(19)
(11) EP 2 803 837 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
16.05.2018 Bulletin 2018/20

(21) Application number: 13735573.1

(22) Date of filing: 10.01.2013
(51) International Patent Classification (IPC): 
F02B 37/12(2006.01)
F02B 39/16(2006.01)
F02B 37/18(2006.01)
(86) International application number:
PCT/JP2013/050274
(87) International publication number:
WO 2013/105592 (18.07.2013 Gazette 2013/29)

(54)

TURBOCHARGER SYSTEM AND CONTROL METHOD FOR THE SAME

AUFLADESYSTEM UND VERFAHREN ZUR STEUERUNG DIESES AUFLADESYSTEMS

SYSTÈME DE SURALIMENTATION ET PROCÉDÉ DE COMMANDE DU CE SYSTÈME DE SURALIMENTATION


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 12.01.2012 JP 2012004473

(43) Date of publication of application:
19.11.2014 Bulletin 2014/47

(73) Proprietor: IHI Corporation
Tokyo 135-8710 (JP)

(72) Inventors:
  • KOIKE, Atsushi
    Tokyo 135-8710 (JP)
  • NISHIYAMA, Tsuyoshi
    Tokyo 135-8710 (JP)
  • SHINAGAWA, Kazuhiko
    Tokyo 135-8710 (JP)
  • MAEYAMA, Mitsushi
    Tokyo 135-8710 (JP)
  • KUSANO, Satoshi
    Tokyo 135-8710 (JP)
  • KOBAYASHI, Yuji
    Tokyo 135-8710 (JP)
  • OKADA, Masanori
    Tokyo 135-8710 (JP)

(74) Representative: Carpmael, Robert Maurice Charles et al
Marks & Clerk LLP 90 Long Acre
London WC2E 9RA
London WC2E 9RA (GB)


(56) References cited: : 
JP-A- 2003 214 171
JP-A- 2006 274 834
JP-A- 2009 299 505
JP-U- S62 175 237
US-A1- 2010 024 418
JP-A- 2006 274 834
JP-A- 2009 185 737
JP-A- 2010 121 534
US-A- 5 960 631
US-A1- 2012 001 111
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    [Technical Field]



    [0001] The present invention relates to a turbocharger system and a control method for the same.

    [Background Art]



    [0002] Turbochargers have been known as being used to increase output of engines and the like by being connected thereto. As boost pressure of a turbocharger becomes higher, the subsequent flow rate and pressure of the exhaust gas become higher. As the torque of the turbocharger becomes higher, the boost pressure becomes much higher. As a result, the engine and the turbocharger become more likely to suffer damage. To avoid this, some turbocharges have a function of suppressing the pressure of the exhaust gas flowing into a turbine housing by making part of the exhaust gas flow from the engine to the downstream of the turbine while bypassing the turbine.

    [0003] A turbocharger having the foregoing function is provided with a bypass passage making the upstream and downstream of a turbine impeller communicate with each other. The turbocharger is further provided with a wastegate valve configured to open and close the bypass passage. Depending on the pressure in a compressor housing, the valve lift (a degree of opening) of the wastegate valve is adjusted by an actuator connected to the wastegate valve.

    [0004] As the shape of the turbocharger changes with time, the relative positions of the wastegate valve and a hole to be closed by the wastegate valve also change. For this reason, the actuator, if electrically operated, becomes no longer capable of adjusting the opening of the hole appropriately even when controlling the wastegate valve. PTL 1 has proposed a turbocharger having a function of resetting the relationship between the control amount and the valve lift of the wastegate valve when necessary.

    [Citation List]


    [Patent Literature]



    [0005] [PTL 1] Japanese Patent No. 4434057

    [Summary of Invention]


    [Technical Problem]



    [0006] The temperature of the turbocharger drastically changes depending on a use condition including, for example, output from the engine connected to the turbocharger. The thermal expansion associated with such a change in the temperature changes the overall shape of the turbocharger, and also changes the relative positions of the wastegate valve and the hole to be closed by the wastegate valve. For this reason, despite the use of the turbocharger described in PTL 1 with the wastegate valve controlled by the electrically-operated actuator, there is still a problem, due to temperature variations depending on use conditions, that the valve lift cannot be adjusted appropriately, i.e., that a leak may occur or the wastegate valve may apply too large tightening force to close the hole.

    [0007] An object of the present invention is to provide a turbocharger system and a control method for the same, which are capable of appropriately adjusting the valve lift of the wastegate valve irrespective of the temperature of the turbocharger.

    [0008] JP2010121534A discloses a turbocharger system which includes: a turbocharger body including a compressor housing and a turbine housing; a turbine shaft rotatably supported by the turbocharger body, and linking a turbine impeller in the turbine housing and a compressor impeller in the compressor housing; a wastegate valve configured to make part of a fluid to be guided to the turbine impeller flow to a downstream of the turbine impeller while bypassing the turbine impeller; an electrically-operated actuator connected to the wastegate valve, and configured to adjust a valve lift of the wastegate valve; a processor configured to estimate a target temperature; and an actuator controller.

    [0009] US5960631 discloses a similar supercharging pressure control device in which the opening control of a wastegate valve is based on a measured temperature.

    [0010] The invention is in the system of claim 1 and the method of claim 5.

    [Advantageous Effects of Invention]



    [0011] The present invention makes it possible to appropriately adjust the valve lift of the wastegate valve irrespective of the temperature of the turbocharger.

    [Brief Description of Drawings]



    [0012] 

    [Fig. 1]
    Fig. 1 is a schematic cross-sectional view of a turbocharger.

    [Fig. 2]
    Fig. 2 is a front view of the turbocharger.

    [Fig. 3]
    Fig. 3 is a side view of the turbocharger.

    [Fig. 4]
    Fig. 4 is a block diagram for explaining how an electrically-operated actuator is controlled.

    [Fig. 5]
    Fig. 5 depicts flowcharts for explaining a method of controlling a turbocharger system.

    [Fig. 6]
    Fig. 6 is a graph showing an example of a relationship between a target temperature and a correction value.


    [Description of Embodiments]



    [0013] Referring to the accompanying drawings, descriptions will be provided for an embodiment of the present invention. Dimensions, materials, specific values and the like shown in the embodiment are provided as mere examples for the purpose of making the present invention easily understood, and do not limit the present invention unless otherwise indicated. Incidentally, in the description and drawings, components having virtually the same functions and configurations will be denoted by the same reference signs, and thereby, duplicated descriptions will be omitted. Furthermore, illustration of components not directly related to the present invention will be omitted.

    [0014] Fig. 1 is a schematic cross-sectional view of a turbocharger. In the following description, a direction of an arrow F indicates a front side of a turbocharger C while a direction of an arrow R indicates a rear side of the turbocharger C. As shown in Fig. 1, the turbocharger C includes a turbocharger body 1. The turbocharger body 1 includes a bearing housing 2, a turbine housing 4 and a compressor housing 6. The turbine housing 4 is situated in front of the bearing housing 2, and is connected to the bearing housing 2 with bolts 3. The compressor housing 6 is situated in the rear of the bearing housing 2, and is connected to the bearing housing 2 with bolts 5.

    [0015] A bearing hole 2a is formed in the bearing housing 2. The bearing hole 2a penetrates the bearing housing 2 in a front-rear direction of the turbocharger C. A turbine shaft 7 is inserted in the bearing hole 2a, and is rotatably supported by the bearing hole 2a with bearings in between. A turbine impeller 8 is integrally linked (connected) to a front end portion (one end) of the turbine shaft 7. The turbine impeller 8 is rotatably housed in the turbine housing 4. In addition, a compressor impeller 9 is integrally linked (connected) to a rear end portion (the other end) of the turbine shaft 7. The compressor impeller 9 is rotatably housed in the compressor housing 6.

    [0016] The compressor housing 6 includes an inlet port 10, which is opened toward the rear of the turbocharger C and connected to a not-illustrated air cleaner. The inlet port 10 is opened toward the rear of the turbocharger C, and is connected to the air cleaner, which is not illustrated. Furthermore, when the compressor housing 6 is connected to the bearing housing 2 with the bolts 5, the opposing surfaces of the two housings 2, 6 form a diffuser passage 11 configured to boost the pressure of the air by compressing the air. The diffuser passage 11 is formed into an annular shape from its inner to outer sides in radial directions of the turbine shaft 7 (the compressor impeller 9) . The inner side of the diffuser passage 11 in the radial directions communicates with the inlet port 10 via the compressor impeller 9.

    [0017] The compressor housing 6 includes an annular compressor scroll passage 12. The compressor scroll passage 12 is situated outward of the diffuser passage 11 in the radial directions of the turbine shaft 7 (the compressor impeller 9), communicates with an intake port of an engine, and communicates with the diffuser passage 11 as well. For this reason, once the compressor impeller 9 rotates, a fluid is taken into the compressor housing 6 from the inlet port 10; the pressure of the fluid taken in is boosted by the diffuser passage 11 and the compressor scroll passage 12; and the resultant fluid is guided to the intake port of the engine.

    [0018] The turbine housing 4 includes a discharge port 13. The discharge port 13 is opened toward the front of the turbocharger C, and is connected to an exhaust emission controller, which is not illustrated. Furthermore, when the turbine housing 4 is connected to the bearing housing 2 with the bolts 3, the opposing surfaces of the two housings 2, 4 form a passage 14. The passage 14 is formed into an annular shape from its inner to outer sides in the radial directions of the turbine shaft 7 (the turbine impeller 8) .

    [0019] The turbine housing 4 includes an annular turbine scroll passage 15. The turbine scroll passage 15 is situated outward of the passage 14 in the radial directions of the turbine shaft 7 (the turbine impeller 8), communicates with a gas inlet 4a (see Fig. 3) to which an exhaust gas emitted from an exhaust port of the engine is guided, and communicates with the passage 14 as well. For this reason, the exhaust gas from the engine is guided from the gas inlet 4a to the turbine scroll passage 15, and is further guided to the discharge port 13 via the passage 14 and the turbine impeller 8. During its flowing process, the exhaust gas rotates the turbine impeller 8. The torque of the turbine impeller 8 is transmitted to the compressor impeller 9 via the turbine shaft 7, and thereby, the compressor impeller 9 rotates. The torque of the compressor impeller 9 boosts the pressure of the fluid taken in, and the resultant fluid is guided to the intake port of the engine.

    [0020] Fig. 2 is a front view of the turbocharger C. Fig. 3 is a side view of the turbocharger C. As shown in Fig. 3, the turbine housing 4 is provided with a bypass hole 4b. The bypass hole 4b penetrates the turbine housing 4 from a wall portion between the gas inlet 4a and the turbine scroll passage 15 toward the surface to which the discharge port 13 is opened. Part of the fluid to be guided to the turbine impeller 8 can bypass (flow to the downstream of) the turbine impeller 8 via the bypass hole 4b. A wastegate valve 20 functions as an on-off valve configured to close the bypass hole 4b by coming into contact with the bypass hole 4b, and to open the bypass hole 4b by becoming separated from the bypass hole 4b. In other words, the wastegate valve 20 makes part of the fluid to be guided to the turbine impeller 8 flow to the downstream of the turbine impeller 8 while bypassing the turbine impeller 8.

    [0021] The wastegate valve 20 is connected to an electrically-operated actuator 21. The electrically-operated actuator 21 includes: an actuation unit 21a made from a motor or the like; and a rod 21c connected to the actuation unit 21a. A heat shield plate 21b is attached to the actuation unit 21a. The heat shield plate 21b blocks radiant heat from heat sources such as the engine. As shown in Fig. 2, the rod 21c moves in a direction indicated with an arrow A in response to the actuation by the actuation unit 21a.

    [0022] One end of a connecting member 22 is turnably supported by the extremity of the rod 21c, while the other end of the connecting member 22 is fixed to one end of a turnably-supported shaft 23. The other end of the shaft 23 is connected to the wastegate valve 20 by use of an attachment plate 24. For this reason, once the rod 21c moves in the direction indicated with the arrow A, the connecting member 22 turns around its end portion fixed to the shaft 23. The turn of the connecting member 22 makes the shaft 23 turn in a direction indicated with an arrow B in Fig. 3. The valve lift of the wastegate valve 20 is adjusted in accordance with how much the shaft 23 turns.

    [0023] Thereby, the electrically-operated actuator 21 adjusts the amount of the fluid (exhaust gas) to bypass the turbine impeller 8 by operating the connecting member 22, suppresses the pressure of the exhaust gas flowing into the turbine scroll passage 15 from the gas inlet 4a, and adjusts rotation output from the turbine impeller 8.

    [0024] Fig. 4 is a block diagram for explaining how the electrically-operated actuator 21 is controlled in a turbocharger system S. The turbocharger system S is formed from the above-described turbocharger C, and an engine control unit (ECU) for the engine connected to the turbocharger C. Fig. 4 shows a functioning section in the ECU which constitutes the turbocharger system S, the functioning section being involved in controlling the actuator 21. Descriptions for other functioning sections of the ECU will be omitted. Here, the functioning section involved in controlling the electrically-operated actuator 21 does not always have to be incorporated in the ECU. Instead, the functioning section may be incorporated in a different control unit.

    [0025] A temperature acquisition unit 25 shown in Fig. 4 acquires a target temperature by use of a temperature sensor, albeit not illustrated, in accordance with control by one of an initialization unit 27 and an actuator controller 28, which will be described later.

    [0026] The target temperature is that which correlates with the temperature of the turbocharger body 1. Examples of the target temperature include: a measured value of the temperature of the external wall of the turbine housing 4; and a measured value of the temperature of the surface of the rod 21c of the electrically-operated actuator 21. Otherwise, the target temperature may be a measured value of the temperature of the exhaust gas flowing into the turbine housing 4, or a measured value of the temperature of a catalyst (the exhaust emission controller) connected to the turbocharger C and provided in an exhaust gas passage of the engine. In addition, the temperature acquisition unit 25 may acquire the temperature from the temperature sensor at all times, or only when an instruction to measure the temperature comes from the initialization unit 27 or the actuator controller 28.

    [0027] A storage unit 26 is formed from a storage medium such as a flash memory. The storage unit 26 stores a reference value associated with a reference temperature (normal temperature in the embodiment) in accordance with control from the initialization unit 27. In this respect, the reference value is a control value (voltage) to be inputted into the electrically-operated actuator 21 when the wastegate valve 20 becomes fully closed at the reference temperature.

    [0028] In accordance with the control from the initialization unit 27, the storage unit 26 stores association information in which correction values at target temperatures are associated with the target temperatures. Each correction value is a difference value between the reference value and the control value to be inputted into the electrically-operated actuator 21 when the wastegate valve 20 becomes fully closed at the target temperature. In this respect, the storage unit 26 stores as the association information a table in which the target temperatures and the correction values are associated with one another.

    [0029] In a process of setting the turbocharger system S during a normal-temperature period, the reference value is determined as follows. First of all, the initialization unit 27 makes the temperature acquisition unit 25 acquire the target temperature in accordance with the user's input manipulation, for example. Subsequently, the initialization unit 27 sets the acquired target temperature as the reference temperature, and outputs a provisional control value corresponding to the temperature to the electrically-operated actuator 21. In this respect, the user fine-tunes the control value by performing the input manipulation on the initialization unit 27 in order to make the wastegate valve 20 become closed just fully. Instead, however, an operation program or the like may perform the input manipulation on the initialization unit 27. Thereafter, the initialization unit 27 makes the storage unit 26 store as the reference value a control value inputted when this tuning makes the wastegate vale 20 become fully closed.

    [0030] When the wastegate valve 20 comes into contact with and hits the bypass hole 4b in conjunction with the movement of the rod 21c of the electrically-operated actuator 21, the wastegate valve 20 becomes fully closed. The position of the rod 21c when the wastegate valve 20 becomes fully closed is checked, for example, by a position sensor, a load sensor or the like which is provided inside or outside the electrically-operated actuator.

    [0031] In a process of setting the turbocharger system S during a hot period, the correction value is determined as follows. In this respect, the hot period means a state where (a period of time in which) the turbocharger C is exposed to a temperature accompanying thermal expansion or thermal contraction. An example of the hot period is a state where the engine to which the turbocharger C is connected is in operation. In this case, the exhaust gas at a high temperature corresponding to the operating condition is guided to the turbocharger C, and the turbocharger C is accordingly heated. First of all, the initialization unit 27 makes the temperature acquisition unit 25 acquire the target temperature, for example in accordance with the user's input manipulation. Thereafter, the temperature acquisition unit 25 outputs the control value based on the acquired target temperature to the electrically-operated actuator 21. The user, the operation program or the like fine-tunes the control value by performing the input manipulation on the initialization unit 27 in order to make the wastegate valve 20 become closed just fully. Subsequently, the initialization unit 27 calculates a difference value between the reference value and the control value inputted when the tuning makes the wastegate valve 20 become fully closed. Furthermore, the initialization unit 27 sets the calculated difference value as the correction value, associates this correction value with the target temperature, and makes the storage unit 26 store the associated combination as the association information.

    [0032] While the engine connected to the turbocharger C is in operation, the actuator controller 28 controls the electrically-operated actuator 21 on the basis of the target temperature acquired by the temperature acquisition unit 25. To put it in detail, the actuator controller 28 identifies the correction value on the basis of: the target temperature acquired by the temperature acquisition unit 25; and the association information stored in the storage unit 26. Subsequently, the actuator controller 28 calculates a control value (voltage) by adding or subtracting the identified correction value to or from the control value inputted into the electrically-operated actuator 21. On the basis of the calculated control value, the actuator controller 28 controls the electrically-operated actuator 21.

    [0033] The control value inputted into the electrically-operated actuator 21 is calculated on the basis of the valve lift of the wastegate valve 20. The valve lift of the wastegate valve 20 is determined by the ECU with the number of revolutions of the engine, the engine intake and displacement, and the like taken into consideration.

    [0034] Fig. 5 depicts flowcharts for explaining a method of controlling the turbocharger system S. In particular, Fig. 5(a) shows a flow of a process of setting the turbocharger system S during the normal-temperature period; Fig. 5(b) shows a flow of a process of setting the turbocharger system S during the hot period; and Fig. 5(c) shows a flow of a process of setting the turbocharger system S during operation.

    [0035] First of all, during the normal-temperature period, as shown in Fig. 5(a), the initialization unit 27 acquires the target temperature from the temperature acquisition unit 25, and sets the acquired target temperature as the reference temperature (S200). Thereafter, the initialization unit 27 makes the wastegate valve 20 become fully closed, for example in accordance with the user's input manipulation, the operation program's input process, and the like (S202). After that, the initialization unit 27 makes the storage unit 26 store as the reference value the control value (voltage) which is inputted into the electrically-operated actuator 21 when the wastegate valve 20 becomes fully closed (S204).

    [0036] Subsequently, during the hot period, as shown in Fig. 5(b), the initialization unit 27 acquires the target temperature from the acquisition unit 25 (S220).

    [0037] Like in step S202, the initialization unit 27 makes the wastegate valve 20 become fully closed, for example in accordance with the user's input manipulation, the operation program's input process, and the like (S222) . The initialization unit 27 subtracts the control value inputted at this time into the electrically-operated actuator 21 from the reference value stored in the storage unit 26 (S224), and makes the storage unit 26 store the obtained difference as the correction value in association with the target temperature (S226).

    [0038] Such a process shown in Fig. 5(b) is performed under each of multiple operating conditions, i.e., for each of multiple different target temperatures.

    [0039] As shown in Fig. 5(c), in a case where the opening of the bypass hole 4b is adjusted while the turbocharger C is in operation, the actuator controller 28 acquires the target temperature T from the temperature acquisition unit 25 (S240). The actuator controller 28 refers to the table which is the association information stored in the storage unit 26. In the table, for example, the correction values are associated with predetermined target temperature ranges, respectively. The actuator controller 28 acquires the correction value associated with the target temperature T acquired from the temperature acquisition unit 25 (S242).

    [0040] The actuator controller 28 calculates an appropriate control value for the target temperature T by adding the acquired correction value to the reference value stored in the storage unit 26 (S244) . Furthermore, the actuator controller 28 controls the electrically-operated actuator 21 on the basis of the calculated control value, and thereby adjusts the valve lift of the wastegate valve 20 (S246).

    [0041] As described above, in the turbocharger system S of the embodiment, the actuator controller 28 controls the electrically-operated actuator 21 depending on the target temperature. For this reason, the turbocharger system S is capable of appropriately adjusting the valve lift of the wastegate valve 20, even if depending on the use conditions, changes in the temperature of the turbocharger body 1 thermally expand the turbocharger body 1 and the electrically-operated actuator 21, hence resulting in changes in the relative positions of the wastegate valve 20 and the bypass hole 4b to be closed by the wastegate valve 20.

    [0042] The storage unit 26 may store, as the association information, an arithmetic expression enabling the correction value to be calculated from the target temperature.

    [0043] Fig. 6 is a graph showing an example of a relationship between the target temperature and the correction value. Descriptions will be provided for the graph citing the example where: the control value inputted into the electrically-operated actuator 21 at normal temperature TO is set as the reference value; and the target temperature and the correction value corresponding to the reference value are in proportion to each other.

    [0044] After performing the process shown in Fig. 5(b) under the multiple operating conditions, the initialization unit 27 derives the arithmetic expression (a proportional expression in this case), which enables the correction value to be approximately calculated from the target temperature, on the basis of the target temperature and the correction value stored in the storage unit 26. Then, the initialization unit 27 makes the storage unit 26 store the arithmetic expression.

    [0045] Thereby, using the arithmetic expression, the actuator controller 28 becomes capable of identifying the correction value for a target temperature T1 as a correction value Δa, and the correction value for a target temperature T2 as a correction value Δb, as shown in Fig. 6.

    [0046] When the arithmetic expression is used as the association information, the turbocharger system S only needs to store the arithmetic expression in the storage unit 26 instead of storing the table therein. Accordingly, the storage capacity needed for the storage unit 26 can be reduced. In addition, the turbocharger system S is capable of identifying a single correction value uniquely for one target temperature unlike when the turbocharger system S identifies the correction value on the basis of the table, and accordingly can achieve more delicate control.

    [0047] On the other hand, when the table is used as the association information as described above, the turbocharger system S need not perform the arithmetic process for calculating the control value from the target temperature, and is capable of acquiring the correction value by just referring to the table. For this reason, the turbocharger system S is capable of reducing the process load unlike when the arithmetic expression is used as the association information. Furthermore, even if the relationship between the target temperature and the control value is too complicate to be expressed with the arithmetic expression, the turbocharger system S is capable of dealing with the relationship by storing the target information in the storage unit 26 in the form of a simple table.

    [0048] For this reason, it is desirable to determine whether the table or the arithmetic expression should be stored as the association information, depending on the capacity of the storage unit 26, the processing capabilities of the initialization unit 27 and the actuator controller 28, and the like.

    [0049] Moreover, the configuration of the initialization unit 27 is not limited to that in which: the normal temperature TO is used as the reference temperature; and the control value which makes the wastegate valve 20 become fully closed at the normal temperature TO is used as the reference value. Instead, the configuration of the initialization unit 27 may be that in which: a target temperature while the engine is in operation, for example a target temperature T1, is used as the reference temperature; and a control value which makes the wastegate valve 20 become fully closed at the target temperature T1 is used as the reference value. Furthermore, if the highest possible temperature under the operating conditions is used as the target temperature T1, a control value corresponding to the highest possible temperature may be used as the upper limit value on the control value which makes the wastegate valve 20 become fully closed. As the target temperature becomes higher, the thermal expansion makes the relative position of the wastegate valve 20 closer to the bypass hole 4b. When the control value corresponding to the highest possible temperature under the operating conditions is set as the upper limit value, it is possible to inhibit an excessive load from being applied to the wastegate valve 20, the rod 21c of the electrically-operated actuator 21, and the like while the wastegate valve 20 is fully closed.

    [0050] Although in the foregoing embodiment, the control values and the correction values are expressed in the form of voltages, the control values and the correction values may be expressed in the form of currents instead. In addition, the control values and the correction values may be expressed in the form of analog signals or digital signals.

    [Industrial Applicability]



    [0051] The present invention can be used for: the turbocharger system which adjusts the flow rate of the fluid to be guided to the downstream of the turbine impeller by making part of the fluid bypass the turbine impeller; and the control method for the turbocharger system.


    Claims

    1. A turbocharger system (S) comprising:

    a turbocharger body (1) including a compressor housing (6) and a turbine housing (4);

    a turbine shaft (7) rotatably supported by the turbocharger body (1), and linking a turbine impeller (8) in the turbine housing (4) and a compressor impeller (9) in the compressor housing (6);

    a wastegate valve (20) that makes part of a fluid to be guided to the turbine impeller flow to a downstream of the turbine impeller through a bypass hole (4b) provided in the turbine housing (6) while bypassing the turbine impeller (8);

    an electrically-operated actuator (21) connected to the wastegate valve (20), and that adjusts a valve lift of the wastegate valve (20) with respect to the bypass hole (4b) on the basis of a control value input thereto;

    a temperature acquisition unit (25) that acquires a target temperature which is any one of a temperature of the turbocharger body (1) and a temperature correlating with the temperature of the turbocharger body (1); and characterized in: an actuator controller (28) that corrects the control value to be input to the electrically-operated actuator (21) on the basis of the target temperature acquired by the temperature acquisition unit (25) so as to compensate changes in relative positions of the wastegate valve (20) and the bypass hole (4b) due to temperature variations on the turbocharger body (1), and that inputs the control value thus corrected to the electrically-operated actuator (21).


     
    2. The turbocharger system (S) according to claim 1, further comprising a storage unit (26) that stores association information which associates a correction value with the target temperature, wherein
    the correction value is a difference value between a first control value inputted into the electrically-operated actuator (21) when the wastegate valve (20) becomes fully closed at the target temperature associated with the correction value, and a reference value which is a second control value inputted into the electrically-operated actuator (21) when the wastegate valve (20) becomes fully closed at a reference temperature,
    on the basis of the association information, the actuator controller identifies the correction value from the target temperature acquired by the temperature acquisition unit, and
    the actuator controller (28) calculates a control value by adding or subtracting the identified correction value to or from an input value for control of the electrically-operated actuator (21), and controls the electrically-operated actuator on the basis of the calculated control value.
     
    3. The turbocharger system (S) according to claim 2, wherein the storage unit stores (26) as the association information a table in which the target temperature and the correction value are associated with each other.
     
    4. The turbocharger system (S) according to claim 2, wherein the storage unit stores (26) as the association information an arithmetic expression enabling the correction value to be calculated from the target temperature.
     
    5. A method for controlling a turbocharger system (S) having a turbocharger body (1) including a compressor housing (6) and a turbine housing (4), the turbine housing having a bypass hole (4b), and an electrically-operated actuator (21) that adjusts a valve lift of a wastegate valve (20) for making part of a fluid to be guided to the turbine impeller (8) flow to a downstream side of the turbine impeller through the bypass hole (4b) in the turbine housing while bypassing the turbine impeller, comprising:
    acquiring a target temperature which is any one of a temperature of a turbocharger body and a temperature correlating with the temperature of the turbocharger body; characterized in that the method further comprises:

    correcting a control value of the valve lift to be input to the electrically-operated actuator (21) on the basis of the acquired target temperature so as to compensate changes in relative positions of the wastegate valve (20) and the bypass hole (4b) to be closed by the wastegate valve due to temperature variations on the turbocharger body; and

    inputting the control value thus corrected to the electrically-operated actuator.


     


    Ansprüche

    1. Tuboladersystem (S), Folgendes beinhaltend:

    ein Turboladergehäuse (1), beinhaltend ein Kompressorgehäuse (6) und ein Turbinengehäuse (4);

    einen Turbinenschaft (7), drehbar gestützt durch das Turboladergehäuse (1), und welches ein Turbinen-Laufrad (8) im Turbinengehäuse (4) und ein Kompressorlaufrad (9) im Kompressorgehäuse (6) verbindet;

    ein Wastegate-Ventil (20), welches einen Teil des Fluids, das dem Turbinenlaufradfluss zugeleitet werden soll, zu einem nachgelagerten Bereich des Turbinenlaufrades durch ein Bypass-Loch (4b) leitet, welches im Turbinengehäuse (6) bereitgestellt ist, während das Turbinenlaufrad umgangen wird (8); ein elektrisch betätigtes Stellglied (21), welches mit dem Wastegate-Ventil (20) verbunden ist, und welches einen Ventilhub des Wastegate-Ventils (20) in Bezug auf das Bypassloch (4b) auf der Grundlage eines hierin eingespeisten Steuerwertes anpasst;

    eine Temperaturaufnahmeeinheit (25), welche eine Zieltemperatur aufnimmt, welche eine beliebige Temperatur der Gruppe ist, bestehend aus einer Temperatur des Turboladergehäuses (1) und einer mit dem Turboladergehäuse (1) korrelierenden Temperatur; und gekennzeichnet durch: ein Stellglied-Steuergerät (28), welches den Steuerwert, der in das elektrisch betätigte Stellglied (21) auf der Grundlage der von der Temperaturaufnahmeeinheit (25) aufgenommenen Zieltemperatur eingespeist werden soll in der Weise korrigiert, dass Veränderungen der relativen Positionen des Wastegate-Ventils (20) und des Bypasslochs (4b) aufgrund von Temperaturschwankungen am Turboladergehäuse (1) ausgeglichen werden, und das den solchermaßen korrigierten Steuerwert in das elektrisch betätigte Stellglied (21) einspeist.


     
    2. Turboladersystem (S) nach Anspruch 1, zudem beinhaltend eine Speichereinheit (26), welche Asszoziationsdaten speichert, welche einen Korrekturwert mit der Zieltemperatur assoziieren, wobei der Korrekturwert ein Differenzwert zwischen einem ersten Steuerwert ist, welcher in das elektrisch betätigte Stellglied (21) eingespeist wird, wenn das Wastegate-Ventil (20) bei der Zieltemperatur vollkommen geschlossen wird, welche mit dem Korrekturwert assoziiert wird, und einem Bezugszwert, welcher ein zweiter Steuerwert ist, welcher in das elektrisch betätigte Stellglied (21) eingespeist wird, wenn das Wastegate-Ventil (20) bei einer Bezugstemperatur vollkommen geschlossen wird,
    auf der Grundlage der Assoziationsdaten, wobei das Stellglied-Steuergerät den Korrekturwert von der durch die Temperaturaufnahmeeinheit aufgenommene Zieltemperatur identifiziert, und
    das Stellglied-Steuergerät (28) einen Steuerwert berechnet, indem es den identifiizierten Korrekturwert von einem Einspeisewert zur Steuerung des elektrisch betätigten Stellgliedes (21) hinzurechnet oder davon abzieht, und das elektrisch betätigte Stellglied (21) auf der Grundlage des berechneten Steuerwertes steuert.
     
    3. Turboladersystem (S) nach Anspruch 2, bei welchem die Speichereinheit (26) als Assoziationsdaten eine Tabelle speichert, in welcher die Zieltemperatur und der Korrekturwert miteinander assoziiert sind.
     
    4. Turboladersystem (S) nach Anspruch 2, bei welchem die Speichereinheit (26) als Assoziationsdaten einen arithmetischen Ausdruck speichert, welcher die Möglichkeit bietet, den Korrekturwert anhand der Zieltemperatur zu berechnen.
     
    5. Verfahren zum Steuern eines Turboladersystems (S), welches ein Turboladergehäuse (1) besitzt, welches ein Kompressorgehäuse (6) und ein Turbinengehäuse (4) umfasst, wobei das Turbinengehäuse ein Bypassloch (4b) besitzt, und ein elektrisch betätigtes Stellglied (21), welches einen Ventilhub eines Wastegate-Ventils (20) anpasst, um einen Teil des Fluids, das dem Turbinenlaufrad (8) zugeleitet werden soll, zu einer nachgelagerten Seite des Turbinenlaufrades durch das Bypass-Loch (4b) im Turbinengehäuse zu leiten, während das Turbinenlaufrad umgangen wird, folgende Schritte beinhaltend:
    Aufnehmen einer Zieltemperatur, welche eine beliebige Temperatur der Gruppe ist, bestehend aus einer Temperatur des Turboladergehäuses und einer mit dem Turboladergehäuse korrelierenden Temperatur; dadurch gekennzeichnet, dass das Verfahren zudem folgende Schritte beinhaltet:

    Korrigieren eines Steuerwertes des Ventilhubs, welcher in das elektrisch betätigte Stellglied (21) auf der Grundlage der aufgenommenen Zieltemperatur in der Weise eingespeist werden soll, dass Veränderungen der relativen Positionen des Wastegate-Ventils (20) und des Bypasslochs (4b), welches durch das Wastegate-Ventil geschlossen werden soll, aufgrund von Temperaturschwankungen am Turboladergehäuse (1) ausgeglichen werden; und

    Einspeisen des solchermaßen korrigierten Steuerwertes in das elektrisch betätigte Stellglied.


     


    Revendications

    1. Système de turbocompresseur de suralimentation (S) comprenant :

    un corps de turbocompresseur de suralimentation (1) comprenant un carter de compresseur (6) et un carter de turbine (4) ;

    un arbre de turbine (7) supporté en rotation par le corps de turbocompresseur de suralimentation (1), et la connexion d'une pale de turbine (8) dans le carter de turbine (4) et d'une pale de compresseur (9) dans le carter de compresseur (6) ;

    une soupape de décharge (20) qui constitue une partie d'un fluide à guider vers le flux de pale de turbine jusqu'en aval de la pale de turbine à travers un orifice d'évitement (4b) prévu dans le carter de turbine (6) tout en évitant la pale de turbine (8) ;

    un actionneur à commande électrique (21) connecté à la soupape de décharge (20) et qui ajuste une levée de soupape de la soupape de décharge (20) par rapport à l'orifice d'évitement (4b) sur la base d'une entrée de valeur de régulation dans celui-ci ;

    une unité d'acquisition de température (25) qui acquiert une température cible qui est l'une quelconque d'une température du corps de turbocompresseur de suralimentation (1) et d'une température établissant une corrélation avec la température du corps de turbocompresseur de suralimentation (1) ; et caractérisé en ce que :
    un régulateur d'actionneur (28) qui corrige la valeur de régulation à entrer dans l'actionneur à commande électrique (21) sur la base de la température cible acquise par l'unité d'acquisition de température (25) de manière à compenser des variations de positions relatives de la soupape de décharge (20) et de l'orifice d'évitement (4b) en raison de variations de températures sur le corps de turbocompresseur de suralimentation (1), et qui entre la valeur de régulation ainsi corrigée dans l'actionneur à commande électrique (21).


     
    2. Système de turbocompresseur de suralimentation (S) selon la revendication 1, comprenant en outre une unité de stockage (26) qui stocke des informations d'association qui associent une valeur de correction à la température cible, dans lequel
    la valeur de correction est une valeur de différence entre une première valeur de régulation entrée dans l'actionneur à commande électrique (21) lorsque la soupape de décharge (20) devient entièrement fermée à la température cible associée à la valeur de correction, et une valeur de référence qui est une deuxième valeur de régulation entrée dans l'actionneur à commande électrique (21) lorsque la soupape de décharge (20) devient entièrement fermée à une température de référence,
    sur la base des informations d'association, le régulateur d'actionneur identifie la valeur de correction à partir de la température cible acquise par l'unité d'acquisition de température, et
    le régulateur d'actionneur (28) calcule une valeur de régulation en ajoutant ou en soustrayant la valeur de correction identifiée vers et à partir d'une valeur d'entrée pour la régulation de l'actionneur à commande électrique (21), et régule l'actionneur à commande électrique sur la base de la valeur de régulation calculée.
     
    3. Système de turbocompresseur de suralimentation (S) selon la revendication 2, dans lequel l'unité de stockage stocke (26) en tant qu'informations d'association une table dans laquelle la température cible et la valeur de correction sont associées l'une à l'autre.
     
    4. Système de turbocompresseur de suralimentation (S) selon la revendication 2, dans lequel l'unité de stockage stocke (26) en tant qu'informations d'association une expression arithmétique permettant à la valeur de correction d'être calculée à partir de la température cible.
     
    5. Procédé destiné à réguler un système de turbocompresseur de suralimentation (S) ayant un corps de turbocompresseur de suralimentation (1) comportant un carter de compresseur (6) et un carter de turbine (4), le carter de turbine ayant un orifice d'évitement (4b), et un actionneur à commande électrique (21) qui ajuste une levée de soupape d'une soupape de décharge (20) en vue de constituer une partie d'un fluide à guider vers le flux de pale de turbine (8) jusqu'à un côté aval de la pale de turbine à travers l'orifice d'évitement (4b) dans le carter de turbine tout en évitant la pale de turbine, comprenant :

    l'acquisition d'une température cible qui est l'une quelconque d'une température d'un corps de turbocompresseur de suralimentation et d'une température établissant une corrélation avec la température du corps de turbocompresseur de suralimentation ; caractérisé en ce que le procédé comprend en outre :

    la correction d'une valeur de régulation de la levée de soupape à entrer dans l'actionneur à commande électrique (21) sur la base de la température cible acquise de manière à compenser des variations de positions relatives de la soupape de décharge (20) et de l'orifice d'évitement (4b) à fermer par la soupape de décharge en raison de variations de température sur le corps de turbocompresseur de suralimentation ; et

    l'entrée de la valeur de régulation ainsi corrigée dans l'actionneur à commande électrique.


     




    Drawing




















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description