, pumps, blow out preventers, iron roughnecks, pipe rackers, centrifuges, shakers, heave compensators, dynamic positioning systems, accumulators, and valves, to measure one or more drilling parameters including, but not limited to, WOB, torque, revolutions per minute (RPM), temperature, vibration, acceleration, and pressure.

    [0015] The control system 14 can also be in bidirectional communication with the drilling components 18 via a networked (wired or wireless is not specifically relevant) communication system. The control system 14 can provide operating instructions to the drilling components 18 in response to drilling parameters sensed by the drilling parameter sensors 12. The drilling components 18 can include, but are not limited to, top drives, draw works, pipe handling equipment, pressure control equipment, mud cleaning equipment, pumps, blow out preventers, iron roughnecks, pipe rackers, centrifuges, shakers, heave compensators, dynamic positioning systems, accumulators, and valves. The drilling components 18 can include one or more sensors that can monitor the performance of the equipment and provide feedback of the performance of the equipment to the control system 14.

    [0016] The sensor application 22 and process application 24 can be in bidirectional communication with the control system 14. The sensor application 22 and the process application 24 are operable to work with the control system 14 to process data received from the drilling parameter sensor 12, and other sensors, and provide operating instructions to one or more drilling component 18. In this manner, automated drilling system 10 allows the drilling process to be controlled and executed as well as adjusted and adapted using verification or command data collected by the drilling parameter sensor 12 or third party system.

    [0017] In operation, the raw data collected by the drilling parameter sensor 12 is relayed by the communication system 16 to the control system 14. This data then enters the control system 14 where it is prioritized and distributed to one or more sensor applications 22. The data from a single drilling parameter sensor 12 may be provided to one or more sensor applications 22. Likewise, a single sensor application 22 may receive data from one or more drilling parameter sensors 12. The sensor application 22 can process the data received by the drilling parameter sensor 12, or by other sensors, and communicate the processed data back to the control system 14.

    [0018] The control system 14 prioritizes and distributes the processed data to one or more process applications 24. The processed data can be received by one or more process applications 24 that can generate an instruction to modify an operating parameter of one or more drilling components 18. The process applications 24 receive data, including, but not limited to, data processed by the sensor applications 22, and analyze that data in order to evaluate the performance of the drilling components and issue instructions to modify the operating parameters of one or more drilling components 18 as needed. For example, a process application 24 can be configured to provide instructions to the drilling components 18 to manage surface WOB, torque, and RPM in response to downhole WOB, downhole torque and downhole vibration data collected by the drilling parameter sensor 12. Other process applications 24 can include, but are not limited to applications for managing control hole cleaning, equivalent circulating density (ECD) management, managed pressure drilling (MPD), kick detection, directional drilling, and drilling efficiency.

    [0019] The control station 20 can be in bidirectional communication with the control system 14 and provide a user interface that can be accessed by an operator on the rig or in a remote location. The control station 20 provides a location for providing manual input to the control system 14 and for manual override of the control system 14 if needed. The control station 20 can provide visual representation of the operation of the system including the status of one or more drilling components 18 and a real-time representation of data received from the drilling parameter sensors 12.

    [0020] Automated drilling system 10 provides a customizable, open concept control system where customized sensor applications 22 and/or process applications 24 allow the drilling process to be tailored to meet the specific needs of drilling contractors and rig operators. Automated drilling system 10 allows a plurality of sensor applications 22 and/or process applications 24 to be developed and selectively integrated into the control system 14 as needed. This enables the automated drilling system 10 to be easily adapted for a variety of implementations.

    [0021] Referring now to Figure 2, an exemplary BHA 40 can include a bit 42, a drive system 44, a sensor module 46, and a communication sub 48. The BHA 40 can be coupled to the rotating system, 52, or other surface equipment, via drill pipe 50. The bit 42, the drive system 44, the sensor module 46, and the drill pipe 50 can each include one or more drilling parameter sensors 12 to measure a selected drilling parameter, including, but not limited to, WOB, torque, RPM, temperature, vibration, acceleration, and pressure.

    [0022] The drilling parameter sensors 12 can be in bidirectional communication with the communication sub 48 via a wired or wireless connection. The communication sub 48 can be operable to receive data collected from each of the drilling parameter sensors 12 and transmit the data to the surface via communication system 16. The communications sub 48 can also be operable to receive control signals and other signals from the surface and relay those signals to one or more sensors 12 or other tools within the BHA 40.

    [0023] The communication system 16 can be any system suitable for the transmission of data and other signals between the BHA 40 to the surface at relatively high rates of speed. In certain embodiments, the communication system 16 supports continuous, real-time communication between the BHA 40 and the surface. Suitable communication systems 16 can utilize communication methods that include, but are not limited to, electric signals along wired drill pipe, mud-pulse telemetry, fiber optics, wireless signals, acoustic signals, and electromagnetic signals.

    [0024] The data transmitted from the BHA 40 can be received at the surface by surface communications link 54. The surface communications link 54 may be integrated into a component such as a swivel, internal blow out preventer (IBOP), or into an instrumented saver sub coupled to the drill string. The surface communications link 54 can be configured to transmit data to the communication controller 56 via a wired or wireless link 58. The communication controller 56 can be coupled to the control system 14 and operable to manage the flow of data between the control system 14 and the surface communications link 54. The communications controller 56 can also be in bidirectional communication with other sensors located at the surface, including sensors mounted on drilling components 18.

    [0025] Referring now to Figure 3, the control system 14 can include an internal communication bus 26, a network interface 28, a priority controller 30, data storage 32, a simulator interface 34, and a hardware controller 36. The internal communication bus 26 can also be in bidirectional communication with one or more sensor applications 22, one or more process applications 24, a control station 20, and communication controller 56. The network interface 28 can also be in bidirectional communication with external sources and users of information so that drilling operations and rig performance can be remotely monitored and controlled.

    [0026] In operation, raw data from drilling parameter sensors 12, and other sources, is received by internal communication bus 26 via communication controller 56. The internal communication bus 26 sends the data to the network interface 28. The network interface 28 receives raw data from the plurality of drilling parameter sensors 12, other sensors, and from external sources, such as offsite engineering or technical experts. The network interface 28 categorizes and sorts this data and then distributes the data back through the internal communication bus 26 to the sensor applications 22 and/or process applications 24 that can process that data.

    [0027] In order to provide flexibility and support the use of the control system 14 with a variety of drilling and completion operations, the control system 14 can be configured with customized sensor applications 22 and process applications 24 as needed for the particular operation. This allows control system 14 to be easily customized for use with specific drilling parameter sensors and the equipment available on a specific rig. If the rig equipment or drilling parameter sensors are changed, the corresponding applications on the control system 14 can also be changed without having to reprogram the entire control system.

    [0028] The sensor application 22 can be operable to receive raw data from one or more drilling parameter sensors 12, or other sensors, and generate processed data. The sensor application 22 can be operable to generate processed data representing downhole conditions including, but not limited to, WOB, torque, RPM, temperature, vibration, acceleration, and pressure. The processed data is then transmitted by internal communication bus 26 to the process applications 24 that can utilize the processed data to generate an instruction.

    [0029] The processed data can be received by one or more process applications 24 that can generate an instruction that may modify an operating parameter of one or more drilling components 18, display a status of the drilling operation, or cause another function to be performed. The process applications 24 receive data, including, but not limited to, data processed by the sensor applications 22, and analyze that data in order to evaluate the performance of the drilling components and issue instructions to modify the operating parameters of one or more drilling components 18 as needed. For example, a process application 24 can be configured to provide instructions to the drilling components 18 to manage surface WOB, torque, and RPM in response to downhole WOB, downhole torque and downhole vibration data collected by a drilling parameter sensor 12. Other process applications 24 can include, but are not limited to applications for managing control hole cleaning, equivalent circulating density (ECD) management, managed pressure drilling (MPD), kick detection, directional drilling, and drilling efficiency.

    [0030] Multiple sensor applications 22 and process applications 24 can simultaneously be in bidirectional communication with the control system 14. As described above, the sensor applications 22 and/or the process applications 24 can analyze and/or process collected data to generate an answer, which can include an instruction, measurement, operating condition, data point, or other information. Instructions generated by the process applications are then transmitted to the priority controller 30.

    [0031] The priority controller 30 monitors the performance of the entire drilling process and determines if the instructions generated by the process applications 24 can be implemented. For example, if a process application 24 generates an instruction for a drilling component to perform a certain function, the priority controller 30 determines if that function can be safely performed. Once an instruction has been cleared by the priority controller 30, that answer released by the priority controller 30 and can be sent to the hardware controller 36 or other component of the control system. The needs of the drilling operation will be given priority after the system has assessed priority, solely as an example a priority plan could be listed as follows: (1) safety considerations as defined by on site conditions; (2) machine limitations (could be assessed based on work yet to be done before maintenance is to be performed and available materials to maintain) as may be defined by equipment suppliers and supply chain; (3) well restrictions to avoid collapse or fracture as may be defined by the geologist and verified by defined on site personnel; (4) formation target accuracy as may be defined by the directional driller; (5) rate of penetration as may be defined by the company man; and (6) quality of well as may be defined by the petrophysicist.

    [0032] Once the instruction has been released by the priority controller 30, it can be routed to one or more of the hardware controller 36, simulator interface 34, data storage 32, or other system components. The hardware controller 36, which can include one or more primary logic controllers and/or single board controllers, can provide operating instructions to one or more drilling components 18. Data storage 32 can store both raw and processed data as well as any instructions sent to the drilling components 18. The simulator interface 34 may receive all the instructions that hardware controller 36 sends to the drilling components 18 so that those instructions can be provided to a drilling simulator that can replicate the instructions and predict the outcome of the operation.

    [0033] In one embodiment, a sensor application 22 can monitor one or more drilling parameter sensors 12 to compute a mechanical specific energy (MSE) and ROP. This data can be transmitted to a process application 24 that can vary one or more drilling parameters including, but not limited to, surface WOB, surface torque, and mud motor pressure. The process application 24 then can continue to receive information from the sensor application and adjust the drilling parameters in order to optimize the drilling process as desired by either minimizing MSE or maximizing ROP. Other sensor applications 22 can provide real time downhole measurements of downhole WOB, downhole torque, and downhole RPM that the process application 24 can use to optimize the drilling process.

    [0034] In another embodiment, a sensor application 22 can receive data from one or more drilling parameter sensors 12 to determine downhole vibrations, oscillations, stick-slip movement, or other dynamic movement in the drill string that can reduce the efficiency of the drilling process. The processed data can be sent to a process application 24 that will vary drilling parameters including, but not limited to, surface RPM and surface WOB, in order to reduce any undesired movements.

    [0035] In yet another embodiment, a process application 24 may be a pump pressure management application that utilizes processed data generated by one or more sensor applications 22 that acquire raw data from drilling parameter sensors monitoring downhole pressure, pump pressure, annulus pressure, and other wellbore pressures. The pump pressure management application can control the fluid pressure being pumped into the wellbore, by varying pump pressure, and then monitor the pressure returning to the surface to evaluate a variety of drilling conditions including, but not limited to, kick detection, hole cleaning, wellbore stability, and other flow issues.


    Claims

    1. A drilling system comprising:

    a plurality of drilling parameter sensors (12);

    a plurality of sensor applications (22) in communication with the drilling parameter sensors (12) and operable to generate processed data from raw data received from the drilling parameter sensors (12);

    a priority controller (30) operable to evaluate and selectively release the operating instructions; and

    an equipment controller (36) in communication with the priority controller and operable to receive operating instructions from the priority controller and issue the instructions to one or more drilling components when the instruction is released by the priority controller (30) and characterized by

    a plurality of process applications (24) in communication with the sensor applications (22) and operable to generate operating instructions based on the processed data generated by the sensor applications (22), the priority controller (30) being operable to evaluate a plurality of instructions issued by the plurality of process applications (24).
     
    2. The system of claim 1, further comprising a control station (20) coupled to the equipment controller (36) and operable to display the status of one or more drilling components.
     
    3. The system of claim 1 or claim 2, further comprising a network interface (28) operable to control data transmission between the drilling parameter sensors (12), the process applications (24), and the sensor applications (22).
     
    4. The system of claim 3, further comprising data storage (32) coupled to the network interface (28).
     
    5. The system of any one of claims 1 to 4, further comprising a simulator interface (34) operable to receive instructions from the priority controller.
     
    6. The system of any one of the preceding claims and incorporating a bottom hole assembly (BHA) (40) wherein a downhole sensor (12) is disposed at the bottom hole assembly (40).
     
    7. The system of any one of the previous claims and wherein the system further comprises a bit (42), a drive system (44), a sensor module (46) and a drill pipe (50), which can each include one or more drilling parameter sensors (12) to measure a selected drilling parameter, including, but not limited to, weight on bit (WOB), torque, revolutions per minute (RPM), temperature, vibration, acceleration and pressure.
     
    8. The system of any one of the preceding claims and wherein the plurality of drilling parameter sensors (12) comprises at least one rig mounted sensor and is configured to monitor such equipment as top drives, draw works, pipe handling equipment, pressure control equipment, mud cleaning equipment, pumps, blow out preventers, iron roughnecks, pipe rackers, centrifuges, shakers, heave compensators, dynamic positioning systems, accumulators and valves.
     
    9. A method of controlling a drilling process comprising:

    collecting data using a plurality of drilling parameter sensors (12);

    transmitting the data to a control system including a plurality of sensor applications (22) and process applications (24);

    processing the data using the sensor application (22) to provide a representation of a drilling parameter;

    generating an instruction by analyzing the representation of a drilling condition using the process applications (24);

    evaluating the instruction with a priority controller (30) to determine if the instruction can be released; and

    transmitting the instruction to one or more drilling components when the instruction is released by the priority controller (30) and characterized by

    a plurality of process applications (24) in communication with the sensor applications (22) and operable to generate operating instructions based on the processed data generated by the sensor applications (22), the priority controller (30) being operable to evaluate a plurality of instructions issued by the plurality of process applications (24).
     
    10. The method of claim 9, further comprising transmitting additional data to the control system from a network interface (28).
     
    11. The method of claim 9 or claim 10, further comprising coupling data storage (32) to the network interface.
     
    12. The method of any one of claims 9 to 11 further comprising transmitting the instruction to a simulator interface (34).
     
    13. The method of any one of claims 9 to 12, further comprising displaying a status of one or more drilling components on a control station (20).
     
    14. The method of any one of claims 9 to 13 including a drilling system having a bit (42), a drive system (44), a sensor module (46) and a drill pipe (50), wherein the plurality of drilling parameter sensors (12) comprises a plurality of downhole sensors and at least one rig mounted sensor; and wherein said bit (42), said drive system (44), said sensor module (46) and said drill pipe (50) can each include one or more drilling parameter sensors (12) to measure a selected drilling parameter, including, but not limited to, weight on bit (WOB), torque, revolutions per minute (RPM), temperature, vibration, acceleration and pressure and the at least one rig mounted sensor is configured to monitor such equipment as top drives, draw works, pipe handling equipment, pressure control equipment, mud cleaning equipment, pumps, blow out preventers, iron roughnecks, pipe rackers, centrifuges, shakers, heave compensators, dynamic positioning systems, accumulators and valves.
     


    Ansprüche

    1. Bohrsystem, umfassend:

    eine Vielzahl von Bohrparametersensoren (12);

    eine Vielzahl von Sensoranwendungen (22), die mit den Bohrparametersensoren (12) in Kommunikation stehen und die fähig sind, verarbeitete Daten aus Rohdaten zu erzeugen, welche von den Bohrparametersensoren (12) empfangen werden;

    ein Vorrechtssteuergerät (30), das fähig ist, die Betriebsinstruktionen zu beurteilen und selektiv freizugeben; und

    ein Ausrüstungssteuergerät (36), das mit dem Vorrechtsteuergerät in Kommunikation steht und fähig ist, Betriebsinstruktionen von dem Vorrechtssteuergerät zu empfangen und die Instruktionen an ein oder mehrere Bohrkomponenten auszugeben, wenn die Instruktion von dem Vorrechtssteuergerät (30) freigegeben wird, und gekennzeichnet durch eine Vielzahl von Verfahrensanwendungen (24), die mit den Sensoranwendungen (22) in Kommunikation stehen und die fähig sind, Betriebsinstruktionen auf Basis von den verarbeiteten Daten, die durch die Sensoranwendungen (22) erzeugt werden, zu erzeugen, wobei das Vorrechtsteuergerät (30) fähig ist eine Vielzahl von Instruktionen, die von der Vielzahl von Verfahrensanwendungen (24) ausgegeben werden, zu beurteilen.


     
    2. System nach Anspruch 1, ferner umfassend eine Steuerstation (20), die mit dem Ausrüstungssteuergerät (36) verbunden ist und fähig ist, den Status von ein oder mehreren Bohrkomponenten darzustellen.
     
    3. System nach Anspruch 1 oder 2, ferner umfassend eine Netzwerkschnittstelle (28), die fähig ist die Datenübertragung zwischen den Bohrparametersensoren (12), den Verfahrensanwendungen (24) und den Sensoranwendungen (22) zu steuern.
     
    4. System nach Anspruch 3, ferner umfassend einen Datenspeicher (32), der mit der Netzwerkschnittstelle (28) verbunden ist.
     
    5. System nach einem der Ansprüche 1 bis 4, ferner umfassend eine Simulatorschnittstelle (34), die fähig ist, Instruktionen von dem Vorrechtsteuergerät zu empfangen.
     
    6. System nach einem der vorhergehenden Ansprüche, das eine Bodenlochanordnung (BHA für Englisch: bottom whole assembly) (40) umfasst, wobei ein Bohrlochsensor (12) an der Bodenlochanordnung (40) angeordnet ist.
     
    7. System nach einem der vorhergehenden Ansprüche, wobei das System ferner einen Bohreinsatz (42), ein Antriebssystem (44), ein Sensormodul (46) und ein Bohrrohr (50) umfasst, die jeweils ein oder mehrere Bohrparametersensoren (12) umfassen können, um einen ausgewählte Bohrparameter zu messen, einschließlich von, jedoch nicht darauf beschränkt, der Belastung an dem Boreinsatz (WOB für Englisch: weight on bit), Drehmoment, Umdrehungen pro Minute (RPM), Temperatur, Vibration, Beschleunigung und Druck.
     
    8. System nach einem der vorhergehenden Ansprüche, wobei die Vielzahl von Bohrparametersensoren (12) mindestens einen an der Boranlage befestigten Sensor umfasst und konfiguriert ist, Ausrüstung zu überwachten, wie zum Beispiel Kraftdrehköpfe, Zuganlagen, Ausrüstung zur Handhabung von Rohren, Drucksteuerausrüstung, Schlammreinigungsausrüstung, Pumpen, Blowout-Preventer, Gestängeverschraubungen, Rohrgestelle, Zentrifugen, Schüttler, Seegang-Kompensatoren, dynamische Positionierungssysteme, Akkumumatoren und Ventile.
     
    9. Verfahren zum Steuern von einem Bohrverfahren, umfassend:

    Sammeln von Daten unter Verwerdung von einer Vielzahl von Bohrparametersensoren (12);

    Übermitteln der Daten zu einem Steuersystem, das eine Vielzahl von Sensoranwendungen (22) und Verfahrensanwendungen (24) umfasst;

    Verarbeiten der Daten unter Verwerdung der Sensoranwendung (22), um eine Repräsentation von einem Bohrparameter bereitzustellen;

    Erzeugen von einer Instruktion durch Analysieren von der Repräsentation von einem Bohrzustand, wobei die Verfahrensanwendungen (24) verwendet werden;

    Beurteilen von der Instruktion mit einem Vorrechtsteuergerät (30), um zu bestimmen, ob die Instruktionen freigegeben werden kann; und

    Übertragen von der Instruktion zu ein oder mehreren Bohrkomponenten, wenn die Instruktion durch das Vorrechtsteuergerät (30) freigegeben wird, und gekennzeichnet durch

    eine Vielzahl von Verfahrensanwendungen (24), die mit den Sensoranwendungen (22) in Kommunikation stehen und die fähig sind, Betriebsinstruktionen auf Basis von den verarbeiteten Daten, die durch die Sensoranwendungen (22) erzeugt werden, zu erzeugen, wobei das Vorrechtsteuergerät (30) fähig ist eine Vielzahl von Instruktionen, die von der Vielzahl von Verfahrensanwendungen (24) ausgegeben werden, zu beurteilen.


     
    10. Verfahren nach Anspruch 9, ferner umfassend das Übertragen von zusätzlichen Daten von einer Netzwerkschnittstelle (28) zu dem Steuersystem.
     
    11. Verfahren nach Anspruch 9 oder 10, ferner umfassend das Verbinden des Datenspeichers (32) mit der Netzwerkschnittstelle.
     
    12. Verfahren nach einem der Ansprüche 9 bis 11, ferner umfassend das Übertragen von der Instruktion zu einer Simulatorschnittstelle (34).
     
    13. Verfahren nach einem der Ansprüche 9 bis 12, ferner umfassend das Darstellen von einem Status von ein oder mehreren Bohrkomponenten auf einer Steuerstation (20).
     
    14. Verfahren nach einem der Ansprüche 9 bis 13, umfassend ein Rohrsystem, das einen Bohreinsatz (42), ein Antriebssystem (44), ein Sensormodul (46) und ein Bohrrohr (50) aufweist, wobei die Vielzahl von Bohrparametersensoren (12) eine Vielzahl von Bohrlochsensoren und mindestens einen an der Boranlage befestigten Sensor umfasst; und wobei der Bohreinsatz (42), das Antriebssystem (44), das Sensormodul (46) und das Bohrrohr (50) jeweils ein oder mehrere Bohrparametersensoren (12) umfassen können, um einen ausgewählten Bohrparameter zu messen, einschließlich von, jedoch nicht darauf beschränkt, der Belastung an dem Boreinsatz (WOB für Englisch: weicht on bit), Drehmoment, Umdrehungen pro Minute (RPM), Temperatur, Vibration, Beschleunigung und Druck, und der mindestens eine an der Boranlage befestigte Sensor konfiguriert ist, Ausrüstung zu überwachten, wie zum Beispiel Kraftdrehköpfe, Zuganlagen, Ausrüstung zur Handhabung von Rohren, Drucksteuerausrüstung, Schlammreinigungsausrüstung, Pumpen, Blowout-Preventer, Gestängeverschraubungen, Rohrgestelle, Zentrifugen, Schüttler, Seegang-Kompensatoren, dynamische Positionierungssysteme, Akkumulatoren und Ventile.
     


    Revendications

    1. Système de forage comprenant :

    une pluralité de capteurs de paramètre de forage (12) ;

    une pluralité d'applications de capteur (22) en communication avec les capteurs de paramètre de forage (12) et exploitables pour générer des données traitées issues de données brutes reçues des capteurs de paramètre de forage (12) ;

    un régulateur de priorité (30) exploitable pour évaluer et délivrer sélectivement les instructions d'exploitation ; et

    un régulateur d'équipement (36) en communication avec le régulateur de priorité et exploitable pour recevoir des instructions d'exploitation du régulateur de priorité et émettre les instructions vers un ou de plusieurs composants de forage lorsque l'instruction est délivrée par le régulateur de priorité (30) et caractérisé par

    une pluralité d'applications de processus (24) en communication avec les applications de capteur (22) et exploitables pour générer des instructions d'exploitation sur la base des données traitées générées par les applications de capteur (22), le régulateur de priorité (30) étant exploitable pour évaluer une pluralité d'instructions émises par la pluralité d'applications de processus (24).


     
    2. Système selon la revendication 1, comprenant en outre une station de régulation (20) couplée au régulateur d'équipement (36) et exploitable pour afficher le statut d'un ou de plusieurs composants de forage.
     
    3. Système selon la revendication 1 ou la revendication 2, comprenant en outre une interface réseau (28) exploitable pour réguler une transmission de données entre les capteurs de paramètre de forage (12), les applications de processus (24) et les applications de capteur (22).
     
    4. Système selon la revendication 3, comprenant en outre une unité de stockage de données (32) couplé à l'interface réseau (28).
     
    5. Système selon l'une quelconque des revendications 1 à 4, comprenant en outre une interface de simulateur (34) exploitable pour recevoir des instructions du régulateur de priorité.
     
    6. Système selon l'une quelconque des revendications précédentes, et incorporant un ensemble fond de trou (BHA) (40) dans lequel un capteur de fond de puits (12) est disposé au niveau de l'ensemble fond de trou (40).
     
    7. Système selon l'une quelconque des revendications précédentes, et dans lequel le système comprend en outre un trépan (42), un système d'entraînement (44), un module de capteur (46) et une tige de forage (50), qui peuvent chacun inclure un ou plusieurs capteurs de paramètre de forage (12) pour mesurer un paramètre de forage sélectionné, incluant, sans s'y limiter, le poids au trépan (WOB), le couple, les tours par minute (TR/MIN), la température, les vibrations, l'accélération et la pression.
     
    8. Système selon l'une quelconque des revendications précédentes, et dans lequel la pluralité de capteurs de paramètre de forage (12) comprend au moins un capteur monté sur appareil de forage et est configuré pour surveiller des équipements tels que des entraînements par le haut, des treuils de forage, un équipement de manutention de tige, un équipement de régulation de pression, un équipement de nettoyage de boue, des pompes, des blocs obturateurs de puits, des sondeurs, des parcs à tiges, des centrifugeuses, des secoueurs, des compensateurs de pilonnement, des systèmes de positionnement dynamique, des accumulateurs et des vannes.
     
    9. Procédé de régulation d'un processus de forage comprenant :

    la collecte de données à l'aide d'une pluralité de capteurs de paramètre de forage (12) ;

    la transmission des données à un système de régulation incluant une pluralité d'applications de capteur (22) et d'applications de processus (24) ;

    le traitement des données à l'aide de l'application de capteur (22) pour fournir une représentation d'un paramètre de forage ;

    la génération d'une instruction par l'analyse de la représentation d'une condition de forage à l'aide des applications de processus (24) ;

    l'évaluation de l'instruction avec un régulateur de priorité (30) pour déterminer si l'instruction peut être délivrée ; et

    la transmission de l'instruction à un ou plusieurs composants de forage lorsque l'instruction est délivrée par le régulateur de priorité (30) et caractérisé par

    une pluralité d'applications de processus (24) en communication avec les applications de capteur (22) est exploitables pour générer des instructions d'exploitation sur la base des données traitées générées par les applications de capteur (22), le régulateur de priorité (30) étant exploitable pour évaluer une pluralité d'instructions émises par la pluralité d'applications de processus (24).


     
    10. Procédé selon la revendication 9, comprenant en outre la transmission de données additionnelles au système de régulation à partir d'une interface réseau (28).
     
    11. Procédé selon la revendication 9 ou la revendication 10, comprenant en outre le couplage d'une unité de stockage de données (32) à l'interface réseau.
     
    12. Procédé selon l'une quelconque des revendications 9 à 11, comprenant en outre la transmission de l'instruction à une interface de simulateur (34).
     
    13. Procédé selon l'une quelconque des revendications 9 à 12, comprenant en outre l'affichage d'un statut d'un ou de plusieurs composants de forage sur une station de régulation (20).
     
    14. Procédé selon l'une quelconque des revendications 9 à 13, incluant un système de forage comportant un trépan (42), un système d'entraînement (44), un module de capteur (46) et une tige de forage (50), dans lequel la pluralité de capteurs de paramètre de forage (12) comprend une pluralité de capteurs en fond de puits et au moins un capteur monté sur appareil de forage ; et dans lequel ledit trépan (42), ledit système d'entraînement (44), ledit module de capteur (46) et ladite tige de forage (50) peuvent inclure chacun un ou plusieurs capteurs de paramètre de forage (12) pour mesurer un paramètre de forage sélectionné, incluant, sans s'y limiter, le poids au trépan (WOB), le couple, les tours par minute (TR/MIN), la température, les vibrations, l'accélération et la pression et l'au moins un capteur monté sur appareil de forage est configuré pour surveiller des équipements tels que des entraînements par le haut, des treuils de forage, un équipement de manutention de tige, un équipement de régulation de pression, un équipement de nettoyage de boue, des pompes, des blocs obturateurs de puits, des sondeurs, des parcs à tiges, des centrifugeuses, des secoueurs, des compensateurs de pilonnement, des systèmes de positionnement dynamique, des accumulateurs et des vannes.
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description