(19)
(11) EP 2 268 895 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
13.06.2018 Bulletin 2018/24

(21) Application number: 09727729.7

(22) Date of filing: 25.03.2009
(51) International Patent Classification (IPC): 
E21B 43/16(2006.01)
E21B 43/36(2006.01)
(86) International application number:
PCT/GB2009/000773
(87) International publication number:
WO 2009/122134 (08.10.2009 Gazette 2009/41)

(54)

FLUID TREATMENT SYSTEM

FLÜSSIGKEITSBEHANDLUNGSSYSTEM

SYSTÈME DE TRAITEMENT DE FLUIDE


(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

(30) Priority: 04.04.2008 GB 0806172

(43) Date of publication of application:
05.01.2011 Bulletin 2011/01

(73) Proprietor: VWS Westgarth Limited
East Kilbride Glasgow G74 5PR (GB)

(72) Inventors:
  • EVANS, Wayne
    Pershore Worcestershire WR10 2PL (GB)
  • LANGE, Neville Ernest
    Gloucester GL1 5PT (GB)

(74) Representative: Docherty, Andrew John et al
Marks & Clerk LLP Aurora 120 Bothwell Street
Glasgow G2 7JS
Glasgow G2 7JS (GB)


(56) References cited: : 
EP-A1- 0 201 263
WO-A-2004/090284
US-A- 4 792 284
US-A1- 2005 173 322
US-A1- 2007 186 770
EP-A1- 0 343 394
DE-C1- 3 531 834
US-A1- 2003 188 873
US-A1- 2006 060 543
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF THE INVENTION



    [0001] The present invention relates to a fluid treatment apparatus for treating a fluid to be injected into a subterranean hydrocarbon bearing formation. The present invention has application in subsea environments.

    BACKGROUND TO THE INVENTION



    [0002] Extracting hydrocarbons from a subterranean formation involves flowing hydrocarbons from the formation to surface through a production well bore. In the early stages of production, the hydrocarbons are driven into the production well and flowed to surface by pressure within the formation. However, over time the formation pressure reduces until natural extraction can no longer be sustained, at which stage some form of artificial or assisted extraction is required. One common form of artificial extraction involves the injection of a fluid medium into the depleting formation through an injection well bore which extends from surface in order to displace the hydrocarbons from the formation. Conventionally, the fluid medium is aqueous and may be produced water or sea water or the like. Fluid injection in this manner may also be utilised as a form of matrix support in order to prevent collapse of the reservoir after the hydrocarbons have been removed.

    [0003] Where water injection is utilised to displace hydrocarbons from the formation, or provide matrix support, it is important that the injection water is compatible with the formation chemistry and is substantially free from suspended or dissolved particles and colloidal and macromolecular matter. This is required to prevent or at least minimise plugging of the formation and associated wells, which occurs when precipitates or suspended particles or the like accumulate and block, or plug, fluid passageways. Such fluid passageways may include pores, fractures, cracks or the like in the hydrocarbon-bearing rock formation, or passageways defined by production and injection well bores. This plugging can significantly reduce hydrocarbon production and in severe cases can terminate production altogether.

    [0004] In order to ensure that the injection fluid or water is substantially free from suspended or dissolved particles and the like, it is known in the art to treat the water prior to injection into the formation. Treatment normally includes a combination of chemical and mechanical or physical processes. For example, coagulants or flocculants may be added to the water to encourage flocculation where heavy particles or flocculus, known as "floc", are formed. The floc may then be removed by sedimentation and/or by filtration whereby mechanical straining removes a proportion of the particles by trapping them in the filter medium. Conventional filtration apparatus for use in treating injection water to remove such particulate material include filtration or separation membranes, multimedia filters and the like.

    [0005] With regards to plugging caused by precipitate formation and accumulation, this occurs when ionic species in the injection fluid or water combines or reacts with compatible ionic species in water present in the formation producing a precipitate or scale. For example, divalent sulphate anions in the injection water will combine with various cations which may be present in the formation water to form substantially insoluble precipitates. For example, the formation water may contain, among others: barium cations, which when combined with sulphate produces a barium-sulphate or barite precipitate; strontium cations resulting in the formation of a strontium-sulphate precipitate; or calcium cations resulting in the formation of a calcium-sulphate or anhydrite precipitate or scale. As noted above, these resultant precipitates are substantially insoluble, particularly barite, making any precipitate purging and removal/squeezing process extremely difficult, complicated and expensive.

    [0006] Additionally, the presence of sulphate in the injection fluid or water provides a source of sulphur which thermophilic sulphate reducing bacteria (SRB) that may be present in the formation feed on, producing hydrogen-sulfide which causes souring of the well. Hydrogen-sulfide is extremely corrosive and specialised equipment must be used to accommodate the "sour" hydrocarbons, both at the extraction/production stage and at the processing stage. Using injection water with a high sulphate content can therefore sour an originally "sweet" well.

    [0007] Various methods have been proposed to provide a preventative solution by removing the problematic, or precursor divalent ions from the injection water before injection into the formation. For example, prior art reference US 4,723,603 discloses a process in which a feed water is treated to remove precursor ions by a process of reverse osmosis to produce a treated injection water product.

    [0008] In offshore environments, a significant proportion of platform space is dedicated to fluid treatment systems, such as injection water treatment systems. This presents problems in view of the limited space available in these environments. Furthermore, known filtration or separation systems operate by creating pressure differentials across the filtration media, for example across membranes and the like, which typically involves the use of specialised plant equipment, such as pumping systems and fluid control equipment including valves and the like. Such plant equipment requires dedicated space and an energy source and is susceptible to mechanical failure. These problems are also true for any separation system, including those outside the mineral extraction industries, such as desalination for generating potable water, power generation and the like.

    [0009] EP 201 263 discloses an oil recovery method and waterflooding injection system for use therein which eliminates the need for remote surface pumping facilities and associated flowlines by locating the pump for seawater injection into a subsea petroleum reservoir, adjacent the seafloor wellhead.

    [0010] US 2006/0060543 discloses an underwater system having a hydrocyclone for separating sand from seawater, and a pump downstream from the hydrocyclone for drawing seawater upstream of the hydrocyclone into the hydrocyclone. The sand separated from the seawater is collected in a sand storage device below the hydrocyclone. The pump pumps the seawater from which the sand has been removed into a water injection well and a portion of the seawater is diverted into a sand extraction device beneath the sand storage device to flush away the sand collected therein.

    SUMMARY OF THE INVENTION



    [0011] According to a first aspect of the present invention there is provided a subsea fluid treatment system for use in treating seawater for injection into a subterranean formation, comprising:

    a fluid treatment module comprising a fluid inlet, a first fluid outlet for treated seawater with a reduced concentration of a selected component , and a second fluid outlet for treated seawater with an increased concentration of the selected component;

    a pump having an inlet and an outlet; and

    an eductor having a motive fluid port, a delivery port, and a suction port,

    wherein the suction port of the eductor is configured to receive ambient seawater from the ambient sea and the delivery port of the eductor is in fluid communication with the fluid inlet of the fluid treatment module;

    wherein the second fluid outlet of the fluid treatment module is configured for disposal of the treated seawater with the increased concentration of the selected component into the ambient sea, and

    wherein the pump inlet is in fluid communication with the first fluid outlet of the fluid treatment module for receiving the treated seawater with the reduced concentration of the selected component; and

    wherein the subsea system is configured for communication of the treated seawater with the reduced concentration of the selected component from the pump outlet to a subterranean formation and for communication of the treated seawater with the reduced concentration of the selected component from the pump outlet to the motive fluid port of the eductor so as to entrain seawater from the ambient sea through the suction port of the eductor for delivery through the delivery port of the eductor to the fluid inlet of the fluid treatment module at a pressure which is greater than a pressure of the ambient sea resulting in a first pressure differential between the fluid inlet and the first fluid outlet of the fluid treatment module and a second pressure differential between the fluid inlet and the second fluid outlet of the fluid treatment module.



    [0012] In use, the first pressure differential may facilitate communication of seawater between the fluid inlet and one of the first and second fluid outlets of the fluid treatment module, and the second pressure differential may facilitate communication of the seawater between the fluid inlet and the other of the first and second fluid outlets.

    [0013] The system of the present invention advantageously permits the required fluid pressure differentials across the fluid treatment module to be established by use of a single pump, which single pump may establish the first pressure differential and also provide the motive fluid for operation of the eductor to establish the second fluid pressure differential. Accordingly, the quantity of fluid handling equipment may be minimised, with associated benefits in terms of reduced plant space, reduced system complexity, reduced costs and the like.

    [0014] The system may be adapted for use in treating seawater to be injected into a subterranean formation, such as a hydrocarbon bearing formation. Additionally, the treated fluid may comprise fluid produced from a subterranean formation.

    [0015] In embodiments of the invention the pump may be arranged to deliver seawater at a required pressure to a final destination, such as a subterranean destination. In this arrangement a portion of the treated seawater from the pump may be communicated to the final destination and a portion may be communicated to the eductor. In embodiments of the invention the pump may function as an injection pump.

    [0016] The use of a subsea system may permit the associated equipment, or at least a proportion of the associated equipment, to be mounted remotely from an offshore platform, providing significant advantages in terms of space saving and the like.

    [0017] Use of the system eliminates or reduces complexities involved in delivering fluid from a remote source to a treatment system. Furthermore, the system facilitates exploitation of the hydrostatic pressure within the subsea environment. For example, locating the system at a depth of, say, 350 meters will expose the system to a hydrostatic pressure of approximately 36 bar. Facilitating use of ambient pressures also assists to ensure that the pump operates at a positive pressure, and also assists to ensure that fluid is delivered to the pump above its required Net Positive Suction Head (NPSH). This may eliminate any requirement for pre-conditioning or primary pumping systems.

    [0018] One or both of the first and second fluid pressure differentials may be established with reference to the ambient pressure. Accordingly, ambient fluid may be communicated to the fluid treatment module by virtue of the appropriate pressure differential.

    [0019] The fluid treatment module may be adapted to treat seawater by reducing the concentration of at least one component of the fluid, such as particulate components, ionic components and the like. The fluid treatment module may comprise at least one filtration or separation medium. The filtration or separation medium may comprise a membrane, such as a reverse osmosis membrane, nano-filtration membrane, ultrafiltration membrane or the like, or any suitable combination thereof. Alternatively, or additionally, the filtration or separation medium may comprise strainers, sieves or the like.

    [0020] The treated seawater with the reduced concentration of the selected component may conveniently be termed a permeate. The treated seawater with the increased concentration of the selected component may conveniently be termed a retentate. One or both of the permeate and retentate may define a useable product. For example, the permeate may be communicated to a final destination, and the retentate may be disposed of. Alternatively, a portion of the retentate and/or permeate may be recirculated within the fluid treatment system, for example to ensure a particular fluid condition is achieved, or to achieve a required flux rate of the fluid treatment module. In this respect, the use of fluid from the pump as a motive fluid for the eductor may facilitate additional control over fluid conditioning.

    [0021] The fluid treatment module may comprise a plurality of fluid inlets and more than two fluid outlets, and appropriate pressure differentials may be established across selected inlets and outlets.

    [0022] A single fluid pump may be provided. A single eductor may be provided. Alternatively, a plurality of pumps or eductors may be provided

    [0023] In embodiments of the invention a single fluid treatment module may be provided. Alternatively, a plurality of fluid treatment modules may be provided. The plurality of fluid treatment modules may be serviced by a single pump and single eductor, or alternatively by more than one pump or eductor. The fluid treatment modules may be arranged in series or in parallel, or a combination of both.

    [0024] The system may comprise a cleaning arrangement adapted to facilitate cleaning or flushing or the like of the fluid treatment module. The cleaning arrangement may comprise a back washing arrangement. The cleaning system may be operated by one or more eductors. The eductors for use in the cleaning arrangement may be operated or provided with motive fluid from the pump of the system.

    [0025] Aspects of the present invention also relate to various uses of the fluid treatment system defined in the first aspect.

    [0026] According to a second aspect of the present invention there is provided a method of treating seawater subsea, comprising:

    locating a fluid treatment module subsea, the fluid treatment module comprising a fluid inlet, a first fluid outlet for treated seawater with the reduced concentration of the selected component, and a second fluid outlet for treated seawater with an increased concentration of the selected component;

    communicating the treated seawater with the increased concentration of the selected component from the second fluid outlet of the fluid treatment module to the ambient sea;

    communicating the treated seawater with the reduced concentration of the selected component from the first fluid outlet of the fluid treatment module to an inlet of a pump;

    communicating the treated seawater with the reduced concentration of the selected component from an outlet of the pump to a subterranean formation; and

    communicating the treated seawater with the reduced concentration of the selected component from the outlet of the pump to a motive fluid port of an eductor so as to entrain seawater from the ambient sea through a suction port of the eductor and deliver seawater through a delivery port of the eductor to the fluid inlet of the fluid treatment module at a pressure which is greater than a pressure of the ambient sea resulting in a first pressure differential between the fluid inlet and the first fluid outlet of the fluid treatment module and a second pressure differential between the fluid inlet and the second fluid outlet of the fluid treatment module.



    [0027] The method may be carried out within a fluid treatment system, such as that system described above with reference to the first aspect above. The method may comprise the step of locating at least a portion of the fluid treatment system on a seabed. A fluid injection apparatus may comprise the fluid treatment system according to the first aspect.

    [0028] A method of injecting a fluid into a subterranean formation may utilize the system of the first aspect.

    [0029] A fluid treatment system may comprise:

    a fluid treatment module comprising a fluid inlet and first and second fluid outlets;

    a pump defining a suction port and a delivery port;

    an eductor defining a suction port, a delivery port and a motive fluid port;

    wherein at least one of the first and second outlets of the fluid treatment module is in fluid communication with the suction port of at least one of the pump and eductor,

    and wherein the delivery port of the pump is in fluid communication with the motive fluid port of the eductor.



    [0030] A subsea fluid treatment system may comprise:

    a fluid treatment module adapted to be immersed within seawater and comprising a fluid inlet and first and second fluid outlets, wherein the fluid inlet is adapted to receive ambient seawater;

    a pump adapted to establish a first pressure differential between the fluid inlet and one of the first and second fluid outlets of the fluid treatment module; and

    an eductor adapted to establish a second pressure differential between the fluid inlet and the other of the first and second fluid outlets of the fluid treatment module,

    wherein the pump is adapted to deliver a motive fluid to the eductor.


    BRIEF DESCRIPTION OF THE DRAWINGS



    [0031] Fluid treatment systems will now be described with reference to the accompanying drawings, in which Figures 1 to 7 are diagrammatic representations of respective fluid treatment systems. The fluid treatment system of Figure 1 is, however, the only one of the fluid treatment systems described which falls within the scope of the claims.

    DETAILED DESCRIPTION OF THE DRAWINGS



    [0032] As defined above, one aspect of the present invention relates to a fluid treatment system and associated methods of use. This treatment system may be utilised in a number of different applications. However, for clarity and brevity the following systems and methods are described in the context of treating a fluid for injection into a subterranean formation.

    [0033] Referring first to Figure 1, an embodiment of a fluid treatment system according to the present invention, generally identified by reference numeral 10, is shown. The system 10 is located at a subsea location and as will be described in detail below treats ambient seawater prior to being injected into a subterranean formation.

    [0034] The system 10 comprises a fluid treatment module 12 which defines a fluid inlet 14, a first fluid outlet 16 and a second fluid outlet 18. The module 12 comprises at least one filtration membrane 20 mounted therein which is arranged to treat seawater passing therethrough by separating components therefrom. The membrane type may be selected in accordance with the particular treatment required. For example, for substantially complete particulate matter and ionic species removal a reverse osmosis membrane may be utilised. Alternatively, for selective ionic species removal, such as sulphate ions, a nano-filtration membrane may be utilised.

    [0035] Fluid which has passed through the membrane 20, and thus has a low concentration of excluded components, exits the module 12 via the first fluid outlet 16 as the permeate. This permeate may then be injected into a subterranean formation. As such, the module 12 functions to condition the seawater prior to injection, for example to render the seawater compatible with the formation chemistry.

    [0036] Fluid which has not passed through the membrane 20, and thus has a relatively higher concentration of excluded components, exits the module 12 via the second fluid outlet 18 as the retentate. This retentate in the embodiment shown is discharged back into the sea.

    [0037] In order to ensure the passage of seawater across the membrane 20, a pressure differential between the fluid inlet 14 and first fluid outlet 16 must be established which exceeds the trans-membrane pressure, which may be the osmotic pressure for the membrane type and fluid feed conditions, for example. This pressure differential in the embodiment shown is achieved by a pump 22. Specifically, a suction port 24 of the pump 22 is in fluid communication with the first fluid outlet 16 of the module 12. This arrangement therefore establishes a lower pressure at the first fluid outlet 16 than at the fluid inlet 14.

    [0038] As the system 10 is immersed within the seawater which is supplied to the module 12, the supplied water will thus have a pressure at least equal to the ambient hydrostatic pressure of the ambient seawater. For example, at a depth of, say, 350 meters, the water will have an ambient pressure of around 36 bar. This ambient pressure therefore ensures that the pump 22 always functions above 0.0 bar, and preferably above its required NPSH. For example, if the pump 22 requires an inlet pressure of at least 5 bar to prevent cavitation then it would be possible, at a depth of around 350 meters, to sustain a trans-membrane (or permeate) pressure drop of 31 bar without risking damage to the pump 22.

    [0039] The pump 22 also defines a delivery port 26 from which the permeate may be discharged and injected downhole. As such, the pump 22 functions as an injection pump. Any suitable pump may be utilised as would be readily selected by those of skill in the art. For example, a rotodynamic pump, such as a centrifugal or axial flow pump may be utilised.

    [0040] In relation to the retentate flow, as noted above this is drawn in from the ambient environment and then discharged back into this environment. Accordingly, to achieve net fluid flow in the desired direction a pressure differential must also be established between the fluid inlet 14 and second fluid outlet 18. In the present embodiment this is achieved by an eductor 28. Specifically, a delivery port 30 of the eductor 28 is in fluid communication with the fluid inlet 14 of the module 12. This arrangement therefore establishes a higher pressure at the fluid inlet 14 than at the second fluid outlet 18, achieving flow from the fluid inlet 14 to the second fluid outlet 18.

    [0041] The eductor 28 also defines a suction port 32 which receives seawater. Furthermore, the eductor 32 defines a motive fluid port 34. The motive fluid port 34 is in fluid communication with the delivery port 26 of the pump 22. Accordingly, a portion of the pressurised fluid from the pump 22 may be delivered to the eductor 28 to be utilised as the motive fluid for operation.

    [0042] Accordingly, the embodiment of Figure 1 permits the required pressure differentials across the fluid treatment module to be established utilising only a single mechanical assembly, specifically pump 22. This therefore reduces the complexities and costs of the system 10.

    [0043] By virtue of using fluid from the pump 22, which has already been treated in the module 12, as the motive fluid for the eductor 28, the flux rate of the membrane 20 may be improved and a degree of control may be facilitated. For example, the volume of water from the pump 22 may be controlled according to the required flux output.

    [0044] A further fluid treatment system generally identified by reference numeral 110 is shown in Figure 2. The further fluid treatment system 110 of Figure 2 is similar to that shown in Figure 1, and as such like components share like reference numerals, incremented by 100. As such, the system 110 includes a fluid treatment module 112, a pump 122 and an eductor 128. However, in the present case a suction port 132 of the eductor 128 is in fluid communication with a second outlet 118 of the module 112, thus ensuring that the pressure at the second outlet 118 is lower than that at the inlet 114.

    [0045] Other fluid treatment systems are shown in Figures 3 to 6 respectively. In each case, the systems shown are similar to those first presented in Figures 1 and 2. As such like features share like reference numerals with Figure 2, incremented in each case by 100.

    [0046] The systems described above are flexible in relation to the alternative locations of the pump and eductor. For example: the delivery port of the pump may be in communication with the inlet of the fluid treatment module, with corresponding placement of the eductor; the suction port of the pump may be in fluid communication with the second fluid outlet of the module, with corresponding placement of the eductor. It will be recognised that many further arrangements of the components of the systems, including additional components such as further fluid treatment modules, pumps and eductors, are possible. For example, the eductor may be reversed to make a pressure gain in the opposite direction to the flow - i.e. to function like a restriction valve. This may have application in for example, the nuclear industry where this might be done to avoid a valve which could wear and/or leak. However, for brevity these further combinations and variations have not been included.

    [0047] Also, in Figures 3 to 6 the labels "to injection well" and "seawater discharge" which appeared in Figures 1 and 2 have been replaced with "destination p" and "destination r", to demonstrate that the system may be utilised for purposes other than water injection.

    [0048] A further alternative system is shown in Figure 7, reference to which is now made. In this case the system is generally identified by reference numeral 710. In this system a combination of a pump 722 and eductor 728 is utilised, with a delivery port 726 of the pump 722 being in fluid communication with a motive fluid port 734 of the eductor 728. However, in this case a plurality of fluid treatment modules are provided in a first bank of modules 712a connected in series with a second bank of modules 712b. In each bank 712a, 712b each membrane is connected in parallel. This arrangement may permit large flux rates to be achieved.

    [0049] The system 710 in Figure 7 also includes a backwashing system 750 which incorporates a number of eductors 750a which receive motive fluid also from the pump 722. The eductors 750a of the backwashing system permit the banks of modules 712a to be backwashed as required. Bank 712b may also incorporate a backwashing system.

    [0050] It should be understood that the embodiments described and shown herein are merely exemplary of the present invention and that various modifications may be made thereto without departing form the scope of the invention as defined by the claims. For example, and as noted above, different combinations of pump and eductor relative arrangements are possible without departing from the scope of the invention. Also, the fluid treatment system described herein may be utilised in many applications.


    Claims

    1. A subsea fluid treatment system (10) for use in treating seawater for injection into a subterranean formation, comprising:

    a fluid treatment module (12) comprising a fluid inlet (14), a first fluid outlet (16) for treated seawater with a reduced concentration of a selected component, and a second fluid outlet (18) for treated seawater with an increased concentration of the selected component;

    a pump (22) having an inlet (24) and an outlet (26); and

    an eductor (28) having a motive fluid port (34), a delivery port (30), and a suction port (32),

    wherein the suction port (32) of the eductor (28) is configured to receive ambient seawater from the ambient sea and the delivery port (30) of the eductor (28) is in fluid communication with the fluid inlet (14) of the fluid treatment module (12);

    wherein the second fluid outlet (18) of the fluid treatment module (12) is configured for disposal of the treated seawater with the increased concentration of the selected component into the ambient sea, and

    wherein the pump inlet (24) is in fluid communication with the first fluid outlet (16) of the fluid treatment module (12) for receiving the treated seawater with the reduced concentration of the selected component; and

    wherein the subsea system is configured for communication of the treated seawater with the reduced concentration of the selected component from the pump outlet (26) to a subterranean formation and for communication of the treated seawater with the reduced concentration of the selected component from the pump outlet (26) to the motive fluid port (34) of the eductor (28) so as to entrain seawater from the ambient sea through the suction port (32) of the eductor (28) for delivery through the delivery port (30) of the eductor (28) to the fluid inlet (14) of the fluid treatment module (12) at a pressure which is greater than a pressure of the ambient sea resulting in a first pressure differential between the fluid inlet (14) and the first fluid outlet (16) of the fluid treatment module (12) and a second pressure differential between the fluid inlet (14) and the second fluid outlet (18) of the fluid treatment module (12).


     
    2. The subsea fluid treatment system (10) according to claim 1, wherein the fluid treatment module (12) is adapted to treat a fluid by reducing the concentration of at least one component of the fluid.
     
    3. The subsea fluid treatment system (10) according to claim 2, wherein the at least one component comprises at least one of particulate components and ionic components.
     
    4. The subsea fluid treatment system (10) according to any preceding claim, wherein the permeate defines a useable product.
     
    5. The subsea fluid treatment system (10) according to any preceding claim, wherein the fluid treatment module comprises a plurality of fluid inlets and more than two fluid outlets, with appropriate pressure differentials provided across selected inlets and outlets.
     
    6. The subsea fluid treatment system (10) according to any preceding claim, comprising a plurality of fluid treatment modules.
     
    7. A method of treating seawater subsea, comprising:

    locating a fluid treatment module (12) subsea, the fluid treatment module (12) comprising a fluid inlet (14), a first fluid outlet (16) for treated seawater with the reduced concentration of the selected component, and a second fluid outlet (18) for treated seawater with an increased concentration of the selected component;

    communicating the treated seawater with the increased concentration of the selected component from the second fluid outlet (18) of the fluid treatment module (12) to the ambient sea;

    communicating the treated seawater with the reduced concentration of the selected component from the first fluid outlet (16) of the fluid treatment module (12) to an inlet (24) of a pump (22);

    communicating the treated seawater with the reduced concentration of the selected component from an outlet (26) of the pump (22) to a subterranean formation; and

    communicating the treated seawater with the reduced concentration of the selected component from the outlet (26) of the pump (22) to a motive fluid port (34) of an eductor (28) so as to entrain seawater from the ambient sea through a suction port (32) of the eductor (28) and deliver seawater through a delivery port (30) of the eductor (28) to the fluid inlet (14) of the fluid treatment module (12) at a pressure which is greater than a pressure of the ambient sea resulting in a first pressure differential between the fluid inlet (14) and the first fluid outlet (16) of the fluid treatment module (12) and a second pressure differential between the fluid inlet (14) and the second fluid outlet (18) of the fluid treatment module (12).


     


    Ansprüche

    1. Untersee-Fluidbehandlungssystem (10) zum Gebrauch in der Behandlung von Meerwasser zur Injektion in eine unterirdische Formation, Folgendes beinhaltend:

    Fluidbehandlungsmodul (12), beinhaltend einen Fluideinlass (14), einen ersten Fluidauslass (16) für behandeltes Meerwasser mit einer reduzierten Konzentration einer ausgewählten Komponente, und einen zweiten Fluidauslass (18) für behandeltes Meerwasser mit einer erhöhten Konzentration der ausgewählten Komponente;

    eine Pumpe (22), besitzend einen Einlass (24) und einen Auslass (26); und

    einen Ejektor (28), besitzend einen beweglichen Fluidanschluss (34), einen Abgabeanschluss (30) und einen Sauganschluss (32),

    wobei der Sauganschluss (32) des Ejektors (28) konfiguriert ist, um umgebendes Meerwasser aus dem umgebenden Meer aufzunehmen und der Abgabeanschluss (30) des Ejektor (28) in fluidischer Verbindung mit dem Fluideinlass (14) des Fluidbehandlungsmoduls (12) steht;

    wobei der zweite Fluidauslass (18) des Fluidbehandlungsmoduls (12) zum Entsorgen des behandelten Meerwassers mit der erhöhten Konzentration der ausgewählten Komponente in das umgebende Meer konfiguriert ist, und

    wobei der Pumpeneinlass (24) in fluidischer Verbindung mit dem ersten Fluidauslass (16) des Fluidbehandlungsmoduls (12) zur Aufnahme des behandelten Meerwassers mit der reduzierten Konzentration der gewählten Komponente steht; und

    wobei das Unterseesystem konfiguriert ist zur Verbindung des behandelten Meerwassers mit der reduzierten Konzentration der gewählten Komponente aus dem Pumpenauslass (26) mit einer unterirdischen Formation und zur Verbindung des behandelten Meerwassers mit der reduzierten Konzentration der gewählten Komponente aus dem Pumpenauslass (26) mit dem beweglichen Fluidanschluss (34) des Ejektors (28), so dass Meerwasser aus dem umgebenden Meer durch den Sauganschluss (32) des Ejektors (28) zur Abgabe durch den Abgabeanschluss (30) des Ejektors (28) an den Fluideinlass (14) des Fluidbehandlungsmoduls (12) mitgeführt wird mit einem Druck, welcher größer ist als der Druck des umgebenden Meers, woraus eine erste Druckdifferenz zwischen dem Fluideinlass (14) und dem ersten Fluidauslass (16) des Fluidbehandlungsmoduls (12) und eine zweite Druckdifferenz zwischen dem Fluideinlass (14) und dem zweiten Fluidauslass (18) des Fluidbehandlungsmoduls (12) resultieren.


     
    2. Untersee-Fluidbehandlungssystem (10) nach Anspruch 1, bei welchem das Fluidbehandlungsmodul (12) geeignet ist, ein Fluid durch Reduzieren der Konzentration von mindestens einer Komponente des Fluids zu behandeln.
     
    3. Untersee-Fluidbehandlungssystem (10) nach Anspruch 2, bei welchem die mindestens eine Komponente mindestens eines Komponente der Gruppe beinhaltet, bestehend aus partikelförmigen Komponenten und ionischen Komponenten.
     
    4. Untersee-Fluidbehandlungssystem (10) nach einem der vorhergehenden Ansprüche, bei welchem das Permeat ein verwendbares Produkt definiert.
     
    5. Untersee-Fluidbehandlungssystem (10) nach einem der vorhergehenden Ansprüche, bei welchem das Fluidbehandlungsmodul eine Vielzahl von Fluideinlässen und mehr als zwei Fluidauslässe beinhaltet, mit geeigneten Druckdifferenzen, welche durch ausgewählte Einlässe und Auslässe bereitgestellt werden.
     
    6. Untersee-Fluidbehandlungssystem (10) nach einem der vorhergehenden Ansprüche, beinhaltend eine Vielzahl von Fluidbehandlungsmodulen.
     
    7. Verfahren zur unterseeischen Behandlung von Meerwasser, Folgende Schritte beinhaltend:

    Lokalisieren eines Fluidbehandlungsmoduls (12) unter See, wobei das Fluidbehandlungsmodul (12) einen Fluideinlass (14), einen ersten Fluidauslass (16) für behandeltes Meerwasser mit der reduzierten Konzentration der gewählten Komponente, und einen zweiten Fluidauslass (18) für behandeltes Meerwasser mit einer erhöhten Konzentration der gewählten Komponente beinhaltet;

    Verbinden des behandelten Meerwassers mit der erhöhten Konzentration der ausgewählten Komponente aus dem zweiten Auslass (18) des Fluidbehandlungsmoduls (12) mit dem umgebenden Meer;

    Verbinden des behandelten Meerwassers mit der reduzierten Konzentration der ausgewählten Komponente aus dem ersten Auslass (16) des Fluidbehandlungsmoduls (12) mit einem Einlass (24) einer Pumpe (22);

    Verbinden des behandelten Meerwassers mit der reduzierten Konzentration der ausgewählten Komponente aus einem Auslass (26) der Pumpe (22) mit einer unterirdischen Formation; und

    Verbinden des behandelten Meerwassers mit der reduzierten Konzentration der gewählten Komponente aus dem Auslass (26) der Pumpe (22) mit einem beweglichen Fluidanschluss (34) eines Ejektors (28), so dass Meerwasser aus dem umgebenden Meer durch den Sauganschluss (32) des Ejektors (28) mitgeführt wird und Meerwasser durch einen Abgabeanschluss (30) des Ejektors (28) an den Fluideinlass (14) des Fluidbehandlungsmoduls (12) abgegeben wird mit einem Druck, welcher größer ist als der Druck des umgebenden Meers, woraus eine erste Druckdifferenz zwischen dem Fluideinlass (14) und dem ersten Fluidauslass (16) des Fluidbehandlungsmoduls (12) und eine zweite Druckdifferenz zwischen dem Fluideinlass (14) und dem zweiten Fluidauslass (18) des Fluidbehandlungsmoduls (12) resultieren.


     


    Revendications

    1. Système de traitement de fluide sous-marin (10) en vue d'une utilisation dans le traitement de l'eau de mer pour une injection dans une formation souterraine, comprenant :

    un module de traitement de fluide (12) comprenant un orifice d'entrée de fluide (14), un premier orifice de sortie de fluide (16) pour de l'eau de mer traitée avec une concentration réduite d'un constituant sélectionné, et un deuxième orifice de sortie de fluide (18) pour de l'eau de mer traitée avec une concentration accrue du constituant sélectionné ;

    une pompe (22) ayant un orifice d'entrée (24) et un orifice de sortie (26) ; et

    un éjecteur (28) ayant un orifice pour fluide moteur (34), un orifice de distribution (30) et un orifice d'aspiration (32),

    dans lequel l'orifice d'aspiration (32) de l'éjecteur (28) est configuré pour recevoir de l'eau de mer ambiante en provenance de la mer ambiante et l'orifice de distribution (30) de l'éjecteur (28) est en communication fluidique avec l'orifice d'entrée de fluide (14) du module de traitement de fluide (12) ;

    dans lequel le deuxième orifice de fluide (18) du module de traitement de fluide (12) est configuré pour l'élimination de l'eau de mer traitée avec la concentration accrue du constituant sélectionné dans la mer ambiante, et

    dans lequel l'orifice d'entrée de pompe (24) est en communication fluidique avec le premier orifice de sortie de fluide (16) du module de traitement de fluide (12) en vue de recevoir l'eau de mer traitée avec la concentration réduite du constituant sélectionné ; et

    dans lequel le système sous-marin est configuré en vue d'une communication de l'eau de mer traitée avec la concentration réduite du constituant sélectionné à partir de l'orifice de sortie de pompe (26) avec une formation souterraine et en vue d'une communication de l'eau de mer traitée avec la concentration réduite du constituant sélectionné à partir de l'orifice de sortie de pompe (26) avec l'orifice pour fluide moteur (34) de l'éjecteur (28) de manière à entraîner de l'eau de mer à partir de la mer ambiante à travers l'orifice d'aspiration (32) de l'éjecteur (28) en vue d'une distribution à travers l'orifice de distribution (30) de l'éjecteur (28) vers l'orifice d'entrée de fluide (14) du module de traitement de fluide (12) à une pression qui est supérieure à une pression de la mer ambiante se traduisant par un premier différentiel de pression entre l'orifice d'entrée de fluide (14) et le premier orifice de sortie de fluide (16) du module de traitement de fluide (12) et un deuxième différentiel de pression entre l'orifice d'entrée de fluide (14) et le deuxième orifice de sortie de fluide (18) du module de traitement de fluide (12).


     
    2. Système de traitement de fluide sous-marin (10) selon la revendication 1, dans lequel le module de traitement de fluide (12) est adapté pour traiter un fluide en réduisant la concentration d'au moins un constituant du fluide.
     
    3. Système de traitement de fluide sous-marin (10) selon la revendication 2, dans lequel l'au moins un constituant comprend au moins l'un parmi des constituants particulaires et des constituants ioniques.
     
    4. Système de traitement de fluide sous-marin (10) selon l'une quelconque des revendications précédentes, dans lequel le perméat définit un produit utilisable.
     
    5. Système de traitement de fluide sous-marin (10) selon l'une quelconque des revendications précédentes, dans lequel le module de traitement de fluide comprend une pluralité d'orifices d'entrée de fluide et plus de deux orifices de sortie de fluide, avec des différentiels de pression appropriés prévus à travers des orifices d'entrée et des orifices de sortie sélectionnés.
     
    6. Système de traitement de fluide sous-marin (10) selon l'une quelconque des revendications précédentes, comprenant une pluralité de modules de traitement de fluide.
     
    7. Procédé de traitement d'eau de mer sous la mer, comprenant :

    le fait de localiser un module de traitement de fluide (12) sous la mer, le module de traitement de fluide (12) comprenant un orifice d'entrée de fluide (14), un premier orifice de sortie de fluide (16) pour de l'eau de mer traitée avec la concentration réduite du constituant sélectionné, et un deuxième orifice de sortie de fluide (18) pour de l'eau de mer traitée avec une concentration accrue du constituant sélectionné ;

    le fait de communiquer l'eau de mer traitée avec la concentration accrue du constituant sélectionné à partir du deuxième orifice de sortie de fluide (18) du module de traitement de fluide (12) avec la mer ambiante ;

    le fait de communiquer l'eau de mer traitée avec la concentration réduite du constituant sélectionné à partir du premier orifice de sortie de fluide (16) du module de traitement de fluide (12) avec un orifice d'entrée (24) d'une pompe (22) ;

    le fait de communiquer l'eau de mer traitée avec la concentration réduite du composant sélectionné à partir d'un orifice de sortie (26) de la pompe (22) vers une formation souterraine ; et

    le fait de communiquer l'eau de mer traitée avec la concentration réduite du constituant sélectionné à partir de l'orifice de sortie (26) de la pompe (22) avec un orifice pour fluide moteur (34) d'un éjecteur (28) de manière à entraîner de l'eau de mer à partir de la mer ambiante à travers un orifice d'aspiration (32) de l'éjecteur (28) et distribuer de l'eau de mer à travers un orifice de distribution (30) de l'éjecteur (28) vers l'orifice d'entrée de fluide (14) du module de traitement de fluide (12) à une pression qui est supérieure à une pression de la mer ambiante se traduisant par un premier différentiel de pression entre l'orifice d'entrée de fluide (14) et le premier orifice de sortie de fluide (16) du module de traitement de fluide (12) et un deuxième différentiel de pression entre l'orifice d'entrée de fluide (14) et le deuxième orifice de sortie de fluide (18) du module de traitement de fluide (12).


     




    Drawing


























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description