[0001] The subject matter of the invention is a device intended for heating rail switches
with the use of an inductive excitation element.
Devices for heating railway switches by means of induction heaters are known in practice.
In general, their operation consists in placing in the vicinity of one of elements
of the railway switch an induction coil energised with current from the contact line.
The coil generates a magnetic field exciting eddy currents inside switch elements
as they are made basically of ferromagnetic materials. Under the impact of the eddy
currents, heat is generated that warms individual fragments of the railway switch
and prevents moving parts from being immobilised as a result of adverse weather conditions,
including icing and snow.
Such a solution is known for example from the description of European patent No
EP2720513 (B1) where a device for heating rail switches has been revealed as fitted with rail with
an AC generator that supplies an inductor comprised of inductive coil. The inductor
is attached to the main rail or to the switch rail. In this solution, the device is
additionally fitted with a control module that controls the intensity and frequency
of the current feeding the inductor.
In the
U.S. Patent No. US6664521 (B1), a solution has been revealed for defrosting components of rail switches, including
primarily a sliding plate as an element of the switch with the switch-point rail travelling
on the element surface. In this solution, the sliding plate is heated by means of
an inductive coil wrapped around the sliding plate base. The coil is shaped like an
elongated duct and is connected by a cable with a transformer supplying the heating
module with high-frequency current.
[0002] A similar arrangement is illustrated in
EP 2 735 649 A2. In both the above solutions, the heating module in the form of an induction heater
is placed outside the sliding plate, which exposes it to mechanical damage and harmful
atmospheric conditions.
[0003] The Japanese patent application
JP2001131901 (A) presents a device for heating rail switches through generating magnetic induction
in the vicinity of the spot that requires heating. In this solution, the induction
heater is made of coils consisting of a hollow core on which conductor coils are wound,
as arranged longitudinally, thus creating a plate connected to a generator. The so
created inductive heater is inserted in hole inside a sliding plate and adjoins the
upper surface of the plate inside the hole. The heater produces eddy currents in the
sliding plate, thus raising its temperature and melting the snow and ice accumulating
on the surface of the plate.
[0004] The above solution represents the technical level most similar to the solution being
the it subject matter of this invention. Although the heater is protected against
adverse weather conditions, its structure is, which makes the heater exposed to damage.
Moreover, mounting of the heater inside the sliding plate requires sealing of the
outer part of the sliding plate hole so that to insulate inductive coils from outer
conditions. At the same time, the hole hollowed out inside the plate weakens the plate
structure and makes it more vulnerable to damage.
[0005] The device for heating rail switches by this innovation consists of an induction
heater in the shape of a cylinder, or a solid body resembling a cylinder in shape,
made of ferromagnetic material and constituting the core of the inductor, with an
annular hollow inside the heater. As a result, the cross section of the inductor core
is similar to the letter "E" in shape . On the inductor core situated inside the cylinder,
there Is a spool with a conductor wound. The conductor is connected to a power generator
conveniently supplied with current from the traction through a system of e.g. inverters
adjusting the voltage level, especially in the case of direct current electric tractions.
The so shaped cylindrical Induction heater is placed inside the sliding plate between
its base and the upper part with the switch point travelling on it. The cylindrical
heater is set in a hollow with a circular cross-section, as fitted to the heater size
and located in the upper part of the sliding plate fixed on the heater. An analogous
hole with the shape fitted to the induction heater cross-section can be located in
the plate base. In this preferable solution variant, the induction heater is partially
inserted in the hole in the plate base whereas the upper part of the plate is fixed
on the part of the induction heater which protrudes above the plate base surface.
Both the hole on the plate base and the one in the upper part of the plate are close-fitted
to the heater size.
[0006] In the preferable variant of the solution, there is a central hole situated in the
central part of the heater with a pin fixing both the heater and the upper part of
the sliding plate to the base. In the hollow in the sliding plate, there is a central
stem with a through hole.
[0007] The solution based on the invention creates a structure where the heating element
is located inside the sliding plate, which provide support to its upper part and favourably
affects the durability and rigidity of this element of the rail switch. The heater
size can be relatively large in relation to the whole plate since after mounting,
the plate base, the heater inductor cylinder, and upper part of the sliding plate
make a uniform and stable structure. The cylindrical shape of the heater with the
coil drawn in the core inside the heater ensures a favourable magnetic flux distribution.
According to the invention described, the induction heater functions on the similar
principle as other such type solutions by generating eddy currents in the sliding
plate and thereby raises the temperature of the rail switch element crossover thus
melting the icing and snow retained on the surface. With the heater configuration
conformable with the invention, magnetic flux propagates crosswise to the plate surface,
which increases the amount of heat induced, as compared with other known solutions,
with the same amount of electricity fed to the heater.
[0008] Compared to the
JP2001131901 solution (A), the solution in question allows to avoid the adverse phenomenon of
mutual induction caused by mutual penetration of magnetic fields of individual coils
arranged in parallel.
[0009] The subject matter of the invention in the favourable design option is shown the
drawing where fig. 1 shows the top view of the sliding plate with a visible AC power
supply source; fig. 2 shows the longitudinal section of the plate with a visible base,
the induction heater with bolting and the upper part of the sliding plate; fig. 3
shows the sliding plate cross-section; fig. 4 shows the inductor core cross-section;
fig. 5 shows the spool with the winding applied in the dimetric projection; fig. 6
shows an assembled heater consisting of the inductor core with the coil spool put
on the inner pin; whereas fig. 7 is a reference drawing showing on one side sliding
plates fixed to a sleeper without visible rails and, on the other side, an exposed
main rail and the switch point resting on sliding panels, and fig. 8 shows the upper
part of the plate in a perspective view, where there is a hollow with a circular section
with the central pin with a through hole.
[0010] Designations used in the figures are explained below:
1 - sliding plate, 2 - plate base, 3 - upper part of the plate, 4 - inductor core,
5 - annular hollow, 6 - coil spool, 7 - central hole, 8 - fixing pin, 9 - sliding
surface, 10 - inductor pin, 11 - hollow with a circular section, 12 - induction heater,
13 - main rail, 14 - switch point, 15 - central stem.
[0011] In this example of the invention design, the rail switch heating device consists
of sliding plate
1 as made of base plate
2 with a hollow with a circular cross-section and plate upper part
3 also fitted circular cross-sectioned hollow
11, and, additionally, of induction heater
12, which in turn consists of inductor core
4, as made of a ferromagnetic material, with annular hollow
5 and Inner inductor pin
10. As a result, inductor core
4 is in the shape of letter "E". Inside annular hollow
5, there is coil spool
6 put on inductor core
4 with a winding of conductive wire applied on the spool. Inductor core 4 with coil
spool
6 placed inside the core make together induction heater
12 placed inside sliding plate
1 in the hollow in base
2 of sliding plate
1. On heater
12, plate upper part
3 is mounted. The part is provided with hollow
11 with a circular cross-section; the hollow inner diameter corresponds to the outer
diameter of induction heater
12. Hollow
11 has central stem
15 with a through hole with the diameter corresponding to that of central hole
7. The heater can be pressed into hollow
11 or inserted with a slight clearance. Once plate upper part
3 is put on induction heater
12, it adheres closely to plate base
2, white induction heater
12 fills basically the entire space inside hole in base plate
2 and inside hollow
11, forming together with plate base
2 and plate upper part
3 a relatively uniform whole with plate upper part
3 adhering closely to both plate base
2 and to the upper surface of induction heater
12. In this way, the sliding plate
1 provides stable support for switch point
14 travelling on the sliding surface
9. In the presented example of the preferred embodiment of the invention, both the
induction heater
12 and the plate upper part
3 are bolted to the base plate
2 with a mounting pin
8 placed inside a central hole
7 which runs through the middle of the induction heater
12 and at the same time forms the hollow in the upper part of the plate
3 and in the base plate
2. The induction heater
12, when connected to the power supply winding, generates a magnetic field that induces
eddy currents in the sliding plate
1, which results in heating the plate and melting the ice and snow deposited on rail
switch elements, particularly on the sliding surface
9 of the sliding plate
1. In the preferable variant shown in the design example, the magnetic flux is essentially
perpendicular to the plane of sliding surface
9, thus providing heating of the whole of sliding surface
9, which is particularly important since it allows the switch point
14 to move freely on the sliding surface
9. In the preferable design example, the device based on the invention is supplied
with the railway traction current with the use of an AC generator with 10-100 kHz
frequency current fed to the winding. It has been proved in tests that the most effective
heating of the sliding plate is obtained at the above frequency range.
The solution based on the invention can be used in most of rail switches applied in
the railways and practically for each type of sleepers.
1. Device for heating rail switches consisting of a sliding plate (1) with the upper
part (3) provided with a sliding surface (9) and a base plate (2), the device being
fitted with an induction heater (12) consisting of an inductor (4) and a winding,
placed inside the sliding plate (1) and connected to a power supply source, characterised in that the induction heater (12) is similar in shape to a cylinder having an internal annular
hollow (5) and an inductor pin (10), wherein a coil spool (6) is placed inside the
annular hollow (5) and is mounted on the inductor pin (10), and wherein the induction
heater (12) is placed inside a hollow (11) in the sliding plate (1).
2. Device for heating rail switches as per claim 1, characterised in that the hollow (11) is provided with a central stem (15) with a through-hote with the
diameter corresponding to that of a central hole (7) of the inductor core (4).
3. Device for heating rail switches as per claim 1 or 2, characterised in that the lower part of the induction heater (12) is placed in a hole in the base plate
(2) whereas a fixing pin (8) is placed in the central hole (7) of the inductor core
(4), which fastens the induction heater (12) to the base plate (2) and at the same
time, the fixing pin (8) is connected with the upper part of the plate (3).
4. Device for heating rail switches as per any of the above claims, characterised in fact that the induction heater (12) is a solid in the shape of a cylinder in its
outer outline.
5. Device for heating rail switches as per any of the above claims, characterised in that a symmetry axis of the inductor pin (10) is basically perpendicular to the plane
where the sliding surface (9) is located.
6. Device for heating rail switches as per any of the above claims, characterised in that the induction heater (12) is powered by alternating current with a frequency of 10-100
kHz, generated in a generator system connected to the railway traction.
1. Eine Weichenerwärmungsvorrichtung, bestehend aus einer Gleitplatte (1), ausgerüstet
im oberen Teil (3) mit einer Gleitfläche (9) sowie einer Grundplatte (2). Die Vorrichtung
ist mit einer Induktionsvorrichtung (12) ausgerüstet, bestehend aus einer innerhalb
der Gleitplatte (1) eingebauten und an der Versorgungsquelle angeschlossenen Induktionsspule
(4) sowie einer Wicklung, dadurch gekennzeichnet, dass die Induktionsheizvorrichtung in ihrer Bauweise einem Zylinder ähnlich ist, der eine
interne Ringaussparung (5) und einen Bolzen der Induktionsvorrichtung (10) aufweist,
wobei die Wicklungsrolle (6) innerhalb der Ringaussparung (5) eingesetzt ist, und
wobei die Induktionsheizvorrichtung (12) innerhalb der Aussparung (11) auf der Gleitplatte
(1) eingesetzt ist.
2. Eine Weichenerwärmungsvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Aussparung (11) mit einem mittigen Schaft (15) mit einer Bohrung mit dem Durchmesser
ausgerüstet ist, der dem Durchmesser der mittigen Bohrung (7) des Induktionsvorrichtungskernes
(4) entspricht.
3. Eine Weichenerwärmungsvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der untere Teil der Induktionserwärmungsvorrichtung (12) in der Aussparung in der
Grundplatte (2) eingesetzt ist, wobei ein Befestigungsbolzen (8) in der mittigen Bohrung
(7) des Induktionsvorrichtungskernes (4) eingesetzt ist, wodurch die Induktionserwärmungsvorrichtung
(12) an der Grundplatte (2) befestigt wird, und der Befestigungsbolzen (8) gleichzeitig
mit oberem Teil der Platte (3) verbunden ist.
4. Eine Weichenerwärmungsvorrichtung nach irgendeinem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die Induktionserwärmungsvorrichtung (12) robust zylinderförmig ist, handelt es sich
um seine Außenform.
5. Eine Weichenerwärmungsvorrichtung nach irgendeinem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die Symmetrieachse der Induktionsvorrichtung (10) grundsätzlich senkrecht zu der
Fläche steht, wo die Gleitfläche (9) eingesetzt ist.
6. Eine Weichenerwärmungsvorrichtung nach irgendeinem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die Induktionserwärmungsvorrichtung (12) mit Wechselstrom mit der Frequenz von 10
- 100 kHz versorgt wird, der in dem an der Traktion angeschlossenen Generatorsystem
erzeugt wird.
1. Dispositif à chauffer les aiguillages composés de panneuax de glissage (1) avec partie
supérieure (3) alimentée en surface de glissage (9) et le panneau de base (2), le
dispositif est Équipé en radiateur d'induction (12) composé de l'amorçage (4) et bobinage
placé en intérieur de panneau de glissage (1) et bronché à la source d'alimentation
, se caractérisant de ce que le radiateur d'induction (12) est semblable dans sa forme
au cylindre ayant l'intérieur en anneaux (5) et la tige d'induction(10), Le rouleau
de bobinage (6) est placé à l'intérieur de l'anneau (5) et mon monté sur la tige d'induction
(10) le radiateur d'induction étant placé à l'intérieur de la cave (11) sur le panneau
de glissage (1).
2. Dispositif à chauffer les aiguillages composés comme dans la demande 1, se caractérise par le fait que L'intérieur (11) est équipé en tige centrale (15) Avec l'orifice de de passage d'un diamètre correspondant à l'orifice du milieu (7)
de la tige d'induction (4).
3. Dispositif à chauffer les aiguillages composés comme dans la demande 1 ou 2, se caractérise par le fait que la partie basse de radiateur d'induction (12) est placée en orifice de panneau de
base (2) Pendant que la tige de fixation (8) est placée dansn l'orifice de milieu
(7) de la tige d'induction (4), Ce qui fixe la radiateur d'induction (12) au panneau
de base (2) i En même temps; la tige de fixation (8) est liée à la partie supérieure
de panneau (3).
4. Dispositif à chauffer les aiguillages conformément à une demande quelconque ci-dessuss,
se caractérise par le fait que, Le radiateur d'induction (12) est solide en forme de cylindre
5. Dispositif à chauffer les aiguillages conformément à une demande quelconque ci-dessuss,
se caractérise par le fait que, L'axe de symétrie de tige d'induction d'inducteur (10) est par prinipe perpendiculaire
à la surface où se trouve la surface de glissage (9)
6. Dispositif à chauffer les aiguillages conformément à une demande quelconque ci-dessuss,
se caractérise par fait que,le radiateur d'induction (12) est alimenté par le courant variable de fréquence
10-100 kHz, généré système de générateur lié à la traction ferroviare