(19)
(11) EP 2 132 520 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
13.06.2018 Bulletin 2018/24

(21) Application number: 08719029.4

(22) Date of filing: 17.03.2008
(51) International Patent Classification (IPC): 
G01B 5/06(2006.01)
G01N 3/12(2006.01)
(86) International application number:
PCT/GB2008/050184
(87) International publication number:
WO 2008/114049 (25.09.2008 Gazette 2008/39)

(54)

METHOD AND APPARATUS FOR PIPE WALL THICKNESS TESTING

VERFAHREN UND VORRICHTUNG ZUR RÖHRENPRÜFUNG

PROCÉDÉ ET APPAREIL POUR LE CONTRÔLE DE TUYAUX


(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

(30) Priority: 20.03.2007 GB 0705306

(43) Date of publication of application:
16.12.2009 Bulletin 2009/51

(73) Proprietor: VerdErg Limited
Kingston upon Thames Surrey KT2 6QF (GB)

(72) Inventors:
  • ROBERTS, Peter
    Surrey RH12 1TU (GB)
  • WALKER, Alastair Chalmers
    Surrey CR5 1BL (GB)

(74) Representative: Atkins, James Gordon John 
Kilburn & Strode LLP Lacon London 84 Theobalds Road
London WC1X 8NL
London WC1X 8NL (GB)


(56) References cited: : 
CN-Y- 2 150 552
JP-A- 8 285 749
US-A- 3 331 238
US-A- 3 490 525
US-A- 4 192 194
US-A1- 2003 110 864
GB-A- 1 432 539
JP-A- 2004 286 586
US-A- 3 439 381
US-A- 3 960 018
US-A- 4 290 311
US-A1- 2006 233 482
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Technical field



    [0001] This invention relates to methods and apparatus for testing pipes such as those used for forming underwater pipelines.

    Background art



    [0002] There has been a progressive development of very deepwater reservoirs of gas and/or oil around the world. Until about 10 years ago, very deep water was defined to be any depth greater than about 1000m. Currently however, so many pipelines have been installed in depths greater than this that the definition of very deep water is currently about 2000m. This development in installation capability is continuing and currently pipelines in 3500m water depth are being planned.

    [0003] The pipelines are typically installed empty, i.e. filled with air at ambient pressure and only filled with oil or gas under pressure once installation is completed. A major risk experienced during the installation of these deep-water pipelines is from the pressure applied by the water causing the pipe to deform out of its initial round shape and deform into an almost flat configuration. This is called external pressure collapse and if not controlled can result in the total loss of the pipeline. The dimensions, i.e. diameter and wall thickness and to a lesser degree the material properties, of a very deep-water pipeline are therefore determined by the potential for external pressure collapse.

    [0004] This is in complete contrast to the design of a conventional shallow-water or onshore pipeline where the wall thickness is sized to resist internal pressure from the fluid it is to carry rather than external pressure.

    [0005] Various theoretical studies of external pressure collapse have been carried out and numerical modelling has also been used to calculate the maximum water depth at which a pipeline with specified dimensions can safely be installed. However, the consequences of external pressure collapse buckling are so great that these theoretical studies are not sufficient for confident management of the risk. Also, the most important method for reducing the potential for such local collapse, by increasing the wall thickness of the pipe, is so expensive and possibly not technically realisable, that the proposed pipeline might well not be commercially feasible. This in turn raises the possibility that the exploitation of the gas or oil reservoirs are abandoned.

    [0006] The alternative to basing all design on the results from theory is to additionally carry out tests. Indeed, several tests have been carried out for a range of pipe wall thicknesses. These tests involve placing long lengths of specially fabricated pipe in special pressure chambers and increasing the external pressure until collapse occurs. Only one or two laboratories have such facilities available and the tests are very expensive, in the order of $100,000 for one test.

    [0007] Codes have been prepared to provide a basis for the calculation of the dimensions for pipes that are required to operate at specified great depths. These codes encompass safety factors that are intended to ensure that the natural variations in pipe dimensions and material properties that occur during the manufacture of a pipeline that could be 1000km long will not undermine the capacity of the pipeline to withstand the external pressure without collapse occurring. However, the factors are based on the few previous available tests; the possibility of carrying out such tests on complete pipe joints during fabrication of the pipe are not realistic since the tests take a significant time to be set up and completed.

    [0008] Only one joint of a pipeline needs to collapse to flood the whole line. It is therefore axiomatic that a long deep-water pipeline is more vulnerable to collapse than a short deep-water pipeline purely because there is a greater statistical probability in a long line of a single joint manufactured sufficiently out-of-specification to precipitate collapse. There is a direct analogy with "the weakest link in the chain" as regards pipeline failure due to external pressure collapse. Given that the codes of practice are based on the collapse test results of a small finite number of joints of line pipe, the design codes have to introduce a factor based on overall length to increase the wall thickness down the whole route simply to address the increased statistical exposure of a long line to a single fatally out-of-specification pipe joint.

    [0009] There is thus a need for a test method that can replicate the effects of external pressure to cause the collapse of long pipelines and that is easy to set up and complete.

    [0010] This invention is based on the recognition that the deformations that lead to external pressure collapse are uniform along the pipe and that therefore the occurrence of external pressure collapse will be the same for a ring cut from the pipe as for the complete joint length of pipe that is subjected purely to external pressure.

    Disclosure of the invention



    [0011] A first aspect of the invention comprises a method of testing pipes for use in making subsea pipelines, as claimed in claim 1, and comprising:
    • cutting a ring from one or more pipes of the type used to make the pipeline;
    • forming flat, substantially parallel surfaces on the ends of the ring to within a tolerance such when mounted in a pressure chamber no leakage can occur between the inside of the ring and the outside of the ring, whilst at the same time avoiding undue restraining friction on the radial movement inwards of said ring outer diameter;
    • providing means for measuring strain and deformation of the ring;
    • mounting the ring in the pressure chamber such that the ends of the ring form seals with sealing means provided in opposing walls of the chamber to isolate the inside of the ring from the outside such that pressure can only be applied to the outer circular surface of the ring, and such that in use, the pressure is constrained to be on the outer circular surface of the ring only;
    • increasing the pressure outside the ring and measuring the strain and deformation on the ring as the pressure increases; and
    • using the deformation and strain measurements to determine a wall thickness for pipes to be used for the pipeline.


    [0012] Preferably, the means for measuring strain and deformation are sensors that are applied to the ring. It is particularly preferred that they are deployed on the inner surface of the ring.

    [0013] The step of mounting the ring in the pressure chamber preferably includes providing seals between the ends of the ring and the walls of the chamber.

    [0014] The step of increasing the pressure typically includes pumping pressurised fluid into the chamber around the outside of the ring.

    [0015] The method can also comprise determining a comparison of pressure applied and maximum strain measured to detect the onset of accelerating non-linear reduction in ring diameter with increasing pressure.

    [0016] The length of ring cut from the pipes is preferably selected such that the pipe still remains within tolerances for use in the pipeline. It is typically selected to be about twice the wall thickness.

    [0017] A second aspect of the invention provides an apparatus for testing rings cut from pipes for use in making subsea pipelines as claimed in claim 9.

    [0018] In one preferred embodiment, the first section defines a recess that is closed by the second section to form the chamber. The fluid inlet port is preferably formed in a wall of the first section.

    [0019] The first and second sections can include inter-engaging formations such as spigots and recesses, to allow accurate location of one against the other when forming the chamber.

    [0020] Seals can also be provided for the engaged surfaces of the first and second sections.

    [0021] A bleed hole can be provided in one or other of the first and second sections to allow pressure equalisation between the inside of the ring and ambient pressure during testing.

    [0022] In one embodiment, the clamping means comprises one or more screws which pass through holes in one section to extend through the chamber inside the ring and engage in threaded bores in the other section.

    [0023] In another embodiment, the clamping means comprises a cylinder formed in one section which has a piston located therein, the piston extending from the cylinder through the chamber inside the ring and having an end fixed to the other section, a supply of driving fluid being connected to the cylinder which is operable to draw the fixed end of the piston towards the cylinder and clamp the two sections together.

    [0024] The method and apparatus according to the invention has a number of advantages, including:
    • enabling tests to be carried at reasonable costs to provide a more comprehensive basis for design codes and calculations;
    • enabling a large number of tests to be carried out to determine the effects of variations in material properties and geometry of pipe prior to the design of a specific pipeline;
    • providing the basis for optimising the wall thickness of pipes intended for installation at specific depths and with specific equipment thus allowing cost reduction to be realised; and
    • enabling tests to be carried out during fabrication of specific pipe to ensure the levels of safety against external pressure collapse are being maintained.

    Brief description of the drawings



    [0025] 

    Figure 1 shows a pipeline of the type for testing in accordance with the invention;

    Figure 2 shows a cross section of a test ring cut from the pipe of Figure 1;

    Figure 3 shows a cross section of a test apparatus according to a first embodiment of the invention;

    Figure 4 shows a section on line A-A of Figure 3; and

    Figure 5 shows a cross section of a test apparatus according to a second embodiment of the invention.


    Mode(s) for carrying out the invention



    [0026] Tests on long sections of individual pipe joints have shown that the deformations that lead to external collapse are uniform along the pipe. This observation is supported by theoretical studies and numerical modelling. The implication is that the occurrence of external pressure collapse will be the same for a ring cut from the pipe as for the complete joint length of pipe that is subjected purely to external pressure. The testing approach of the invention is therefore based on cutting short sections from a pipe and machining the ring to a uniform length. The ring is placed in a rigid frame that allows the machined faces of the ring to be sealed such that a pressure can be applied only to the outer circular surface of the ring. The inner circular surface of the ring is maintained at ambient pressure and thus is suitable for attachment of devices to measure the strains and deformations that are caused by the pressure on the outer circular surface of the ring.

    [0027] The seals on both machined flat faces of the ring are such that the pressure is constrained to be on the outer circular surface of the ring only and not on the flat machined faces. The seals are such that the ring is not subject to substantial forces parallel to the machined flat faces such that the deformations of the circular faces of the ring are impeded.

    [0028] The pressure is applied from an external pump such that the pressure is increased or decreased by the addition or subtraction of a specified volume of fluid to or from the space surrounding the outer circular surface of the ring. This arrangement allows the radial deformations of the ring caused by the pressure on the outer cylindrical surface to increase or decrease in a controlled manner.

    [0029] The action of the seals on the machined flat surfaces of the ring can be achieved by encasing the ring in a rigid block that is shaped to ensure that there is no deformation at the seals. An alternative arrangement is to have the space in which the seals operate adjustable and controlled by the action of a piston that is subjects to the same (or different) pressure as that applied to the outside cylindrical surface of the ring.

    [0030] A typical test will involve the following steps:
    1. a. Cut the ring from the pipe and machine the ends flat and parallel to within prescribed tolerances;
    2. b. Fit attachments to measure the strains and deformations of the ring;
    3. c. Fit the ring into the frame with the seals in place;
    4. d. Apply pressure and ensure the seals are active and effective;
    5. e. Increase the pressure, recording the strain and deformation measurements; and
    6. f. Continue to increase the pressure until a maximum value is attained.


    [0031] It may be useful to also plot a curve of pressure applied against maximum strain measured to detect the onset of an accelerating non-linear reduction in ring diameter with increasing pressure that is independent of any leakage of hydraulic fluid past the seals.

    [0032] Figure 1 shows a pipe 10 used in subsea pipelines. A typical example will be about 12.2m long, have an external diameter of 508mm and a wall thickness of 35mm. The test ring 12 (also shown in Figure 2) is cut from one end of the pipe and has a length of 70mm, approximately twice the wall thickness. Even after this length of ring has been cut, the pipe 10 can still be used in construction of a pipeline. The end surfaces 14 of the ring 12 are machined so as to be substantially parallel and flat, for example a tolerance of +0 to -0.01 mm on the overall length of the ring is typical.

    [0033] Figures 3 and 4 show one embodiment of an apparatus according to the invention set up with a ring in place for testing. The test ring 12 is mounted between the top section 16 and lower section 18 which together define the test chamber. The two halves of the pressure test chamber 16, 18 are provided with locating spigots 19 which locate in corresponding locating holes with associated seals 21 to allow location of the two halves. O-ring or pressure-energised pressure containing seals 20 are provided in the top and bottom sections. These are engaged by the test ring 12 to form an annulus accessible by a supply of pressurised hydraulic test fluid through an appropriate inlet port 24. The central void 26 inside the test ring 12 is vented to atmosphere through a bleed hole 28 which is of sufficiently large diameter to also provide access for any instrumentation cabling to the strain gauges (not shown) on the inner cylindrical surface of the test ring 12.

    [0034] The two halves 16, 18 are held together by mechanical sealing screws 30. The screws 30 extend though holes 32 in the top section 16 and pass through the void 26 to engage in threaded bores 34 in the bottom section 18. Two screws 30 are shown but any suitable number can be used to ensure proper clamping.

    [0035] The force with which the two halves are held together is sufficient to make the annulus 22 pressure tight internally and externally against the pressure containing seals 20, 21. The tolerance with which the ring 12 is cut from the pipe is such that no leakage occurs from the annulus 22 into the void 26 whilst at the same time avoiding undue restraining friction on the radial movement inwards of the ring 12 outer diameter under hydraulic loading.

    [0036] Figure 5 shows a second embodiment of the test apparatus in which the clamping screws shown in Figures 3 and 4 are replaced by a hydraulic piston arrangement. A cylinder 36 is formed in the lower section 18 in which a piston 38 is slidably located. The outer end of the cylinder is closed by a plate 40. A bore 42 equipped with sliding seals extends from the inner end of the cylinder 36 to the void 26. A connecting rod 44 extends from the piston 38, through the bore 42 to a locating bore 46 in the top section 16 where it is fixed to a piston ring clamp 48. An inlet port 50 is provided at the lower end of the cylinder 36 to allow pressurised fluid to be admitted which drives the piston 38 along the cylinder 36 to clamp the top section 16 to the lower section 18.

    [0037] Methods and apparatus according to the invention demonstrate a number of advantages over previous techniques. They allow testing of a representative sample of test rings taken from all the line pipe joints required for a long deepwater pipeline to give direct physical quantified evidence of the capacity of each of these specimens to resist external hydrostatic collapse. The collapse tolerance of each specimen test ring can be confidently held to be representative of the collapse tolerance of the joint from which it is cut. Use of the invention in the manner described can permit a reduction in the factor used currently in the design process to increase the wall thickness of the whole line based on the increasing exposure of the pipeline with increasing length to the increasing statistical probability of a single joint sufficiently out-of-specification to precipitate collapse. The joint from which each test ring is cut can still be utilized as a production joint and is not wasted. The net result can be a highly significant reduction in pipeline wall thickness that will provide improved commercial availability of line pipe and significant cost savings.


    Claims

    1. A method of testing pipes for use in making subsea pipelines, comprising:

    - cutting a ring (12) from one or more pipes (10) of the type used to make the pipeline;

    - forming flat parallel surfaces on the ends (14) of the ring (12), to within a tolerance such when mounted in a pressure chamber no leakage can occur between the inside of the ring and the outside of the ring, whilst at the same time avoiding undue restraining friction on the radial movement inwards of said ring (12) outer diameter under loading;

    - providing means for measuring strain and deformation of the ring (12);

    - mounting the ring in the pressure chamber such that the ends (14) of the ring form seals with sealing means provided in the opposing walls of the chamber to isolate the inside of the ring from the outside such that pressure can be applied only to the outer circular surface of the ring, and such that in use, the pressure is constrained to be on the outer circular surface of the ring (12) only;

    - increasing the pressure outside the ring (12) and measuring the strain and deformation on the ring (12) as the pressure increases; and

    - using the deformation and strain measurements to determine a wall thickness for pipes to be used for the pipeline.


     
    2. A method as claimed in claim 1, wherein the step of providing means for measuring strain and deformation comprises applying sensors to the ring (12).
     
    3. A method as claimed in claim 2 comprising deploying the sensors on the inner surface of the ring (12).
     
    4. A method as claimed in claim 1, 2 or 3, wherein the step of mounting the ring (12) in the pressure chamber includes providing seals (20) between the ends (14) of the ring (12) and the walls of the chamber.
     
    5. A method as claimed in any preceding claim, wherein the step of increasing the pressure includes pumping pressurised fluid into the chamber around the outside of the ring (12).
     
    6. A method as claimed in any preceding claim, further comprising determining a comparison of pressure applied and maximum strain measured to detect the onset of accelerating non-linear reduction in ring diameter with increasing pressure.
     
    7. A method as claimed in any preceding claim, comprising selecting the length of ring cut from the pipes (10) such that the pipe still remains within tolerances for use in the pipeline.
     
    8. A method as claimed in claim 7, comprising selecting the length to be about twice the thickness of the wall of the pipe (10).
     
    9. Apparatus for testing rings cut from pipes (10) for use in making subsea pipelines, comprising:

    - first and second test chamber sections (16, 18) which, when placed together define a test chamber for receiving the ring (12) to be tested;

    - one or more sensors for measuring strain and deformation of the ring (12);

    - sealing means (20) located in the chamber for forming a seal against the ends of the ring (12) when received in the chamber such that in use pressure can be applied only to the outer circular surface of the ring, and such that in use, the pressure is constrained to be on the outer circular surface of the ring only; wherein the sealing means (20) are O-rings or pressure containing seals provided in the first and second test chamber sections;

    - means for clamping the first and second sections together to form the chamber and engage the sealing means (20) against the ring (12) when received in the chamber to form a pressure resistant seal between the inside and outside of the ring (12); and

    - a fluid inlet port (24) in one of the chamber sections to allow a pressurised fluid to be admitted to the chamber outside the ring (12) when received in the chamber.


     
    10. Apparatus as claimed in claim 9, wherein the first section (16) defines a recess that is closed by the second section (18) to form the chamber.
     
    11. Apparatus as claimed in claim 10, wherein the fluid inlet port (24) is formed in a wall of the first section (16).
     
    12. Apparatus as claimed in claim 9 or 10, wherein the first and second sections (16, 18) include inter-engaging formations to allow accurate location of one against the other when forming the chamber.
     
    13. Apparatus as claimed in any of claims 9-12 wherein seals are provided for the engaged surfaces of the first and second sections.
     
    14. Apparatus as claimed in any of claims 9-13, further comprising a bleed hole (28) in one or other of the first and second sections to allow pressure equalisation between the inside of the ring (12) and ambient pressure during testing.
     
    15. Apparatus as claimed in any of claims 9-14, wherein the clamping means comprises one or more screws (30) which pass through holes (32) in one section (16) to extend through the chamber inside the ring and engage in threaded bores (34) in the other section (18).
     
    16. Apparatus as claimed in any of claims 9-14, wherein the clamping means comprises a cylinder (36) formed in one section which has a piston (38) located therein, the piston (38) extending from the cylinder (36) through the chamber inside the ring (12) and having an end fixed to the other section, a supply of driving fluid being connected to the cylinder which is operable to draw the fixed end of the piston (38) towards the cylinder and clamp the two sections (16, 18) together.
     


    Ansprüche

    1. Verfahren zum Testen von Rohren zur Verwendung in der Herstellung von Unterwasser-Pipelines, umfassend:

    - Schneiden eines Rings (12) aus einem oder mehreren Rohren (10) jener Art, die zur Herstellung der Pipeline verwendet wird;

    - Bilden flacher paralleler Oberflächen an den Enden (14) des Rings (12) auf eine derartige Toleranz, dass bei einer Montage in einer Druckkammer kein Lecken zwischen der Innenseite des Rings und der Außenseite des Rings auftreten kann, während gleichzeitig eine unnötige Rückhaltereibung auf der einwärts gerichteten Radialbewegung des Außendurchmessers des Rings (12) unter Last vermieden wird;

    - Vorsehen von Mitteln zum Messen von Beanspruchung und Verformung des Rings (12);

    - Montieren des Rings in der Druckkammer, sodass die Enden (14) des Rings Dichtungen mit Dichtungsmitteln bilden, die in den gegenüberliegenden Wänden der Kammer vorgesehen sind, um die Innenseite des Rings von der Außenseite zu isolieren, sodass Druck nur auf die kreisförmige Außenfläche des Rings ausgeübt werden kann und sodass in Gebrauch der Druck nur auf die kreisförmige Außenfläche des Rings (12) begrenzt ist;

    - Erhöhen des Drucks außerhalb des Rings (12) und Messen der Beanspruchung und Verformung des Rings (12) bei steigendem Druck; und

    - Verwenden der Verformungs- und Beanspruchungsmessungen zum Bestimmen einer Wanddicke für Rohre, die für die Pipeline zu verwenden sind.


     
    2. Verfahren nach Anspruch 1, wobei der Schritt zum Vorsehen von Mitteln zum Messen von Beanspruchung und Verformung ein Anbringen von Sensoren an dem Ring (12) umfasst.
     
    3. Verfahren nach Anspruch 2, umfassend ein Einsetzen der Sensoren an der Innenfläche des Rings (12).
     
    4. Verfahren nach Anspruch 1, 2 oder 3, wobei der Schritt zum Montieren des Rings (12) in der Druckkammer ein Vorsehen von Dichtungen (20) zwischen den Enden (14) des Rings (12) und den Wänden der Kammer enthält.
     
    5. Verfahren nach einem vorangehenden Anspruch, wobei der Schritt zum Erhöhen des Drucks ein Pumpen von Druckfluid in die Kammer um die Außenseite des Rings (12) enthält.
     
    6. Verfahren nach einem vorangehenden Anspruch, ferner umfassend ein Bestimmen eines Vergleichs von ausgeübtem Druck und maximaler Beanspruchung, gemessen, um den Beginn einer beschleunigenden, nicht linearen Verringerung im Ringdurchmesser bei steigendem Druck zu erfassen.
     
    7. Verfahren nach einem vorangehenden Anspruch, umfassend ein Auswählen der Ringlänge, die aus den Rohren (10) geschnitten wird, sodass das Rohr noch innerhalb der Toleranzen zur Verwendung in der Pipeline bleibt.
     
    8. Verfahren nach Anspruch 7, umfassend ein Auswählen der Länge, sodass sie etwa das Zweifache der Dicke der Wand des Rohres (10) ist.
     
    9. Vorrichtung zum Testen von Ringen, die aus Rohren (10) geschnitten sind, die zur Herstellung von Unterwasser-Pipelines verwendet werden, umfassend:

    - einen ersten und zweiten Testkammerabschnitt (16, 18), die, wenn sie gemeinsam platziert werden, eine Testkammer zum Aufnehmen eines zu testenden Rings (12) definieren;

    - einen oder mehrere Sensoren zum Messen von Beanspruchung und Verformung des Rings (12);

    - Dichtungsmittel (20), die in der Kammer zum Bilden einer Dichtung gegen die Enden des Rings (12) gelegen sind, wenn dieser in der Kammer aufgenommen ist, sodass in Gebrauch Druck nur auf die kreisförmige Außenfläche des Rings ausgeübt werden kann und sodass in Gebrauch der Druck nur auf die kreisförmige Außenfläche des Rings begrenzt ist; wobei die Dichtungsmittel (20) O-Ringe oder druckhaltige Dichtungen sind, die im ersten und zweiten Testkammerabschnitt vorgesehen sind;

    - Mittel zum Zusammenklemmen des ersten und zweiten Abschnitts, um die Kammer zu bilden und die Dichtungsmittel (20) gegen den Ring (12) zu legen, wenn dieser in der Kammer aufgenommen ist, um eine druckbeständige Dichtung zwischen der Innenseite und der Außenseite des Rings (12) zu bilden; und

    - einen Fluideinlassanschluss (24) in einem der Kammerabschnitte, so dass ein Druckfluid zur Kammer außerhalb des Rings (12) gelangen kann, wenn dieser in der Kammer aufgenommen ist.


     
    10. Vorrichtung nach Anspruch 9, wobei der erste Abschnitt (16) eine Ausnehmung definiert, die durch den zweiten Abschnitt (18) geschlossen wird, um die Kammer zu bilden.
     
    11. Vorrichtung nach Anspruch 10, wobei der Fluideinlassanschluss (24) in einer Wand des ersten Abschnitts (16) gebildet ist.
     
    12. Vorrichtung nach Anspruch 9 oder 10, wobei der erste und zweite Abschnitt (16, 18) ineinandergreifende Ausformungen enthalten, um eine exakte Lokalisierung relativ zueinander bei Bildung der Kammer zu erlauben.
     
    13. Vorrichtung nach einem der Ansprüche 9-12, wobei Dichtungen für die eingerasteten Oberflächen des ersten und zweiten Abschnitts vorgesehen sind.
     
    14. Vorrichtung nach einem der Ansprüche 9-13, ferner umfassend ein Entlüftungsloch (28) in dem einen oder anderen des ersten und zweiten Abschnitts, sodass ein Druckausgleich zwischen der Innenseite des Rings (12) und Umgebungsdruck während des Tests möglich ist.
     
    15. Vorrichtung nach einem der Ansprüche 9-14, wobei das Klemmmittel eine oder mehrere Schrauben (30) umfasst, die durch Löcher (32) in einem Abschnitt (16) gehen und sich durch die Kammer im Inneren des Rings erstrecken und in Gewindebohrungen (34) im anderen Abschnitt (18) eingreifen.
     
    16. Vorrichtung nach einem der Ansprüche 9-14, wobei das Klemmmittel einen Zylinder (36) umfasst, der in einem Abschnitt gebildet ist, in dem ein Kolben (38) gelegen ist, wobei sich der Kolben (38) vom Zylinder (36) durch die Kammer im Inneren des Rings (12) erstreckt und ein Ende aufweist, das an dem anderen Abschnitt fixiert ist, wobei eine Antriebsfluidzuleitung mit dem Zylinder verbunden ist, die funktionsfähig ist, das fixierte Ende des Kolbens (38) zum Zylinder zu ziehen und die zwei Abschnitte (16, 18) zusammenzuklemmen.
     


    Revendications

    1. Procédé de contrôle de tuyaux destinés à être utilisés dans la fabrication de canalisations sous-marines, le procédé consistant à :

    découper un anneau (12) d'un ou plusieurs tuyaux (10) du type utilisé pour fabriquer la canalisation ;

    former des surfaces parallèles plates sur les extrémités (14) de l'anneau (12), avec une tolérance telle qu'après son montage dans une chambre de pression, aucune fuite ne se produise entre l'intérieur de l'anneau et l'extérieur de l'anneau, tout en évitant un frottement contraignant inapproprié lors du déplacement radial du diamètre extérieur dudit anneau (12) vers l'intérieur sous charge ;

    fournir un moyen permettant de mesurer l'effort et la déformation de l'anneau (12) ;

    monter l'anneau dans la chambre de pression de sorte que les extrémités (14) de l'anneau forment des joints avec les moyens d'étanchéité situés sur les parois opposées de la chambre afin d'isoler l'intérieur de l'anneau vis-à-vis de l'extérieur, de sorte qu'une pression puisse être appliquée uniquement sur la surface circulaire extérieure de l'anneau, et de sorte que lors de l'utilisation, la pression soit exercée obligatoirement et uniquement sur la surface circulaire extérieure de l'anneau (12) ;

    augmenter la pression à l'extérieur de l'anneau (12) et mesurer l'effort et la déformation sur l'anneau (12) au fur et à mesure que la pression augmente ; et

    utiliser les mesures de déformation et d'effort pour déterminer une épaisseur de paroi à utiliser pour la canalisation.


     
    2. Procédé selon la revendication 1, dans lequel l'étape consistant à fournir un moyen permettant de mesurer l'effort et la déformation consiste à appliquer des capteurs sur l'anneau (12).
     
    3. Procédé selon la revendication 2, consistant à déployer les capteurs sur la surface intérieure de l'anneau (12).
     
    4. Procédé selon la revendication 1, 2 ou 3, dans lequel l'étape consistant à monter l'anneau (12) dans la chambre de pression consiste à fournir des joints (20) entre les extrémités (14) de l'anneau (12) et les parois de la chambre.
     
    5. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'étape consistant à augmenter la pression consiste à pomper un fluide sous pression dans la chambre autour de l'extérieur de l'anneau (12).
     
    6. Procédé selon l'une quelconque des revendications précédentes, consistant en outre à déterminer une comparaison de la pression appliquée et de l'effort maximum mesuré pour détecter le début d'une accélération de la réduction non linéaire du diamètre de l'anneau, à une augmentation de la pression.
     
    7. Procédé selon l'une quelconque des revendications précédentes, consistant à sélectionner la longueur de l'anneau découpé des tuyaux (10) de sorte que le tuyau reste dans les tolérances d'utilisation dans la canalisation.
     
    8. Procédé selon la revendication 7, consistant à sélectionner la longueur de sorte qu'elle soit égale à environ deux fois l'épaisseur de la paroi du tuyau (10).
     
    9. Appareil de contrôle d'anneaux découpés de tuyaux (10) destinés à être utilisés dans la fabrication de canalisations sous-marines, comprenant :

    des première et seconde sections de chambre de contrôle (16, 18) qui, lorsqu'elles sont rassemblées, définissent une chambre de contrôle pour recevoir l'anneau (12) à contrôler ;

    un ou plusieurs capteurs permettant de mesurer l'effort et la déformation de l'anneau (12) ;

    des moyens d'étanchéité (20) situés dans la chambre afin de former un joint contre les extrémités de l'anneau (12) lorsque celui-ci est reçu dans la chambre, de sorte que lors de l'utilisation, une pression puisse être appliquée uniquement sur la surface circulaire extérieure de l'anneau, et de sorte que lors de l'utilisation, la pression soit exercée obligatoirement et uniquement sur la surface circulaire extérieure de l'anneau ; les moyens d'étanchéité (20) étant des joints toriques ou des joints à l'épreuve de la pression situés dans les première et seconde sections de chambre de contrôle ;

    un moyen permettant de serrer les première et seconde sections ensemble afin de former la chambre et de loger les moyens d'étanchéité (20) contre l'anneau (12) lorsque celui-ci est reçu dans la chambre, afin de former un joint résistant à la pression entre l'intérieur et l'extérieur de l'anneau (12) ; et

    un orifice d'entrée de fluide (24) dans une des sections de chambre pour permettre l'admission d'un fluide sous pression dans la chambre à l'extérieur de l'anneau (12) lorsque celui-ci est reçu dans la chambre.


     
    10. Appareil selon la revendication 9, dans lequel la première section (16) définit un évidement fermé par la seconde section (18) afin de former la chambre.
     
    11. Appareil selon la revendication 10, dans lequel l'orifice d'entrée de fluide (24) est formé dans une paroi de la première section (16).
     
    12. Appareil selon la revendication 9 ou 10, dans lequel les première et seconde sections (16, 18) comportent des formations s'engageant les unes dans les autres pour permettre un positionnement précis d'une section contre l'autre lors de la formation de la chambre.
     
    13. Appareil selon l'une quelconque des revendications 9 à 12, dans lequel des joints sont fournis pour les surfaces engagées des première et seconde sections.
     
    14. Appareil selon l'une quelconque des revendications 9 à 13, comprenant en outre un orifice de purge (28) dans l'une ou l'autre des première et seconde sections pour permettre une égalisation de pression entre l'intérieur de l'anneau (12) et la pression ambiante pendant le contrôle.
     
    15. Appareil selon l'une quelconque des revendications 9 à 14, dans lequel le moyen de serrage comprend une ou plusieurs vis (30) qui passent dans des orifices (32) dans une section (16) pour s'étendre dans la chambre à l'intérieur de l'anneau et se loger dans des alésages filetés (34) dans l'autre section (18).
     
    16. Appareil selon l'une quelconque des revendications 9 à 14, dans lequel le moyen de serrage comprend un cylindre (36) formé dans une section et dans lequel est logé un piston (38), le piston (38) s'étendant à partir du cylindre (36) dans la chambre à l'intérieur de l'anneau (12) et comportant une extrémité fixée à l'autre section, une alimentation de fluide d'entraînement étant raccordée au cylindre et pouvant être mise en fonctionnement pour tirer l'extrémité fixée du piston (38) vers le cylindre et serrer ensemble les deux sections (16, 18).
     




    Drawing