(19)
(11) EP 3 080 829 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
16.08.2017 Bulletin 2017/33

(21) Application number: 14792976.4

(22) Date of filing: 23.10.2014
(51) International Patent Classification (IPC): 
H01H 71/08(2006.01)
H01H 33/59(2006.01)
H01H 71/12(2006.01)
(86) International application number:
PCT/US2014/061857
(87) International publication number:
WO 2015/088654 (18.06.2015 Gazette 2015/24)

(54)

ELECTRICAL SWITCHING APPARATUS INCLUDING TRANSDUCTOR CIRCUIT AND ALTERNATING CURRENT ELECTRONIC TRIP CIRCUIT

ELEKTRISCHE SCHALTVORRICHTUNG MIT TRANSDUKTORSCHALTUNG UND ELEKTRONISCHER WECHSELSTROMAUSLÖSESCHALTUNG

APPAREIL DE COMMUTATION ÉLECTRIQUE COMPRENANT UN CIRCUIT DE TRANSDUCTEUR ET UN CIRCUIT DE DÉCLENCHEMENT ÉLECTRONIQUE À COURANT ALTERNATIF


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 09.12.2013 US 201314100214

(43) Date of publication of application:
19.10.2016 Bulletin 2016/42

(73) Proprietor: Eaton Corporation
Cleveland, OH 44122 (US)

(72) Inventors:
  • ZHOU, Xin
    Franklin Park, Pennsylvania 15090 (US)
  • CARLINO, Harry J.
    Export, Pennsylvania 15632 (US)
  • CAFFRO, Brian S.
    Aliquippa, Pennsylvania 15001 (US)

(74) Representative: Carstens, Dirk Wilhelm 
Wagner & Geyer Gewürzmühlstraße 5
80538 München
80538 München (DE)


(56) References cited: : 
EP-A1- 2 234 136
CA-C- 1 293 022
GB-A- 883 660
US-A- 5 615 075
EP-A2- 2 461 345
DE-A- 3 724 116
US-A- 3 475 620
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND


    Field



    [0001] The disclosed concept pertains generally to electrical switching apparatus and, more particularly, to circuit breakers including a plurality of separable contacts.

    Background Information



    [0002] Circuit breakers have been used in alternating current (AC) applications and direct current (DC) applications. The applications for DC circuit breakers have been very small. With the larger use of alternative energy sources, such as photovoltaic applications, the DC applications are increasing. DC molded case circuit breakers have used mechanical thermal and magnetic trip units for overload and short circuit protection, while some DC air circuit breakers employ electronic trip units. Magnetic trip units instantaneously trip the circuit breaker when the current in the protected circuit exceeds a predetermined level. However, magnetic trip units are difficult to calibrate and are not as accurate as electronic trip units. Thermal trip units are less susceptible to nuisance tripping, but take a longer amount of time to trip the circuit breaker, and are susceptible to ambient thermal conditions causing accuracy problems. Because of these problems thermal and magnetic trip units are not typically used in the larger size and higher current rated circuit breakers in AC applications, but rather, AC electronic trip units, which use a current transformer to sense the AC current, are used.

    [0003] Without a time varying magnetic field, the AC current transformer will produce no electromotive force with DC current, which makes the AC electronic trip unit inoperable in DC applications. Certain DC circuit breakers such as DC air circuit breakers have used a DC electronic trip unit in combination with a shunt to sense the DC current in the protected circuit. The DC electronic trip unit provides enhanced control and tripping accuracy of the circuit breaker over thermal and magnetic trip units. However, DC circuit breakers which include a DC electronic trip unit are costly as compared to the high volume and readily available AC electronic trip units.

    [0004] Photovoltaic applications present difficulties for current DC circuit breakers. In photovoltaic applications, the short circuit current level can be relatively low (e.g., less than 200% of the rated current and usually about 125% to 135% of the rated current). Due to the relatively low short circuit current level, DC circuit breakers which use thermal and magnetic trip units are typically not desirable because it is difficult to set the magnetic trip unit precisely at these low levels and could cause excessive nuisance tripping and the thermal trip unit may not offer adequate protection due to the long time it takes to trip the circuit breaker. While a DC circuit breaker which uses a DC electronic trip unit can offer suitable circuit protection in photovoltaic applications, the cost of the DC circuit breaker with a DC electronic trip unit is a concern. Attention is also drawn to EP 2 461 345 A1, which shows an electrical switching apparatus including at least one pole, a plurality of first terminals, a plurality of second terminals, a plurality of pairs of separable contacts, and a plurality of field-configurable jumpers. Each of the plurality of field-configurable jumpers electrically connects two of the pairs of separable contacts in series. Each of the plurality of field-configurable jumpers are electrically connected to: two of the first terminals; two of the first terminals or two of the second terminals; or one of the first terminals and one of the second terminals.

    [0005] There is room for improvement in electrical switching apparatus, such as circuit breakers.

    SUMMARY



    [0006] These needs and others are met by embodiments of the disclosed concept in which an electrical switching apparatus having an electronic trip circuit includes a transductor circuit and an alternating current electronic trip circuit used for direct current applications.

    [0007] In accordance with the present invention, an electrical switching apparatus as set forth in claim 1 is provided. Further embodiments are inter alia disclosed in the dependent claims. The electrical switching apparatus according to the invention comprises: a plurality of first terminals including two input terminals structured to electrically connect to a direct current power source; a plurality of second terminals including two output terminals structured to electrically connect to a direct current load; a plurality of pairs of separable contacts; a plurality of conductors that electrically connect each pair of separable contacts between one of the first terminals and one of the second terminals; a transductor circuit that senses a direct current between at least one of the input terminals and at least one of the output terminals and outputs an alternating current proportional to the direct current; and an alternating current electronic trip circuit structured to control the plurality of pairs of separable contacts to separate based on the alternating current output from the transductor circuit, the alternating current electronic trip circuit including a rectifier circuit having a rectifier circuit input and a rectifier circuit output, the rectifier circuit input being electrically connected to the transductor circuit, an interface circuit having an interface circuit input and an interface circuit output, the interface circuit input being electrically connected to the rectifier circuit output, and a processor having a processor input electrically connected to the interface circuit output, the processor being structured to output a control signal to control the plurality of pairs of separable contacts to separate, wherein the plurality of conductors include a first conductor and a second conductor; wherein the transductor circuit includes a first current transformer having a secondary winding inductively coupled with the first conductor, a second current transformer having a secondary winding inductively coupled with the second conductor, and an alternating current power circuit configured to provide an alternating voltage to the first current transformer and the second current transformer; and wherein the secondary windings of the first current transformer and the second current transformer are electrically connected in series-opposition such that an electromotive force induced in the secondary winding of the first current transformer by the direct current is in opposition with an electromotive force induced in the secondary winding of the second current transformer by the direct current.

    BRIEF DESCRIPTION OF THE DRAWING



    [0008] A full understanding of the disclosed concept can be gained from the following description of the preferred embodiments when read in conjunction with the accompanying drawings in which:

    Figure 1 is a circuit diagram of an electrical switching apparatus in accordance with an embodiment of the disclosed concept.

    Figures 2 and 3 are schematic diagrams of different configurations of an electrical switching apparatus in accordance with another embodiment of the disclosed concept.

    Figures 4 and 5 are circuit diagrams of an electrical switching apparatus including configuration plugs in accordance with another embodiment of the disclosed concept.

    Figures 6 and 7 are circuit diagrams of electrical switching apparatuses in accordance with other embodiments of the disclosed concept.

    Figure 8 is a circuit diagram of an electrical switching apparatus electrically connected two a potentially ungrounded load and including an alternating current (AC) electronic trip circuit in block form in accordance with an embodiment of the disclosed concept.

    Figure 9 is a circuit diagram of an electrical switching apparatus electrically connected to a potentially grounded load and including an AC electronic trip circuit in block form in accordance with an embodiment of the disclosed concept.

    Figure 10 is a circuit diagram of an AC electronic trip circuit in accordance with an embodiment of the disclosed concept.

    Figure 11 is an example graph of sensed direct current versus actual direct current for different alternating current excitation voltages in a transductor circuit.


    DESCRIPTION OF THE PREFERRED EMBODIMENTS



    [0009] As employed herein, the term "number" shall mean one or an integer greater than one (i.e., a plurality).

    [0010] As employed wherein, the term "electrical conductor" shall mean a wire (e.g., without limitation, solid; stranded; insulted; non-insulated), a copper conductor, an aluminum conductor, a suitable metal conductor, or other suitable material or object that permits an electric current to flow easily.

    [0011] As employed herein, the statement that two or more parts are "connected" or "coupled" together shall mean that the parts are joined together either directly or joined through one or more intermediate parts. Further, as employed herein, the statement that two or more parts are "attached" shall mean that the parts are joined together directly.

    [0012] As employed herein, the term "processor" shall mean a programmable analog and/or digital device that can store, retrieve, and process data; a computer; a workstation; a personal computer; a controlled; a digital signal processor; a microprocessor; a microcontroller; a microcomputer; a central processing unit; a mainframe computer; a mini-computer; a server; a networked processor; or any suitable processing device or apparatus.

    [0013] Figure 1 is a circuit diagram of an electrical switching apparatus I which can be, for example and without limitation, a circuit breaker. The electrical switching apparatus 1 is electrically connected to a protected circuit 300 (shown in phantom line drawings). The protected circuit 300 includes a DC power source 302 and a DC load 304. The electrical switching apparatus 1 includes one or more pairs of separable contacts 406. The electrical switching apparatus 1 also includes an operating mechanism 414 that opens and closes the one or more pairs of separable contacts 406 and a trip actuator 416 that cooperates with the operating mechanism 414 to trip open the one or more pairs of separable contacts 406. The electrical switching apparatus 1 senses a DC current in the protected circuit 300, and based on the sensed DC current, separates the one or more pairs of separable contacts 406 to interrupt the protected circuit 300.

    [0014] The electrical switching apparatus 1 includes a transductor circuit 100 which is inductively coupled with the protected circuit 300. The transductor circuit 100 outputs an AC current which is proportional to the DC current flowing in the protected circuit 300. As such, the AC current output by the transductor circuit 100 can be used to determine a level of the DC current in the protected circuit 300.

    [0015] The electrical switching apparatus 1 also includes an AC electronic trip circuit 200. The AC electronic trip circuit 200 is electrically connected to the transductor circuit 100 and receives the AC current output by the transductor circuit 100. The AC electronic trip circuit 200 determines a level of the Current in the protected circuit 300 based on the AC current received from the transductor circuit 100. Thus, based on the AC current received from the transductor circuit 100, the AC electronic trip circuit 200 controls the one or more pairs of separable contacts 406 to separate. The AC electronic trip circuit 200 provides enhanced control of tripping of the electrical switching apparatus 1 over known prior circuit breakers which use mechanical thermal and magnetic trip units. Furthermore, the AC electronic trip circuit 200 is economical to produce, as similar components can be used for both AC and DC protected circuit applications.

    [0016] The transductor circuit 100 includes a first current transformer 110 and a second current transformer 120. The first current transformer 110 and the second current transformer 120 include respective secondary windings 114 and 124 which are inductively coupled with the protected circuit 300. The first current transformer 110 and the second current transformer 120 are electrically connected in series opposition with each other such that an electromotive force induced in the first current transformer 110 by the DC current in the protected circuit 300 is opposed to an electromotive force induced in the second current transformer 120 by the DC current in the protected circuit 300. By the cancellation of the electromotive forces, this arrangement electrically neutralizes the transformer effect. The transductor circuit can also be designed in a fashion that it magnetically neutralizes the transformer effect.

    [0017] The transductor circuit 100 also includes a power source which provides an AC voltage to the secondary findings of the first and second AC current transformers 110, 120. In the example shown in Figure 1, the power source includes an AC power source 104 and a third transformer 102 to isolate the AC power source 104 from the first and second AC current transformers 110, 120, Arranging the AC current transformers 110, 120 in series opposition with each other and providing the AC power source 104 causes the transductor circuit 100 to output an AC current which is proportional to the DC current in the protected circuit 300. It is contemplated that any suitable power source may be employed to provide the AC voltage to the secondary windings of the first and second AC current transformers 110, 120. For example, in one non-limiting example embodiment shown in Figure 6, the third transformer 102 is omitted from the power source and the AC power source 104 is electrically connected to the secondary winding of the first AC current transformer 110. In another example embodiment shown in Figure 7, the power source includes a DC/AC inverter 127 which is electrically connected to the secondary winding of the first AC current transformer 110 and converts a DC voltage generated by a second DC power source 128 into an AC voltage.

    [0018] The secondary windings 114 and 124 of the current transformers 110, 120 have first ends 112 and 122 and second ends 116 and 126, respectively. In the example shown in Figure 1, the first end 112 of the first current transformer 110 is electrically connected to the third transformer 102. The second end 116 of the first current transformer 110 is electrically connected to the second end 126 of the second current transformer 120. The first end 122 of the second current transformer 120 is electrically connected to the AC electronic trip circuit 200. In the example shown in Figure 5, the electrical connection between the first current transformer 110 and the second transformer 120 is changed such that the second end 116 of the first current transformer 110 is electrically connected to the first end 122 of the second current transformer 120 and the second end 126 of the second current transformer 120 is electrically connected to the AC electronic trip circuit 200. However, in both the examples shown in Figures 1 and 5, the first current transformer 110 and the second current transformer 120 are electrically connected in series opposition with each other with respect to the electromotive forces induced by the DC current in the protected circuit 300.

    [0019] Referring to Figures 2-4, examples of different configurations of the electrical switching apparatus 1 are shown. Figures 2 and shot schematics of a conductive path in the electrical switching apparatus 1. The conductive path includes first terminals 402, second terminals 404, pairs of separable contacts 406, jumpers 408, and conductors 410. Two of the first terminals 402 are input terminals which are configured to electrically connect to the DC power source 302. Two of the second terminals 404 are output terminals which are structured to electrically connect to the DC load 304. The first terminals 402, second terminals 404, pairs of separable contacts 406, jumpers 408, and conductors 410 are connected in series to complete a circuit between the DC power source 302 and DC load 304.

    [0020] The first current transformer 110 and the second current transformer 120 are inductively coupled to at least one of the conductors 410. While Figures 2 and 3 show two examples placements of the first current transformer 110 and the second current transformer 120, the disclosed concept is not limited to those example placements. The first current transformer 110 and the second current transformer 120 may be placed at a suitable location in order to inductively couple to any of the conductors 410.

    [0021] In the example shown in Figure 2, the jumpers 408 are each connected between one of the first terminals 402 and one of the second terminals 404. The configuration of jumpers 408 shown in the example of Figure 2 is generally suitable for a potentially ungrounded load where the DC load 304 is not electrically connected to a ground 412. In the example shown in Figure 3, the jumpers 408 are each connected between two of the first terminals 402 or two of the second terminals 404. The configuration of jumpers 408 shown in the example of Figure 3 is generally suitable for a potentially grounded load where the DC load 304 is electrically connected to a ground 412.

    [0022] The change in configuration of the jumpers 408 between the examples shown in Figures 2 and 3 changes the direction of the electromotive force induced in one of the current transformers 110, 120. As such, when the configuration of the jumpers 408 is changed between the examples shown in Figure 2 and the example shown in Figure 3, the electrical connection between the first current transformer 110 and the second current transformer 120 should also be changed to keep the first current transformer 110 and the second current transformer 120 electrically connected in series opposition so that it neutralizes the transformer effect.

    [0023] To facilitate changing the electrical connection between the first current transformer 110 and the second current transformer 120, configuration plugs 500 and 500', as shown in respective Figures 4 and 5, are included in the electrical switching apparatus 1. In the example shown in Figure 4, the configuration plug 500 electrically connects the secondary windings of the first current transformer 110 and the second current transformer 120 in the same manner as shown in Figure 1. In the example shown in Figure 5, the configuration plug 500' electrically connects the second end 116 of the first current transformer 110 with the first end 122 of the second current transformer 120 and the second end 126 of the second current transformer 120 with the AC electronic trip circuit 200.

    [0024] The configuration plugs 500 and 500' can form a configuration plug set where the configuration plugs 500 and 500' respectively correspond to a different configuration of the electrical switching apparatus 1. For example, the first configuration plug 500 can be used in conjunction with the example configuration of the electrical switching apparatus 1 shown in Figure 2 and the second configuration plug 500' can be used in conjunction with the example configuration of the electrical switching apparatus 1 shown in Figure 3.

    [0025] In addition to changing the electrical connection between the first current transformer 110 and the second current transformer 120, the configuration plugs 500 and 500' can each include resistors 501. A resistance value of the resistors 501 can be selected to correspond to a rating of the electrical switching apparatus 1 so that the voltage drop across the resistors at the rated DC current stays at a constant value, As such, the configuration plug set can include different configuration plugs which correspond to electrical connections between the first current transformer 110 and the second current transformer 120, and also can correspond to different ratings of the electrical switching apparatus 1.

    [0026] Referring to Figure 8, the electrical switching apparatus 1 is configured for use with the potentially ungrounded direct current load 304. The AC electronic trip circuit 200 includes first, second, and third rectifier circuits 202,204,206, first, second, and third interface circuits 208,210,212, a trip threshold setting circuit 214, and a processor 216.

    [0027] The first rectifier circuit 202 includes a first rectifier circuit input 218 and a first rectifier circuit output 220. The first rectifier circuit input 218 is electrically connected to the tranductor circuit 100 and is structured to receive the alternating current output from the transductor circuit 100. The first rectifier circuit 202 rectifies the alternating current and outputs the rectified alternating current to the first rectifier circuit output 220.

    [0028] The first interface circuit 208 includes a first interface circuit input 222 and a first interface circuit output 224. The first interface circuit input 222 is electrically connected to the first rectifier circuit output 220 and is structured to receive the rectified alternating current. The first interface circuit input 222 is also electrically connected to the trip threshold setting circuit 214. The trip threshold setting circuit 214 is structured to set a threshold at which the processor 216 controls the trip actuator 416 to cause the operating mechanism 414 to separate and open the separable contacts 406. The first interface circuit output 224 is electrically connected to a first processor input 226 of the processor 216.

    [0029] The processor 216 is structured to monitor the first processor input 226 and to determine whether a trip condition (e.g., without limitation, an over current condition) exists. When the processor 216 determines that a trip condition exists, it outputs a control signal to the trip actuator 416 to control the trip actuator 416 to cause the operating mechanism 414 to separate and open the separable contacts 406.

    [0030] The second and third rectifier circuits 204,206 are structured similar to the first rectifier circuit 202 and the second and third interface circuits 210,212 are structured similar to the first interface circuit 208. When the AC electronic trip circuit 200 is employed in a three-phase AC application, each of the first, second, and third rectifier circuits 202,204,206 correspond to one of the phases. However, when the AC electronic trip circuit 200 is employed in a DC application, as shown for example in Figure 8, the output of the transductor circuit 100 only needs to electrically connect to one of the first, second, and third rectifier circuits 202,204,206 and the others are not used.

    [0031] Referring to Figure 9, an example of a different configuration of the electrical switching apparatus 1 is shown. In Figure 9, the electrical switching apparatus 1 has a configuration that is generally suitable for a potentially grounded load where the DC load 304 is electrically connected to a ground 412.

    [0032] Figure 10 is a circuit diagram of the AC electronic trip circuit 200 in accordance with an example embodiment of the disclosed concept. The first rectifier circuit includes a full-wave rectifier 228.

    [0033] The first interface circuit 208 includes a resistor R1 electrically connected between the first interface input 222 and the first interface output 224. Changing the value of the resistor R1 changes the magnitude of the current at the first processor input 226. The processor 216 can be programmed based on receiving a predetermined level of current at the first processor input 226 when a rated current flows through the protected circuit. Generally, the processor 216 will be programmed based on an AC application. That is, the processor 216 will be programmed based on receiving a current having a first value at the first processor input 226 when a rated AC current flows through the protected circuit. However, the output of the transductor circuit 100 when a rated DC current flows through the protected circuit will be different than the output of the current transformers used in an AC application. To avoid reprogramming the processor 216, the value of the resistor R1 can be selected in order that the current at the first processor input 226 is substantially the same as the first value when a rated DC current flows through the power circuit. In one example embodiment, the value of the resistor R1 is about 6.3 kΩ.

    [0034] The second and third rectifier circuits 204,206 also include full-wave rectifiers 230,232 similar to the full-wave rectifier 228 in the first rectifier circuit 202. The second and third interface circuits 210,212 also include resistors R2,R3 similar to the resistor R1 in the first interface circuit 208. While the second and third rectifier circuits 204,206 and the second and third interface circuits 210,212 are not used in the disclosed electrical switching apparatus 1, it will be appreciated by those having ordinary skill in the art that the output of the transductor circuit 100 may be electrically connected to any one of the first, second, or third rectifier circuits 202,204,206.

    [0035] The trip threshold setting circuit 214 includes a zener diode D1. The override threshold for instantaneous trip is based on the breakdown voltage of the zener diode. In one example embodiments the zener diode has a breakdown voltage of about 2.7 V.

    [0036] Figure 11 shows an example plot of the effects of changing the AC voltage provided to the secondary windings of the first and second AC current transformers 110,120 (also referred to as the AC excitation voltage) for a 250 A rated electrical switching apparatus. The horizontal axis of the plot corresponds to the actual direct current flowing through the protected circuit and the vertical axis or the plot corresponds to the current that the processor 216 senses flowing through the protected circuit. Ideally, the actual and sensed current would be the same. In the example shown in Figure 11, it was experimentally determined that the sensed current closely tracks the actual current at an AC excitation voltage of about 135 VRMS. As the AC excitation voltage moves further away from 135 VRMS, the differences between the sensed current and the actual current become more significant. Experimentation and/or simulation may be used to determine an acceptable AC excitation voltage or range of excitation voltages for a particular application. In one example embodiment of the disclosed concept, the AC excitation voltage is within a range of about 121.5 VRMS to about 148.5 VRMS. In another example embodiment of the disclosed concept, the AC excitation voltage is within a range of about 288 VRMS to about 352 VRMS. In yet another example embodiment of the disclosed concept, the AC excitation voltage is within a range of about ±10% of a predetermined value (e.g., without limitation, 135 VRMS; 320 VRMS).

    [0037] Although separable contacts 406 are disclosed, suitable solid state separable contacts can be employed. For example, the disclosed electrical switching apparatus 1 includes a suitable circuit interrupter mechanism, such as the separable contacts 406 that are opened and closed by the disclosed operating mechanism 414, although the disclosed concept is applicable to a wide range of circuit interruption mechanisms (e.g., without limitation, solid state switches like FET or IGBT devices; contractor contacts) and/or solid state based control protection devices (e.g., without limitation, drives; soft-starters; DC/DC converters) and/or operating mechanisms (e.g., without limitation, electrical, electro-mechanical, or mechanical mechanisms).


    Claims

    1. An electrical switching apparatus (1) comprising:

    a plurality of first terminals (402) including two input terminals structured to electrically connect to a direct current power source (302);

    a plurality of second terminals (404) including two output terminals structured to electrically connect to a direct current load (304);

    a plurality of pairs of separable contacts (406);

    an operating mechanism (414) configured to open and close said separable contacts (406);

    a trip actuator (416) configured to cooperate with said operating mechanism (414) to trip open said separable contacts (406);

    a plurality of conductors (410) that electrically connect each pair of separable contacts (406) between one of said first terminals (402) and one of said second terminals (404);

    a transductor circuit (100) that senses a direct current between at least one of the input terminals and at least one of the output terminals and outputs an alternating current proportional to the direct current; and

    an alternating current electronic trip circuit (200) structured to control the plurality of pairs of separable contacts (406) to separate based on the alternating current output from the transductor circuit (100), the alternating current electronic trip circuit (200) including a rectifier circuit (218) having a rectifier circuit input (218) and a rectifier circuit output (220), the rectifier circuit input (220) being electrically connected to the transductor circuit (100), an interface circuit (208) having an interface circuit input (222) and an interface circuit output (224), the interface circuit input (222) being electrically connected to the rectifier circuit output (220), and a processor (216) having a processor input (226) electrically connected to the interface circuit output (222), the processor (226) being structured to output a control signal to control the trip actuator (416) to cause the operating mechanism (414) to separate and open the plurality of pairs of separable contacts (406),

    wherein the plurality of conductors (410) include a first conductor and a second conductor; wherein the transductor circuit (100) includes a first current transformer (110) having a secondary winding (114) inductively coupled with the first conductor, a second current transformer (120) having a secondary winding (124) inductively coupled with the second conductor, and an alternating current power circuit (102, 104; 127, 128) configured to provide an alternating voltage to the first current transformer (110) and the second current transformer (120); and wherein

    the secondary windings (114; 124) of the first current transformer (110) and the second current transformer (120) are electrically connected in series-opposition such that an electromotive force induced in the secondary winding (114) of the first current transformer (110) by the direct current is in opposition with an electromotive force induced in the secondary winding (124) of the second current transformer (120) by the direct current.


     
    2. The electrical switching apparatus (1) of claim 1, wherein the rectifier circuit includes a full-wave rectifier (228).
     
    3. The electrical switching apparatus (1) of claim 1, wherein the interface circuit (208) includes a resistor electrically connected between the interface circuit input (222) and the interface circuit output (224); and wherein the resistor has a predetermined value.
     
    4. The electrical switching apparatus (1) of claim 3, wherein the processor (216) is programmed based on receiving a current having a first value at the processor input (226) when a rated current flows through the plurality of conductors (410); and wherein the predetermined value of the resistor is selected in order that the current received at the processor input (226) substantially has the first value.
     
    5. The electrical switching apparatus (1) of claim 1, wherein the alternating current electronic trip circuit (200) further includes a trip threshold setting circuit (214) structured to set an override threshold at which the processor (216) controls the trip actuator (416) to cause the operating mechanism (414) to instantaneously separate the separable contacts (406).
     
    6. The electrical switching apparatus (1) of claim 5, wherein the trip threshold setting circuit (214) includes a zener diode; and wherein the override threshold is based on a breakdown voltage of the zener diode.
     
    7. The electrical switching apparatus (1) of claim 1, wherein the alternating voltage is within a range of about 121.5 VRMS to about 148.5 VRMS.
     
    8. The electrical switching apparatus (1) of claim 1, wherein the alternating voltage is within a range of about 288 VRMS to about 352 VRMS.
     
    9. The electrical switching apparatus (1) of claim 1, wherein the alternating current power circuit (102, 104) includes an alternating current power source (104) and a third transformer (102); and wherein the alternating current power source (104) is configured to provide the alternating voltage to the first current transformer (110) and the second current transformer (120) via the third transformer (102).
     
    10. The electrical switching apparatus (1) of claim 1, wherein the alternating current power circuit (127, 128) includes a direct current/alternating current inverter (127) and a second direct current power source (128); and wherein the direct current/alternating current inverter (127) converts a direct current voltage generated by the second direct current power source (128) into said alternating voltage.
     
    11. The electrical switching apparatus (1) of claim 1, wherein the secondary windings (114, 124) of each of the first current transformer (110) and the second transformer (120) include a first end (112,122) and a second end (116,126); wherein the first end (112) of the first current transformer (110) is electrically connected to the third transformer; wherein the second end (116) of the first transformer (110) is electrically connected to the second end (126) of the second transformer (120); and wherein the first end (122) of the second transformer (120) is electrically connected to the alternating current electronic trip circuit (200).
     
    12. The electrical switching apparatus (1) of claim 11, wherein the direct current load is potentially ungrounded.
     
    13. The electrical switching apparatus (1) of claim 1, wherein the secondary windings (114, 124) of each of the first current transformer (110) and the second transformer (120) include a first end (112,122) and a second end (116,126); wherein the first end (112) of the first current transformer (110) is electrically connected to the third transformer; wherein the second end (116) of the first transformer (110) is electrically connected to the first end (122) of the second transformer (120); and wherein the second end (126) of the second transformer (120) is electrically connected to the alternating current electronic trip circuit (200).
     
    14. The electrical switching apparatus (1) of claim 14, where the direct current load is potentially grounded.
     


    Ansprüche

    1. Elektrische Schaltvorrichtung (1), die Folgendes aufweist:

    eine Vielzahl von ersten Anschlüssen (402), die zwei Eingangsanschlüsse aufweisen, die so strukturiert sind, dass sie elektrisch mit einer Gleichstromleistungsquelle (302) verbunden sind;

    eine Vielzahl von zweiten Anschlüssen (404), die zwei Ausgangsanschlüsse aufweisen, die so strukturiert sind, dass sie elektrisch mit einer Gleichstromlast (304) verbunden sind;

    eine Vielzahl von Paaren von trennbaren Kontakten (406);

    einen Betätigungsmechanismus (414), der konfiguriert ist, um die trennbaren Kontakte (406) zu öffnen und zu schließen;

    eine Auslösebetätigungsvorrichtung (416), die konfiguriert ist, um mit dem Betätigungsmechanismus (414) zusammenzuarbeiten, um die trennbaren Kontakte (406) durch Auslösen zu öffnen;

    eine Vielzahl von Leitern (410), die elektrisch jedes Paar von trennbaren Kontakten (406) zwischen einem der ersten Anschlüsse (402) und einem der zweiten Anschlüssen (404) anschließen;

    eine Transduktor- bzw. Wandlerschaltung (100), die einen Gleichstrom zwischen mindestens einem der Eingangsanschlüsse und mindestens einem der Ausgangsanschlüsse abfühlt und einen Wechselstrom proportional zu dem Gleichstrom ausgibt; und

    eine elektronische Wechselstromauslöseschaltung (200), die so strukturiert ist, dass sie die Vielzahl von Paaren von trennbaren Kontakten (406) beim Trennen steuert, und zwar basierend auf dem Wechselstrom, der aus der Wandlerschaltung (100) ausgegeben wird, wobei die elektronische Wechselstromauslöseschaltung (200) eine Gleichrichterschaltung (218) mit einem Gleichrichterschaltungseingang (218) und einem Gleichrichterschaltungsausgang (220) aufweist, wobei der Gleichrichterschaltungseingang (220) elektrisch mit der Wandlerschaltung (100) verbunden ist, weiter eine Schnittstellenschaltung (208) mit einem Schnittstellenschaltungseingang (222) und einem Schnittstellenschaltungsausgang (224), wobei der Schnittstellenschaltungseingang (222) elektrisch mit dem Gleichrichterschaltungsausgang (220) verbunden ist, und einen Prozessor (216) mit einem Prozessoreingang (226), der elektrisch mit dem Schnittstellenschaltungsausgang (222) verbunden ist, wobei der Prozessor (226) so strukturiert ist, dass er ein Steuersignal zur Steuerung der Auslösebetätigungsvorrichtung (416) ausgibt, um zu bewirken, dass der Betätigungsmechanismus (414) die Vielzahl von Paaren von trennbaren Kontakten (406) trennt und öffnet,

    wobei die Vielzahl von Leitern (410) einen ersten Leiter und einen zweiten Leiter aufweist; wobei die Wandlerschaltung (100) einen ersten Stromtransformator (110) mit einer Sekundärwicklung (114) aufweist, die induktiv mit dem ersten Leiter gekoppelt ist, einen zweiten Stromtransformator (120) mit einer Sekundärwicklung (124), die induktiv mit dem zweiten Leiter gekoppelt ist, und eine Wechselstromleistungsschaltung (102, 104; 127, 128), die konfiguriert ist, um eine Wechselspannung an den ersten Stromtransformator (110) und den zweiten Stromtransformator (120) zu liefern; und

    wobei die Sekundärwicklungen (114; 124) des ersten Stromtransformators (110) und des zweiten Stromtransformators (120) elektrisch in gegenüberliegender Reihe verbunden sind, so dass eine elektromotorische Kraft, die in der Sekundärwicklung (114) des ersten Stromtransformators (110) durch den Gleichstrom induziert wird, entgegengesetzt zu einer elektromotorische Kraft ist, die in der Sekundärwicklung (124) des zweiten Stromtransformators (120) durch den Gleichstrom induziert wird.


     
    2. Elektrische Schaltvorrichtung (1) nach Anspruch 1, wobei die Gleichrichterschaltung einen Vollwellengleichrichter bzw. Brückengleichrichter (228) aufweist.
     
    3. Elektrische Schaltvorrichtung (1) nach Anspruch 1, wobei die Schnittstellenschaltung (208) einen Widerstand aufweist, der elektrisch zwischen dem Schnittstellenschaltungseingang (222) und dem Schnittstellenschaltungsausgang (224) angeschlossen ist; und wobei der Widerstand einen vorbestimmten Wert hat.
     
    4. Elektrische Schaltvorrichtung (1) nach Anspruch 3, wobei der Prozessor (216) basierend auf einem Empfang eines Stroms mit einem ersten Wert an dem Prozessoreingang (226) programmiert wird, wenn ein Nennstrom durch die Vielzahl von Leitern (410) fließt; und wobei der vorbestimmte Wert des Widerstandes so ausgewählt wird, dass der am Prozessoreingang (226) empfangene Strom im Wesentlichen den ersten Wert hat.
     
    5. Elektrische Schaltvorrichtung (1) nach Anspruch 1, wobei die elektronische Wechselstromauslöseschaltung (200) weiter eine Auslöseschwelleneinstellschaltung (214) aufweist, die strukturiert ist, um eine Override- bzw. Übersteuerungsschwelle einzustellen, bei der der Prozessor (216) die Auslösebetätigungsvorrichtung (416) steuert, um zu bewirken, dass der Betätigungsmechanismus (414) sofort die trennbaren Kontakte (406) trennt.
     
    6. Elektrische Schaltvorrichtung (1) nach Anspruch 5, wobei die Auslöseschwelleneinstellschaltung (214) eine Zener-Diode aufweist; und wobei die Übersteuerungsschwelle auf einer Durchbruchsspannung der Zener-Diode basiert.
     
    7. Elektrische Schaltvorrichtung (1) nach Anspruch 1, wobei die Wechselspannung innerhalb eines Bereiches von ungefähr 121,5 VRMS bis ungefähr 148,5 VRMS ist.
     
    8. Elektrische Schaltvorrichtung (1) nach Anspruch 1, wobei die Wechselspannung innerhalb eines Bereiches von ungefähr 288 VRMS bis ungefähr 352 VRMS ist.
     
    9. Elektrische Schaltvorrichtung (1) nach Anspruch 1, wobei die Wechselstromleistungsschaltung (102, 104) eine Wechselstromleistungsquelle (104) und einen dritten Transformator (102) aufweist; und wobei die Wechselstromleistungsquelle (104) konfiguriert ist, um die wechselnde Spannung zu dem ersten Stromtransformator (110) und dem zweiten Stromtransformator (120) über den dritten Transformator (102) zu liefern.
     
    10. Elektrische Schaltvorrichtung (1) nach Anspruch 1, wobei die Wechselstromleistungsschaltung (127, 128) einen Gleichstrom/Wechselstrom-Inverter (127) und eine zweite Gleichstromleistungsquelle (128) aufweist; und wobei der Gleichstrom/Wechselstrom-Inverter (127) eine Gleichstromspannung, die durch die zweite Gleichstromleistungsquelle (128) erzeugt wird, in die Wechselspannung umwandelt.
     
    11. Elektrische Schaltvorrichtung (1) nach Anspruch 1, wobei die Sekundärwicklungen (114, 124) von sowohl dem ersten Stromtransformator (110) als auch dem zweiten Transformator (120) ein erstes Ende (112, 122) und ein zweites Ende (116, 126) aufweisen; wobei das erste Ende (112) des ersten Stromtransformators (110) elektrisch mit dem dritten Transformator verbunden ist; wobei das zweite Ende (116) des ersten Transformators (110) elektrisch mit den zweiten Ende (126) des zweiten Transformators (120) verbunden ist; und wobei das erste Ende (122) des zweiten Transformators (120) elektrisch mit der elektronischen Wechselstromauslöseschaltung (200) verbunden ist.
     
    12. Elektrische Schaltvorrichtung (1) nach Anspruch 11, wobei die Gleichstromlast bezüglich des Potenzials nicht geerdet ist.
     
    13. Elektrische Schaltvorrichtung (1) nach Anspruch 1, wobei die Sekundärwicklungen (114, 124) von sowohl dem ersten Stromtransformator (110) als auch dem zweiten Transformator (120) ein erstes Ende (112, 122) und ein zweites Ende (116, 126) aufweisen; wobei das erste Ende (112) des ersten Stromtransformators (110) elektrisch mit dem dritten Transformator verbunden ist; wobei das zweite Ende (116) des ersten Transformators (110) elektrisch mit dem ersten Ende (122) des zweiten Transformators (120) verbunden ist; und wobei das zweite Ende (126) des zweiten Transformators (120) elektrisch mit der elektronischen Wechselstromauslöseschaltung (200) verbunden ist.
     
    14. Elektrische Schaltvorrichtung (1) nach Anspruch 14, wobei die Gleichstromlast bezüglich des Potenzials geerdet ist.
     


    Revendications

    1. Appareil de commutation électrique (1) comprenant :

    une pluralité de premières bornes (402) comprenant deux bornes d'entrée agencées pour se connecter électriquement à une source d'alimentation en courant continu (302) ;

    une pluralité de deuxièmes bornes (404) comprenant deux bornes de sortie agencées pour se connecter électriquement à une charge en courant continu (304) ;

    une pluralité de paires de contacts séparables (406) ;

    un mécanisme d'actionnement (414) agencé pour ouvrir et fermer les contacts séparables (406) ;

    un actionneur de déclenchement (416) agencé pour coopérer avec le mécanisme d'actionnement (414) pour déclencher l'ouverture des contacts séparables (406) ;

    une pluralité de conducteurs (410) qui .connectent électriquement chaque paire de contacts séparables (406) entre l'une des premières bornes (402) et l'une des deuxièmes bornes (404) ;

    un circuit transducteur (100) qui détecte un courant continu entre au moins l'une des bornes d'entrée et au moins l'une des bornes de sortie et produit un courant alternatif proportionnel au courant continu ; et

    un circuit de déclenchement électronique en courant alternatif (200) agencé pour contrôler la pluralité de paires de contacts séparables (406) pour les séparer sur la base de la sortie en courant alternatif provenant du circuit transducteur (100), le circuit de déclenchement électronique en courant alternatif (200) comprenant un circuit redresseur (218) ayant une entrée de circuit redresseur (218) et une sortie de circuit redresseur (220), l'entrée de circuit redresseur (220) étant connectée électriquement au circuit transducteur (100), un circuit d'interface (208) ayant une entrée de circuit d'interface (222) et une sortie de circuit d'interface (224), l'entrée de circuit d'interface (222) étant connectée électriquement à la sortie de circuit redresseur (220), et un processeur (216) ayant une entrée de processeur (226) connectée électriquement à la sortie de circuit d'interface (222), le processeur (226) étant agencé pour produire un signal de commande pour contrôler l'actionneur de déclenchement (416) pour amener le mécanisme d'actionnement (414) à séparer et ouvrir la pluralité de paires de contacts séparables (406),

    dans lequel la pluralité de conducteurs (410) comprend un premier conducteur et un deuxième conducteur, dans lequel le circuit transducteur (100) comprend un premier transformateur de courant (110) ayant un enroulement secondaire (114) couplé de façon inductive au premier conducteur, un deuxième transformateur de courant (120) ayant un enroulement secondaire (124) couplé de façon inductive au deuxième conducteur, et un circuit d'alimentation en courant alternatif (102, 104 ; 127, 128) agencé pour fournir une tension alternative au premier transformateur de courant (110) et au deuxième transformateur de courant (120) ; et dans lequel

    les enroulements secondaires (114 ; 124) du premier transformateur de courant (110) et du deuxième transformateur de courant (120) sont connectés électriquement en série-opposition de sorte qu'une force électromotrice induite dans l'enroulement secondaire (114) du premier transformateur de courant (110) par le courant continu est en opposition avec une force électromotrice induite dans l'enroulement secondaire (124) du deuxième transformateur de courant (120) par le courant continu.


     
    2. Appareil de commutation électrique (1) selon la revendication 1, dans lequel le circuit redresseur comprend un redresseur à double alternance (228).
     
    3. Appareil de commutation électrique (1) selon la revendication 1, dans lequel le circuit d'interface (208) comprend une résistance connectée électriquement entre l'entrée de circuit d'interface (222) et la sortie de circuit d'interface (224) ; et dans lequel la résistance a une valeur prédéterminée.
     
    4. Appareil de commutation électrique (1) selon la revendication 3, dans lequel le processeur (216) est programmé sur là base de la réception d'un courant ayant une première valeur au niveau de l'entrée de processeur (226) lorsqu'un courant nominal passe dans la pluralité de conducteurs (410) ; et dans lequel la valeur prédéterminée de la résistance est sélectionnée de telle sorte que le courant reçu au niveau de l'entrée de processeur (226) a sensiblement la première valeur.
     
    5. Appareil de commutation électrique (1) selon la revendication 1, dans lequel le circuit de déclenchement électronique en courant alternatif (200) comprend en outre un circuit de réglage de seuil de déclenchement (214) agencé pour définir un seuil d'intervention auquel le processeur (216) commande l'actionneur de déclenchement (416) pour amener le mécanisme d'actionnement (414) à séparer instantanément les contacts séparables (406).
     
    6. Appareil de commutation électrique (1) selon la revendication 5, dans lequel le circuit de réglage de seuil de déclenchement (214) comprend une diode Zener ; et dans lequel le seuil d'intervention est basé sur une tension d'avalanche de la diode Zener.
     
    7. Appareil de commutation électrique (1) selon la revendication 1, dans lequel la tension alternative est dans une plage comprise entre environ 121,5 VRMS et environ 148,5 VRMS.
     
    8. Appareil de commutation électrique (1) selon la revendication 1, dans lequel la tension alternative est dans une plage comprise entre environ 288 VRMS et environ 352 VRMS.
     
    9. Appareil de commutation électrique (1) selon la revendication 1, dans lequel le circuit d'alimentation en courant alternatif (102, 104) comprend une source d'alimentation en courant alternatif (104) et un troisième transformateur (102) ; et dans lequel la source d'alimentation en courant alternatif (104) est agencée pour fournir la tension alternative au premier transformateur de courant (110) et au deuxième transformateur de courant (120) par l'intermédiaire du troisième transformateur (102).
     
    10. Appareil de commutation électrique (1) selon la revendication 1, dans lequel le circuit d'alimentation en courant alternatif (127, 128) comprend un inverseur de courant continu/courant alternatif (127) et une deuxième source d'alimentation en courant continu (128) ; et dans lequel l'inverseur de courant continu/courant alternatif (127) convertit une tension en courant continu générée par la deuxième source d'alimentation en courant continu (128) en ladite tension alternative.
     
    11. Appareil de commutation électrique (1) selon la revendication 1, dans lequel les enroulements secondaires (114, 124) de chacun du premier transformateur de courant (110) et du deuxième transformateur (120) comprennent une première extrémité (112, 122) et une deuxième extrémité (116, 126) ; dans lequel la première extrémité (112) du premier transformateur de courant (110) est connectée électriquement au troisième transformateur ; dans lequel la deuxième extrémité (116) du premier transformateur (110) est connectée électriquement à la deuxième extrémité (126) du deuxième transformateur (120) ; et dans lequel la première extrémité (122) du deuxième transformateur (120) est connectée électriquement au circuit de déclenchement électronique en courant alternatif (200).
     
    12. Appareil de commutation électrique (1) selon la revendication 11, dans lequel la charge en courant continu est potentiellement sans liaison à la masse.
     
    13. Appareil de commutation électrique (1) selon la revendication 1, dans lequel les enroulements secondaires (114, 124) de chacun du premier transformateur de courant (110) et du deuxième transformateur (120) comprennent une première extrémité (112, 122) et une deuxième extrémité (116, 126) ; dans lequel la première extrémité (112) du premier transformateur de courant (110) est connectée électriquement au troisième transformateur ; dans lequel la deuxième extrémité (116) du premier transformateur (110) est connectée électriquement à la première extrémité (122) du deuxième transformateur (120) ; et dans lequel la deuxième extrémité (126) du deuxième transformateur (120) est connectée électriquement au circuit de déclenchement électronique en courant alternatif (200).
     
    14. Appareil de commutation électrique (1) selon la revendication 14, dans lequel la charge en courant continu est potentiellement liée à la masse.
     




    Drawing





























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description