
Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent
Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the
Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been
paid. (Art. 99(1) European Patent Convention).

Printed by Jouve, 75001 PARIS (FR)

(19)
E

P
2

41
1

91
8

B
1

TEPZZ 4__9_8B_T
(11) EP 2 411 918 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention
of the grant of the patent:
11.07.2018 Bulletin 2018/28

(21) Application number: 10756742.2

(22) Date of filing: 23.03.2010

(51) Int Cl.:
G06F 12/0862 (2016.01) G06F 17/30 (2006.01)

G06F 3/06 (2006.01)

(86) International application number:
PCT/US2010/028375

(87) International publication number:
WO 2010/111312 (30.09.2010 Gazette 2010/39)

(54) VIRTUALIZED DATA STORAGE SYSTEM ARCHITECTURE

ARCHITEKTUR FÜR VIRTUALISIERTES DATENSPEICHERSYSTEM

ARCHITECTURE DE SYSTÈME DE STOCKAGE DE DONNÉES VIRTUEL

(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL
PT RO SE SI SK SM TR

(30) Priority: 23.03.2009 US 162463 P

(43) Date of publication of application:
01.02.2012 Bulletin 2012/05

(73) Proprietor: Riverbed Technology, Inc.
San Francisco, CA 94105 (US)

(72) Inventors:
• WU, David Tze-Si

San Francisco
California 94105 (US)

• MCCANNE, Steven
San Francisco
California 94105 (US)

• DEMMER, Michael J.
San Francisco
California 94105 (US)

• GUPTA, Nitin
San Francisco
California 94105 (US)

(74) Representative: Round, Edward Mark
Marks & Clerk LLP
90 Long Acre
London WC2E 9RA (GB)

(56) References cited:
WO-A1-2008/138008 US-A1- 2004 054 648
US-A1- 2005 154 825 US-A1- 2008 140 937
US-A1- 2009 055 595 US-B1- 7 386 662

• NAGAPRAMOD MANDAGERE ET AL:
"GreenStor: Application-Aided Energy-Efficient
Storage", MASS STORAGE SYSTEMS AND
TECHNOLOGIES, 2007. MSST 2007. 24TH IEEE
CONFERENCE ON, IEEE, PISCATAWAY, NJ,
USA, 1 September 2007 (2007-09-01), pages 1-13,
XP031153163, ISBN: 978-0-7695-3025-3

• SHAPIRO M ET AL: "Managing databases with
binary large objects", MASS STORAGE
SYSTEMS, 1999. 16TH IEEE SYMPOSIUM ON SAN
DIEGO, CA, USA 15-18 MARCH 1999,
PISCATAWAY, NJ, USA,IEEE, US, 15 March 1999
(1999-03-15), pages 185-193, XP010376278, DOI:
10.1109/MASS.1999.830036 ISBN:
978-0-7695-0204-5

• GRIFFIOEN J ET AL: "Reducing file system
latency using a predictive approach",
PROCEEDINGS OF THE SUMMER USENIX
CONFERENCE, XX, XX, 6 June 1994 (1994-06-06),
pages 1-10, XP002218796,

• SIVATHANU, G.: ’End-to-End Abstractions for
Application-Aware Storage’ DISSERTATION,
[Online] 01 May 2008, STONY BROOK
UNIVERSITY, XP008164809 Retrieved from the
Internet:
<URL:http://am-utils.org/docs/sivathanu-phd
thesis/thesis.pdf> [retrieved on 2010-06-02]

EP 2 411 918 B1

2

5

10

15

20

25

30

35

40

45

50

55

Description

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to U.S. Provi-
sional Patent Application No.61/162,463, entitled "Virtu-
alized Data Storage Over Wide-Area Networks", filed
March 23, 2009; U.S. Patent Application No_____. [At-
torney Docket Number R001110US], entitled "Virtualized
Data Storage Over Wide-Area Networks", filed_______;
U.S. Patent Application No._____ [Attorney Docket
Number R001410US], entitled "Virtualized Data Storage
System Architecture", filed_______; U.S. Patent Appli-
cation No_____. [Attorney Docket Number R001411US],
entitled "Virtualized Data Storage Cache Management",
filed_______; and U.S. Patent Application No_____. [At-
torney Docket Number R001420US], entitled "Virtual Da-
ta Storage System Optimizations’.

BACKGROUND

[0002] The present invention relates generally to data
storage systems, and systems and methods to improve
storage efficiency, compactness, performance, reliabili-
ty, and compatibility. Enterprises often span geographi-
cal locations, including multiple corporate sites, branch
offices, and data centers, all of which are generally con-
nected over a wide-are network (WAN). Although in many
cases, servers are run in a data center and accessed
over the network, there are also cases in which servers
need to be run in distributed locations at the "edges" of
the network. These network edge locations are generally
referred to as branch locations in this application, regard-
less of the purposes of these locations. The need to op-
erate servers at branch locations may arise from variety
of reasons, including efficiently handling large amounts
of newly written data and ensuring service availability
during WAN outages.
[0003] The need to run servers at branch locations in
a network, as opposed to a centralized data center loca-
tion, leads to a corresponding requirement for data stor-
age for those servers at the branch locations, both to
store the operating system data for branch servers, in
some cases, for user or application data. The branch
data storage requires maintenance and administration,
including proper sizing for future growth, data snapshots,
archives, and backups, and replacements and/or up-
grades of storage hardware and software when the stor-
age hardware or software fails or branch data storage
requirements change.
[0004] Although the maintenance and administration
of data storage in general incurs additional costs, branch
data storage is more expensive and inefficient than con-
solidated data storage at a centralized data center. Or-
ganizations often require on-site personnel at each
branch location to configure and upgrade each branch’s
data storage, and to manage data backups and data re-
tention. Additionally, organizations often purchase ex-

cess storage capacity for each branch location to allow
for upgrades and growing data storage requirements. Be-
cause branch locations are serviced infrequently, due to
their numbers and geographic dispersion, organizations
often deploy enough data storage at each branch location
to allow for months or years of storage growth. However,
this excess storage capacity often sits unused for months
or years until it is needed, unnecessarily driving up costs.
[0005] Although the consolidation of information tech-
nology infrastructure decreases costs and improves
management efficiency, branch data storage is rarely
consolidated at a network branch location, because the
intervening WAN is slow and has high latency, making
storage accesses unacceptably slow for branch client
systems and application servers. Thus, organizations
have previously been unable to consolidate data storage
from multiple branches. Different storage optimisation
techniques are known in the art. D1 (WO2008/138008)
discloses a method for processing files stored as data
maps in a file server or gateway. A data map is associated
with each file and induces a separation between the
structure of the file, including its metadata, and the actual
data underlying the file. Unlike a typical network cache,
the file is transported in its virtual representation to the
client-side rather than stored in a local cache and
checked for consistency with the original copy at the serv-
er. D2 "GreenStor: Application-Aided Energy-Efficient
Storage",NAGAPRAMOD MANDAGERE ET AL, IS-
BN:978-0-7695-3025-3, discloses an application-aided
energy efficient storage system for managing a large
cache that keeps the amount of metadata needed at min-
imal levels without sacrificing the utilization of the cache.
In other words, many physical disks can be viewed log-
ically as a single large virtual disk.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] The invention will be described with reference
to the drawings, in which:

Figure 1 illustrates a virtualized data storage system
architecture according to an embodiment of the in-
vention;

Figures 2A-2B illustrate methods of prefetching stor-
age blocks to improve virtualized data storage sys-
tem performance according to embodiments of the
invention;

Figure 3 illustrates a method of processing storage
block write requests to improve virtualized data stor-
age system performance according to an embodi-
ment of the invention;

Figures 4A-4C illustrate write order preservation pol-
icies according to embodiments of the invention;

Figure 5 illustrates an arrangement for recursively

1 2

EP 2 411 918 B1

3

5

10

15

20

25

30

35

40

45

50

55

applying transformations and optimizations to im-
prove virtualized data storage system performance
according to an embodiment of the invention;

Figure 6 illustrates a method of creating a data stor-
age snapshot in a virtualized data storage system
performance according to an embodiment of the in-
vention; and

Figure 7 illustrates an example computer system ca-
pable of a virtualized data storage system device
according to an embodiment of the invention.

SUMMARY

[0007] An embodiment of the invention uses virtual
storage arrays to consolidate branch location-specific
data storage at data centers connected with branch lo-
cations via wide area networks. The virtual storage array
appears to a storage client as a local branch data storage;
however, embodiments of the invention actually store the
virtual storage array data at a data center connected with
the branch location via a wide-area network. In embod-
iments of the invention, a branch storage client accesses
the virtual storage array using storage block based pro-
tocols.
[0008] Embodiments of the invention overcome the
bandwidth and latency limitations of the wide area net-
work between branch locations and the data center by
predicting storage blocks likely to be requested in the
future by the branch storage client and prefetching and
caching these predicted storage blocks at the branch lo-
cation. When this prediction is successful, storage block
requests from the branch storage client may be fulfilled
in whole or in part from the branch location’ storage block
cache. As a result, the latency and bandwidth restrictions
of the wide-area network are hidden from the storage
client.
[0009] The branch location storage client uses storage
block-based protocols to specify reads, writes, modifica-
tions, and/or deletions of storage blocks. However, serv-
ers and higher-level applications typically access data in
terms of files in a structured file system, relational data-
base, or other high-level data structure. Each entity in
the high-level data structure, such as a file or directory,
or database table, node, or row, may be spread out over
multiple storage blocks at various non-contiguous loca-
tions in the storage device. Thus, prefetching storage
blocks based solely on their locations in the storage de-
vice is unlikely to be effective in hiding wide-area network
latency and bandwidth limits from storage clients.
[0010] An embodiment of the invention leverages an
understanding of the semantics and structure of the high-
level data structures associated with the storage blocks
to predict which storage blocks are likely to be requested
by a storage client in the near future. To do this, an em-
bodiment of the invention determines the association be-
tween requested storage blocks and the corresponding

high-level data structure entities, such as files, directo-
ries, or database elements. Once this embodiment has
identified one or more of the high-level data structure
entities associated with a requested storage block, this
embodiment of the invention identifies additional portions
of the same or other high-level data structure entities that
are likely to be accessed by the storage client. This em-
bodiment of the invention then identifies the additional
storage blocks corresponding to these additional high-
level data structure entities. The additional storage
blocks are then prefetched and cached at the branch
location.
[0011] Another embodiment of the invention analyzes
a selected high-level data structure entity to identify por-
tions of the same or other high-level data structure enti-
ties that is likely to be accessed by the storage client.
This embodiment of the invention then identifies the ad-
ditional storage blocks corresponding to these additional
high-level data structure entities. The additional storage
blocks are then prefetched and cached at the branch
location. This embodiment of the invention may also iden-
tify additional high-level data structure entities to analyze
based on its analysis of previously selected high-level
data structure entities.
[0012] Further embodiments of the invention may iden-
tify corresponding high-level data structure entities di-
rectly from requests for storage blocks. Additionally, em-
bodiments of the invention may successively apply any
number of successive transformations to storage block
requests to identify associated high-level data structure
entities. These successive transformations may include
transformations to intermediate level data structure en-
tities. Intermediate and high-level data structure entities
may include virtual machine data structures, such as vir-
tual machine file system files, virtual machine file system
storage blocks, virtual machine storage structures, and
virtual machine disk images.

DETAILED DESCRIPTION OF ILLUSTRATIVE EM-
BODIMENTS

[0013] Figure 1 illustrates a virtualized data storage
system architecture 100 according to an embodiment of
the invention. Virtualized data storage system architec-
ture 100 includes a data center 101 connected with at
least one branch network location 102 via a wide-area
network (WAN) 130. Each branch location 102 includes
at least one storage client 139, such as a file server,
application server, database server, or storage area net-
work (SAN) interface. A storage client 139 may be con-
nected with a local-area network (LAN) 151, including
routers, switches, and other wired or wireless network
devices, for connecting with server and client systems
and other devices 152.
[0014] Previously, typical branch location installations
also required a local physical data storage device for the
storage client. For example, a prior typical branch loca-
tion LAN installation may include a file server for storing

3 4

EP 2 411 918 B1

4

5

10

15

20

25

30

35

40

45

50

55

data for the client systems and application servers, such
as database servers and e-mail servers. In prior systems,
this branch location’s data storage is located at the
branch location site and connected directly with the
branch location LAN or SAN. The branch location phys-
ical data storage device previously could not be located
at the data center 101, because the intervening WAN
130 is too slow and has high latency, making storage
accesses unacceptably slow for storage clients.
[0015] An embodiment of the invention allows for stor-
age consolidation of branch location-specific data stor-
age at data centers connected with branch locations via
wide area networks. This embodiment of the invention
overcomes the bandwidth and latency limitations of the
wide area network between branch locations and the da-
ta center. To this end, an embodiment of the invention
includes virtual storage arrays.
[0016] In an embodiment, the branch location 102 in-
cludes a virtual storage array interface device 135. The
virtual storage array interface device 135 presents a vir-
tual storage array 137 to branch location users, such as
the branch location storage client 139. A virtual storage
array 137 can be used for the same purposes as a local
storage area network or other data storage device. For
example, a virtual storage array 137 may be used in con-
junction with a file server for general-purpose data stor-
age, in conjunction with a database server for database
application storage, or in conjunction with an e-mail serv-
er for e-mail storage. However, the virtual storage array
137 stores its data at a data center 101 connected with
the branch location 102 via a wide area network 130.
Multiple separate virtual storage arrays, from different
branch locations, may store their data in the same data
center and, as described below, on the same physical
storage devices.
[0017] Because the data storage of multiple branch lo-
cations is consolidated at a data center, the efficiency,
reliability, cost-effectiveness, and performance of data
storage is improved. An organization can manage and
control access to their data storage at a central data cent-
er, rather than at large numbers of separate branch lo-
cations. This increases the reliability and performance of
an organization’s data storage. This also reduces the per-
sonnel required at branch location offices to provision,
maintain, and backup data storage. It also enables or-
ganizations to implement more effective backup sys-
tems, data snapshots, and disaster recovery for their data
storage. Furthermore, organizations can plan for storage
growth more efficiently, by consolidating their storage ex-
pansion for multiple branch locations and reducing the
amount of excess unused storage. Additionally, an or-
ganization can apply optimizations such as compression
or data deduplication over the data from multiple branch
locations stored at the data center, reducing the total
amount of storage required by the organization.
[0018] In an embodiment, virtual storage array inter-
face 135 may be a stand-alone computer system or net-
work appliance or built into other computer systems or

network equipment as hardware and/or software. In a
further embodiment, a branch location virtual storage ar-
ray interface 135 may be implemented as a software ap-
plication or other executable code running on a client
system or application server.
[0019] In an embodiment, a branch location virtual stor-
age array interface 135 includes one or more storage
array network interfaces and supports one or more stor-
age block network protocols to connect with one or more
storage clients 139 via a local storage area network
(SAN) 138. Examples of storage array network interfaces
suitable for use with embodiments of the invention in-
clude Ethernet, Fibre Channel, IP, and InfiniBand inter-
faces. Examples of storage array network protocols in-
clude ATA, Fibre Channel Protocol, and SCSI. Various
combinations of storage array network interfaces and
protocols are suitable for use with embodiments of the
invention, including iSCSI, HyperSCSI, Fibre Channel
over Ethernet, and iFCP. In cases where the storage ar-
ray network interface uses Ethernet, an embodiment of
the branch location virtual storage array interface can
use the branch location LAN’s physical connections and
networking equipment for communicating with client sys-
tems and application services. In other embodiments,
separate connections and networking equipment, such
as Fibre Channel networking equipment, is used to con-
nect the branch location virtual storage array interface
with client systems and/or application services.
[0020] It should be noted that the branch location vir-
tual storage array interface 135 allows storage clients to
access data in the virtual storage array via storage block
protocols, unlike file servers that utilize file-based proto-
cols. Thus, the virtual storage array 137 may be accessed
by any type of storage client in the same manner as a
local physical storage device or storage array. Further-
more, applications executed by the storage client 139 or
other client and server systems 152 may access the vir-
tual storage array in the same manner as a local physical
storage device or storage array.
[0021] In an embodiment, the storage client 139 is in-
cluded in a file server that also provide a network file
interface to the virtual storage array 137 to client systems
and other application servers. In a further embodiment,
the branch location virtual storage array interface 135 is
integrated as hardware and/or software with an applica-
tion server, such as a file server, database server, or e-
mail server. In this embodiment, the branch location vir-
tual storage array interface 135 can include application
server interfaces, such as a network file interface, for
interfacing with other application servers and/or client
systems.
[0022] A branch location virtual storage array interface
135 presents a virtual storage array 137 to one or more
storage clients 139. To the storage client 139, the virtual
storage array 137 appears to be a local storage array,
having its physical data storage at the branch location
102. However, the branch location virtual storage array
interface 135 actually stores and retrieves data from

5 6

EP 2 411 918 B1

5

5

10

15

20

25

30

35

40

45

50

55

physical data storage devices located at the data center
101. Because virtual storage array data accesses must
travel via the WAN 130 between the data center 101 LAN
to a branch location 102 LAN, the virtual storage array
137 is subject to the latency and bandwidth restrictions
of the WAN 130.
[0023] In an embodiment, the branch location virtual
storage array interface 135 includes a virtual storage ar-
ray cache 145, which is used to ameliorate the effects of
the WAN 130 on virtual storage array 137 performance.
In an embodiment, the virtual storage array cache 145
includes a storage block read cache 147 and a storage
block write cache 149.
[0024] The storage block read cache 147 is adapted
to store local copies of storage blocks requested by stor-
age client 139. As described in detail below, the virtual-
ized data storage system architecture 100 may attempt
to predict which storage blocks will be requested by the
storage client 139 in the future and preemptively send
these predicted storage blocks from the data center 101
to the branch 102 via WAN 130 for storage in the storage
block read cache 147. If this prediction is partially or whol-
ly correct, then when the storage client 139 eventually
requests one or more of these prefetched storage blocks
from the virtual storage array 137, an embodiment of the
virtual storage array interface 135 can fulfill this request
using local copies of the requested storage blocks from
the block read cache 145. By fulfilling access requests
using prefetched local copies of storage blocks from the
block read cache 145, the latency and bandwidth restric-
tions of WAN 130 are hidden from the storage client 139.
Thus, from the perspective of the storage client 139, the
virtual storage array 137 appears to perform storage
block read operations as if the physical data storage were
located at the branch location 102.
[0025] Similarly, the storage block write cache 149 is
adapted to store local copies of new or updated storage
blocks written by the storage client 139. As described in
detail below, the storage block write cache 149 tempo-
rarily stores new or updated storage blocks written by
the storage client 139 until these storage blocks are cop-
ied back to physical data storage at the data center 101
via WAN 130. By temporarily storing new and updated
storage blocks locally at the branch location 102, the
bandwidth and latency of the WAN 130 is hidden from
the storage client 139. Thus, from the perspective of the
storage client 139, the virtual storage array 137 appears
to perform storage block write operations as if the phys-
ical data storage were located at the branch location 102.
[0026] In an embodiment, the virtual storage array
cache 145 includes non-volatile and/or redundant data
storage, so that data in new or updated storage blocks
are protected from system failures until they can be trans-
ferred over the WAN 130 and stored in physical data
storage at the data center 101.
[0027] In an embodiment, the branch location virtual
storage array interface 135 operates in conjunction with
a data center virtual storage array interface 107. The data

center virtual storage array interface 107 is located on
the data center 101 LAN and may communicate with one
or more branch location virtual storage array interfaces
via the data center 101 LAN, the WAN 130, and their
respective branch location LANs. Data communications
between virtual storage array interfaces can be in any
form and/or protocol used for carrying data over wired
and wireless data communications networks, including
TCP/IP.
[0028] In an embodiment, data center virtual storage
array interface 107 is connected with one or more phys-
ical data storage devices 103 to store and retrieve data
for one or more virtual storage arrays, such as virtual
storage array 137. To this end, an embodiment of a data
center virtual storage array interface 107 accesses a
physical storage array network interface, which in turn
accesses physical data storage array 103a on a storage
array network (SAN) 105. In another embodiment, the
data center virtual storage array interface 107 includes
one or more storage array network interfaces and sup-
ports one or more storage array network protocols for
directly connecting with a physical storage array network
105 and its physical data storage array 103a. Examples
of storage array network interfaces suitable for use with
embodiments of the invention include Ethernet, Fibre
Channel, IP, and InfiniBand interfaces. Examples of stor-
age array network protocols include ATA, Fibre Channel
Protocol, and SCSI. Various combinations of storage ar-
ray network interfaces and protocols are suitable for use
with embodiments of the invention, including iSCSI, Hy-
perSCSI, Fibre Channel over Ethernet, and iFCP. Em-
bodiments of the data center virtual storage array inter-
face 107 may connect with the physical storage array
interface and/or directly with the physical storage array
network 105 using the Ethernet network of the data center
LAN and/or separate data communications connections,
such as a Fibre Channel network.
[0029] In another embodiment, data center virtual stor-
age array interface 107 may store and retrieve data for
one or more virtual storage arrays, such as virtual storage
array 137, using a network storage device, such as file
server 103b. File server 103b may be connected with
data center virtual storage array 137 via local-area net-
work (LAN) 115, such as an Ethernet network, and com-
municate using a network file system protocol, such as
NFS, SMB, or CIFS.
[0030] Embodiments of the data center virtual storage
array interface 107 may utilize a number of different ar-
rangements to store and retrieve virtual storage array
data with physical data storage array 103a or file server
103b. In one embodiment, the virtual data storage array
137 presents a virtualized logical storage unit, such as
an iSCSI or FibreChannel logical unit number (LUN), to
storage client 139. This virtual logical storage unit is
mapped to a corresponding logical storage unit 104a on
physical data storage array 103a. Data center virtual stor-
age array interface 107 stores and retrieves data for this
virtualized logical storage unit using a non-virtual logical

7 8

EP 2 411 918 B1

6

5

10

15

20

25

30

35

40

45

50

55

storage unit 104a provided by physical data storage array
103a. In a further embodiment, the data center virtual
data storage array interface 107 supports multiple branch
locations and maps each storage client’s virtualized log-
ical storage unit to a different non-virtual logical storage
unit provided by physical data storage array 103a.
[0031] In another embodiment, virtual data storage ar-
ray interface 107 maps a virtualized logical storage unit
to a virtual machine file system 104b, which is provided
by the physical data storage array 103a. Virtual machine
file system 104b is adapted to store one or more virtual
machine disk images 113, each representing the config-
uration and optionally state and data of a virtual machine.
Each of the virtual machine disk images 113, such as
virtual machine disk images 113a and 113b, includes one
or more virtual machine file systems to store applications
and data of a virtual machine. To a virtual machine ap-
plication, its virtual machine disk image 113 within the
virtual machine file system 104b appears as a logical
storage unit. However, the complete virtual machine file
system 104b appears to the data center virtual storage
array interface 107 as a single logical storage unit.
[0032] In another embodiment, virtual data storage ar-
ray interface 107 maps a virtualized logical storage unit
to a logical storage unit or file system 104c provided by
the file server 103c.
[0033] As described above, storage clients can interact
with virtual storage arrays in the same manner that they
would interact with physical storage arrays. This includes
issuing storage commands to the branch location virtual
storage interface using storage array network protocols
such as iSCSI or Fibre Channel protocol. Most storage
array network protocols organize data according to stor-
age blocks, each of which has a unique storage address
or location. A storage block’s unique storage address
may include logical unit number (using the SCSI protocol)
or other representation of a logical volume.
[0034] In an embodiment, the virtual storage array pro-
vided by a branch location virtual storage interface allows
a storage client to access storage blocks by their unique
storage address within the virtual storage array. Howev-
er, because one or more virtual storage arrays actually
store their data within one or more of the physical data
storage devices 103, an embodiment of the invention al-
lows arbitrary mappings between the unique storage ad-
dresses of storage blocks in the virtual storage array and
the corresponding unique storage addresses in one or
more physical data storage devices 103. In an embodi-
ment, the mapping between virtual and physical storage
address may be performed by a branch location virtual
storage array interface 137 and/or by data center virtual
storage array interface 107. Furthermore, there may be
multiple levels of mapping between the addresses of stor-
age blocks in the virtual storage array and their corre-
sponding addresses in the physical storage device.
[0035] In an embodiment, storage blocks in the virtual
storage array may be of a different size and/or structure
than the corresponding storage blocks in a physical stor-

age array or data storage device. For example, if data
compression is applied to the storage data, then the phys-
ical storage array data blocks may be smaller than the
storage blocks of the virtual storage array to take advan-
tage of data storage savings. In an embodiment, the
branch location and/or data center virtual storage array
interfaces map one or more virtual storage array storage
blocks to one or more physical storage array storage
blocks. Thus, a virtual storage array storage block can
correspond with a fraction of a physical storage array
storage block, a single physical storage array storage
block, or multiple physical storage array storage blocks,
as required by the configuration of the virtual and physical
storage arrays.
[0036] In a further embodiment, the branch location
and data center virtual storage array interfaces may re-
order or regroup storage operations from storage clients
to improve efficiency of data optimizations such as data
compression. For example, if two storage clients are si-
multaneously accessing the same virtual storage array,
then these storage operations will be intermixed when
received by the branch location virtual storage array in-
terface. An embodiment of the branch location and/or
data center virtual storage array interface can reorder or
regroup these storage operations according to storage
client, type of storage operation, data or application type,
or any other attribute or criteria to improve virtual storage
array performance and efficiency. For example, a virtual
storage array interface can group storage operations by
storage client and apply data compression to each stor-
age client’s operations separately, which is likely to pro-
vide greater data compression than compressing all stor-
age operations together.
[0037] As described above, an embodiment of the vir-
tualized data storage system architecture 100 attempts
to predict which storage blocks will be requested by a
storage client in the near future, prefetches these storage
blocks from the physical data storage devices 103, and
forwards these to the branch location 102 for storage in
the storage block read cache 147. When this prediction
is successful and storage block requests may be fulfilled
in whole or in part from the block read cache 147, the
latency and bandwidth restrictions of the WAN 130 are
hidden from the storage client. An embodiment of the
virtualized data storage system architecture 100 includes
a storage block access optimizer 120 to select storage
blocks for prefetching to storage clients. In an embodi-
ment, the storage block access optimizer 120 is located
at the data center 101 and is connected or incorporated
into the data center virtual data storage array interface
107. In an alternate embodiment, the storage block ac-
cess optimizer 120 may be located at the branch location
102 and be connected with or incorporated into the
branch location virtual data storage interface 135.
[0038] As discussed above, storage devices such as
physical data storage arrays and the virtual data storage
array are accessed using storage block-based protocols.
A storage block is a sequence of bytes or bits of data.

9 10

EP 2 411 918 B1

7

5

10

15

20

25

30

35

40

45

50

55

Data storage devices represent their data storage as a
set of storage blocks that may be used to store and re-
trieve data. The set of storage blocks is an abstraction
of the underlying hardware of a physical or virtual data
storage device. Storage clients use storage block-based
protocols to specify reads, writes, modifications, and/or
deletions of storage blocks. However, servers and high-
er-level applications typically access data in terms of files
in a structured file system, relational database, or other
high-level data structure. Each entity in the high-level da-
ta structure, such as a file or directory, or database table,
node, or row, may be spread out over multiple storage
blocks at various non-contiguous locations in the storage
device. Thus, prefetching storage blocks based solely on
their location in the storage device is unlikely to be effec-
tive in hiding WAN latency and bandwidth limits from stor-
age clients.
[0039] In an embodiment, the storage block access op-
timizer 120 leverages an understanding of the semantics
and structure of the high-level data structures associated
with the storage blocks to predict which storage blocks
are likely to be requested by a storage client in the near
future. To do this, the storage block access optimizer 120
must be able to determine the association between stor-
age blocks and its high-level data structure. An embod-
iment of the storage block access optimizer 120 uses an
inferred storage structure database (ISSD) 123 to match
storage blocks with their associated entity in the high-
level data structure. For example, given a specific stor-
age block location, the storage block access optimizer
120 may use the ISSD 123 to identify the file or directory
in a file system, or the database table, record, or node,
that is using this storage block to store some or all of its
data.
[0040] Once the storage block access optimizer 120
has identified the high-level data structure entity associ-
ated with a storage block, the storage block access op-
timizer 120 may employ a number of different techniques
to predict which additional storage blocks are likely to be
requested by a storage client. For example, storage block
access optimizer 120 may observe requests from a stor-
age client 139 for storage blocks from the virtual data
storage array 137, identify the high-level data structure
entities associated with the requested storage blocks,
and select additional storage blocks associated with
these or other high-level data structure entities for
prefetching. These types of storage block prefetching
techniques are referred to as reactive prefetching. In an-
other example, the storage block access optimizer 120
may analyze entities in the high-level data structures,
such as files, directories, or database entities, to identify
specific entities or portions thereof that are likely to be
requested by the storage client 139. Using the ISSD 123,
the storage block access optimizer 120 identifies storage
blocks corresponding with these identified entities or por-
tions thereof and prefetches these storage blocks for
storage in the block read cache 147 at the branch location
102. These types of storage block prefetching techniques

are referred to as policy-based prefetching. Further ex-
amples of reactive and policy-based prefetching are dis-
cussed below. Embodiments of the storage block access
optimizer 120 may utilize any combination of reactive and
policy-based prefetching techniques to select storage
blocks to be prefetched and stored in the block read
cache 147 at the branch location 102.
[0041] In a further embodiment, the branch location
102 and data center location 101 may optionally include
network optimizers 125 for improving the performance
of data communications over the WAN between branch-
es and/or the data center. Network optimizers 125 can
improve actual and perceived WAN network perform-
ance using techniques including compressing data com-
munications; anticipating and prefetching data; caching
frequently accessed data; shaping and restricting net-
work traffic; and optimizing usage of network protocols.
In an embodiment, network optimizers 125 may be used
in conjunction with virtual data storage array interfaces
107 and 135 to further improve virtual storage array 137
performance for storage blocks accessed via the WAN
130. In other embodiments, network optimizers 125 may
ignore or pass-through virtual storage array 137 data traf-
fic, relying on the virtual storage array interfaces 107 and
135 at the data center 101 and branch location 102 to
optimize WAN performance.
[0042] Further embodiments of the invention may be
used in different network architectures. For example, a
data center virtual storage array interface 107 may be
connected directly between WAN 130 and a physical da-
ta storage array 103, eliminating the need for a data cent-
er LAN. Similarly, a branch location virtual storage array
interface 135, implemented for example in the form of a
software application executed by a storage client com-
puter system, may be connected directly with WAN 130,
such as the internet, eliminating the need for a branch
location LAN. In another example, the data center and
branch location virtual data storage array interfaces 107
and 135 may be combined into a single unit, which may
be located at the branch location 102.
[0043] Figures 2A-2B illustrate methods of prefetching
storage blocks to improve virtualized data storage sys-
tem performance according to embodiments of the in-
vention. Figure 2A illustrates a method 200 of performing
reactive prefetching of storage blocks according to an
embodiment of the invention. Step 205 receives a stor-
age block read request from a storage client at the branch
location. In an embodiment, the storage block read re-
quest may be received by a branch location virtual data
storage array interface.
[0044] In response to the receipt of the storage block
read request in step 205, decision block 210 determines
if the requested storage block has been previously re-
trieved and stored in the storage block read cache at the
branch location. If so, step 220 retrieves the requested
storage block from the storage block read cache and re-
turns it to the requesting storage client. In an embodi-
ment, if the system includes a data center virtual storage

11 12

EP 2 411 918 B1

8

5

10

15

20

25

30

35

40

45

50

55

array interface, then step 220 also forwards the storage
block read request back to the data center virtual storage
array interface for use in identifying additional storage
blocks likely to be requested by the storage client in the
future.
[0045] If the storage block read cache at the branch
location does not include the requested storage block,
step 215 retrieves the requested storage block via a WAN
connection from the virtual storage array data located in
a physical data storage at the data center. In an embod-
iment, a branch location virtual storage array interface
forwards the storage block read request to the data center
virtual storage array interface via the WAN connection.
The data center virtual storage array interface then re-
trieves the requested storage block from the physical
storage array and returns it to the branch location virtual
storage array interface, which in turn provides this re-
quested storage block to the storage client. In a further
embodiment of step 215, a copy of the retrieved storage
block may be stored in the storage block read cache for
future accesses.
[0046] During and/or following the retrieval of the re-
quested storage block from the virtual storage array or
virtual storage array cache, steps 225 to 250 prefetch
additional storage blocks likely to be requested by the
storage client in the near future. Step 225 identifies the
high-level data structure entity associated with the re-
quested storage block. Typical block storage protocols,
such as iSCSI and FCP, specify block read requests us-
ing a storage block address or identifier. However, these
storage block read requests do not include any identifi-
cation of the high-level data structure, such as a file, di-
rectory, or database entity, that is associated with this
storage block. Therefore, an embodiment of step 225
accesses an ISSD to identify the high-level data structure
associated with the requested storage block.
[0047] In an embodiment, step 225 provides the ISSD
with the storage block address or identifier. In response,
the ISSD returns an identifier of the high-level data struc-
ture entity associated with the requested storage block.
The identifier of the high-level data structure entity may
be an inode or similar file system identifier or a database
storage structure identifier, such as a database table or
B-tree node. In a further embodiment, the ISSD also in-
cludes a location within the high-level data structure en-
tity corresponding with the requested storage block. For
example, step 225 may provide a storage block identifier
to the ISSD and in response receive the inode or other
file system identifier for a file stored in this storage block.
Additionally, the ISSD can return an offset, index, or other
file location indicator that specifies the portion of this file
stored in the storage block.
[0048] Using the identification of the high-level data
structure entity and optionally the location provided by
the ISSD, step 230 identifies additional high-level data
structure entities or portions thereof that are likely to be
requested by the storage client. There are a number of
different techniques for identifying addition high-level da-

ta structure entities or portions thereof for prefetching
that may be used by embodiments of step 230.
[0049] One example technique is to prefetch portions
of the high-level data structure entity based on their ad-
jacency or close proximity to the identified portion of the
entity. For example, if step 225 determines that the re-
quested storage block corresponds with a portion of a
file from file offset 0 up to offset 4095, then step 230 may
identify a second portion of this same file beginning with
offset 4096 for prefetching. It should be noted that al-
though these two portions are adjacent in the high-level
data structure entity, their corresponding storage blocks
may be non-contiguous.
[0050] Another example technique is to identify the
type of high-level data structure entity, such as a file of
a specific format, a directory in a file system, or a data-
base table, and apply one or more heuristics to identify
additional portions of this high-level data structure entity
or a related high-level data structure entity for prefetch-
ing. For example, applications employing a specific type
of file may frequently access data at a specific location
within these files, such as at the beginning or end of the
file. Using knowledge of this application or entity-specific
behavior, step 230 may identify these frequently ac-
cessed portions of the file for prefetching.
[0051] Yet another example technique monitors the
times at which high-level data structure entities are ac-
cessed. High-level data structure entities that are ac-
cessed at approximately the same time are associated
together by the virtual storage array architecture. If any
one of these associated high-level data structure entities
is later accessed again, an embodiment of step 230 iden-
tifies one or more associated high-level data structure
entities that were previously accessed at approximately
the same time as the requested high-level data structure
entity for prefetching. For example, a storage client may
have previously requested storage blocks from files A,
B, and C at approximately the same time, such as within
a minute of each other. Based on this previous access
pattern, if step 225 determines that a requested storage
block is associated with file A, step 230 may identify all
or portions of files B and C for prefetching.
[0052] In still another example technique, step 230 an-
alyzes the high-level data structure entity associated with
the requested storage block to identify related portions
of the same or other high-level data structure entity for
prefetching. For example, application files may include
references to additional files, such as overlay files or dy-
namically loaded libraries. Similarly, a database table
may include references to other database tables. Once
step 225 identifies the high-level data structure entity as-
sociated with a requested storage block, step 230 may
use an analysis of this high-level data structure entity to
identify additional referenced high-level data structure
entities. The referenced high-level data structure entities
may be prefetched. In an embodiment, the analysis of
high-level data structure entities for references to other
high-level data structure entities may be performed asyn-

13 14

EP 2 411 918 B1

9

5

10

15

20

25

30

35

40

45

50

55

chronously with method 200.
[0053] Step 230 identifies all or portions of one or more
high-level data structure entities for prefetching based
on the high-level data structure entity associated with the
requested storage block. However, as discussed above,
storage clients specify data access requests in terms of
storage blocks, not high-level data structure entities such
as files, directories, or database tables. Thus, step 235
identifies one or more storage blocks corresponding with
the high-level data structure entities identified for
prefetching in step 230. In an embodiment, step 235 pro-
vides the ISSD with identifiers for one or more high-level
data structure entities, such as the inodes of files or sim-
ilar identifiers for other types of file systems or database
storage structures. Optionally, step 235 also provides an
offset, file location, or other type of address identify a
specific portion of a high-level data structure entity to be
prefetched. In response, the ISSD returns an identifier
of one or more storage blocks associated with the high-
level data structure entities. These identified storage
blocks are used to store the high-level data structure en-
tities or portions thereof.
[0054] Decision block 240 determines if the storage
blocks identified in step 235 have already been stored in
the storage block read cache located at the branch loca-
tion. In an embodiment, the storage block access opti-
mizer at the data center maintains a record of all of the
storage blocks that have copies stored in the storage
block read cache. In an alternate embodiment, the stor-
age block access optimizer queries the branch location
virtual storage array interface to determine if copies of
these identified storage blocks have already been stored
in the storage block read cache.
[0055] In still a further embodiment, decision block 240
and the determination of whether an additional storage
block has been previously retrieved and cached may be
omitted. Instead, this embodiment can send all of the
additional storage blocks identified by step 235 to the
branch location virtual storage array interface to be
cached. This embodiment can be used when WAN la-
tency, rather than WAN bandwidth limitations, are an
overriding concern.
[0056] If all of the identified storage blocks from step
235 are already stored in the storage block read cache,
then method 200 proceeds from decision block 240 back
to step 205 to await receipt of further storage block re-
quests.
[0057] If some or all of the storage blocks identified in
step 235 are not already stored in the storage block read
cache, then step 245 retrieves these uncached storage
blocks from the virtual storage array data located in a
physical data storage on the data center LAN. The re-
trieved storage blocks are sent via the WAN connection
from the data center location to the branch location. In
an embodiment of step 245, the data center virtual stor-
age array interface receives a request for the uncached
identified storage blocks from the storage block access
optimizer and, in response, accesses the physical data

storage array to retrieve these storage blocks. The data
center virtual storage array interface then forwards these
storage blocks to the branch location virtual storage array
interface via the WAN connection.
[0058] Step 250 stores the storage blocks identified for
prefetching in the storage block read cache. In an em-
bodiment of step 250, the branch location virtual storage
array interface receives one or more storage blocks from
the data center virtual storage array interface via the
WAN connection and stores these storage blocks in the
storage block read cache. Following step 250, method
200 proceeds to step 205 to await receipt of further stor-
age block requests. The storage blocks added to the stor-
age block read cache in previous iterations of method
200 may be available for fulfilling storage block read re-
quests.
[0059] Method 200 may be performed by a branch vir-
tual data storage array interface, by a data center virtual
data storage array interface, or by both virtual data stor-
age array interfaces working in concert. For example,
steps 205 to 220 of method 200 may be performed by a
branch location virtual storage array interface and steps
225 to 250 of method 200 may be performed by a data
center virtual storage array interface. In another example,
all of the steps of method 200 may be performed by a
branch location virtual storage array interface.
[0060] Figure 2B illustrates a method 255 of performing
policy-based prefetching of storage blocks according to
an embodiment of the invention. Step 260 selects a high-
level data structure entity for analysis. Examples of a
selected high-level data structure entities include a file,
directory, and other file system entity such as an inode,
as well as database entities such as tables, records, and
B-tree nodes or other structures.
[0061] Step 265 analyzes the selected high-level data
structure entity to identify additional portions of the same
high-level data structure entity or all or portions of addi-
tional high-level data structure entities that are likely to
be requested by the storage client. There are a number
of different techniques for identifying addition high-level
data structures or portions thereof for prefetching that
may be used by embodiments of step 265.
[0062] One example technique is to identify the type
of entity, such as a file of a specific format, a directory in
a file system, or a database table, and apply one or more
heuristics to identify additional portions of this high-level
data structure entity or a related high-level data structure
entity for prefetching. For example, applications employ-
ing a specific type of file may frequently access data at
a specific location within these files, such as at the be-
ginning or end of the file. Using knowledge of this appli-
cation or entity-specific behavior, step 265 may identify
the beginning or end portions of these types of files for
prefetching.
[0063] In another example technique, step 265 ana-
lyzes the high-level data structure entity associated with
the requested storage block to identify related portions
of the same or other high-level data structure entity for

15 16

EP 2 411 918 B1

10

5

10

15

20

25

30

35

40

45

50

55

prefetching. For example, application files may include
references to additional files, such as overlay files or dy-
namically loaded libraries. Similarly, a database table
may include references to other database tables. Step
265 may use an analysis of this high-level data structure
entity to identify additional referenced high-level data
structure entities. The referenced high-level data struc-
ture entities may be prefetched.
[0064] In still another example technique, step 265
may analyze application, virtual machine, or operating
system specific files or other high-level data structure
entities to identify additional high-level data structure en-
tities for prefetching. For example, step 265 may analyze
application or operating system log files to identify the
sequence of files accessed during operations such a sys-
tem or application start-up. These identified files may
then be selected for prefetching.
[0065] Once step 265 has identified one or more high-
level data structure entities or portions thereof for
prefetching, step 270 identifies all or portions of one or
more high-level data structure entities for prefetching
based on the high-level data structure entity associated
with the requested storage block. However, as discussed
above, storage clients specify data access requests in
terms of storage blocks, not high-level data structure en-
tities such as files, directories, or database tables. In an
embodiment, step 270 provides the ISSD with identifiers
for one or more high-level data structure entities, such
as the inodes of files or similar identifiers for other types
of file systems or database storage structures. Optional-
ly, step 270 also provides an offset, file location, or other
type of address identify a specific portion of a high-level
data structure entity to be prefetched. In response, the
ISSD returns an identifier of one or more storage blocks
associated with the high-level data structure entities.
These storage blocks are used to store the high-level
data structure entities or portions thereof.
[0066] Decision block 275 determines if the storage
blocks identified in step 270 have already been stored in
the storage block read cache located at the branch loca-
tion. In an embodiment, the storage block access opti-
mizer at the data center maintains a record of all of the
storage blocks that have copies stored in the storage
block read cache. In an alternate embodiment, the stor-
age block access optimizer queries the branch location
virtual storage array interface to determine if copies of
these identified storage blocks have already been stored
in the storage block read cache.
[0067] In still a further embodiment, decision block 275
and the determination of whether an additional storage
block has been previously retrieved and cached may be
omitted. Instead, this embodiment can send all of the
additional storage blocks identified by step 270 to the
branch location virtual storage array interface to be
cached. This embodiment can be used when WAN la-
tency, rather than WAN bandwidth limitations, are an
overriding concern.
[0068] If all of the identified storage blocks from step

270 are already stored in the storage block read cache,
then method 255 proceeds from decision block 275 to
step 280. Optional step 280 determines if there are ad-
ditional high-level data structure entities that should be
included in the analysis of method 255, based on the
results of step 265. For example, if steps 260 and 265
analyze a first file and identify a second file that should
be prefetched, step 285 may include this second file in
a list of high-level data structure entities to be analyzed
by method 255, potentially identifying additional files from
the analysis of this second file.
[0069] If some or all of the storage blocks identified in
step 270 are not already stored in the storage block read
cache, then step 285 retrieves these uncached storage
blocks from the virtual storage array data located in a
physical data storage on the data center LAN. The re-
trieved storage blocks are sent via the WAN connection
from the data center location to the branch location. In
an embodiment of step 280, the data center virtual stor-
age array interface receives a request for the uncached
identified storage blocks from the storage block access
optimizer and accesses the physical data storage array
to retrieve these storage blocks. The data center virtual
storage array interface then forwards these storage
blocks to the branch location virtual storage array inter-
face via the WAN connection.
[0070] Step 290 stores the storage blocks identified for
prefetching in the storage block read cache. In an em-
bodiment of step 290, the branch location virtual storage
array interface receives one or more storage blocks from
the data center virtual storage array interface via the
WAN connection and stores these storage blocks in the
storage block read cache. Following step 290, method
255 proceeds to step 285. The storage blocks added to
the storage block read cache in previous iterations of
method 255 may be available for fulfilling storage block
read requests.
[0071] Following step 280 or, if step 280 is omitted,
decision block 275 or step 290, an embodiment of method
255 proceeds to step 260 to select another high-level
data structure entity for analysis.
[0072] In an embodiment, steps 285 and 290 may be
performed asynchronously or in parallel with further iter-
ations of method 255. For example, a storage block ac-
cess optimizer may direct the data center virtual storage
array interface to retrieve one or more storage blocks.
While this operation is being performed, the storage block
access optimizer may continue with the execution of
method 255 by proceeding to optional step 280 to identify
further high-level data structure entities for analysis,
and/or returning to step 260 for an additional iteration of
method 255. When the data center virtual storage array
interface has completed its retrieval of one or more stor-
age blocks as requested, step 290 may be performed in
the background and in parallel to transfer these storage
blocks via the WAN to the branch location for storage in
the storage block read cache.
[0073] Method 255 may be performed by a branch vir-

17 18

EP 2 411 918 B1

11

5

10

15

20

25

30

35

40

45

50

55

tual data storage array interface, by a data center virtual
data storage array interface, or by both virtual data stor-
age array interfaces working in concert. For example,
steps 260 to 285 of method 255 may be performed by a
data center virtual storage array interface. In another ex-
ample, all of the steps of method 255 may be performed
by a branch location virtual storage array interface.
[0074] Embodiments of both methods 200 and 255 uti-
lize the ISSD to identify high-level data structure entities
from storage blocks and/or to identify storage blocks from
their associated high-level data structure entities. An em-
bodiment of the invention creates the ISSD by initially
searching high-level data structure entities, such as a
master file table, allocation table or tree, or other types
of file system metadata structures, to identify the high-
level data structure entities corresponding with the stor-
age blocks. An embodiment of the invention may further
recursively analyze other high-level data structure enti-
ties, such as inodes, directory structures, files, and da-
tabase tables and nodes, that are referenced by the mas-
ter file table or other high-level data structures. This initial
analysis may be performed by either the branch location
or data center virtual storage array interface as a pre-
processing activity or in the background while processing
storage client requests. In an embodiment, the ISSD may
be updated frequently or infrequently, depending upon
the desired prefetching performance. Embodiments of
the invention may update the ISSD by periodically scan-
ning the high-level data structure entities or by monitoring
storage client activity for changes or additions to the vir-
tual storage array, which is then used to update the af-
fected portions of the ISSD.
[0075] As described above, embodiments of the inven-
tion prefetch storage blocks from the data center storage
array and cache these storage blocks in a storage block
cache located at the branch location. In some embodi-
ments, the storage block cache may be smaller than the
virtual storage array. Thus, when the storage block cache
is full, the branch or data center virtual storage array in-
terface may need to occasionally evict or remove some
storage blocks from the storage block cache to make
room for other prefetched storage blocks. In an embod-
iment, the branch virtual storage array interface may use
any cache replacement scheme or policy known in the
art, such as a least recently used (LRU) cache manage-
ment policy.
[0076] In another embodiment, the storage block
cache replacement policy of the storage block cache is
based on an understanding of the relationship between
storage blocks and corresponding high-level data struc-
ture entities, such as file system or database entities. In
this embodiment, even though the storage block cache
operates on the basis of storage blocks, the storage block
cache replacement policies determine whether to retain
or evict storage blocks in the storage block cache based
on their associations to files or other high level data struc-
ture entities.
[0077] For example, when a virtual storage array inter-

face needs to evict storage blocks from the storage block
cache to create free space for other prefetched storage
blocks, an embodiment of the virtual storage interface
uses information associating storage blocks with corre-
sponding files to evict all of the storage blocks associated
with a single file, rather than evicting some storage blocks
from one file and some from another file. In this example,
storage blocks are not necessarily evicted based on their
own usage alone, but on the overall usage of their asso-
ciated file or other high-level data structure entity.
[0078] As another example, the storage block cache
may elect to preferentially retain storage blocks including
file system metadata and/or directory structures over oth-
er storage blocks that include file data only.
[0079] In yet another example, the storage block cache
may identify files or other high-level data structure entities
that have not been accessed recently, and then use the
ISSD to identify and select the storage blocks corre-
sponding with these infrequently used files for eviction.
[0080] Although these examples of storage block
cache replacement policies are discussed with reference
to file and file systems, similar techniques can be applied
to databases and other types of high-level data structure
entities.
[0081] In addition to selectively evict storage blocks
based on their associated high-level data structure enti-
ties, an embodiment of the virtual array storage system
can also include cache policies to preferentially retain or
"pin" specific storage blocks in the storage block cache,
regardless of their usage or other factors. These cache
retention policies can ensure that specific storage blocks
are always accessible at the branch location, even at
times when the WAN is unavailable, since copies of these
storage blocks will always exist in the storage block
cache.
[0082] In this embodiment, a user, administrator, or ad-
ministrative application may specify all or a portion of the
virtual storage array for preferential retention or pinning
in the storage block cache. Upon receiving a request to
pin some or all of the virtual storage array data in the
storage block cache, the virtual storage array system
needs to determine if the storage block cache has suffi-
cient additional capacity to store the specified storage
blocks. If the storage block cache has sufficient capacity,
the virtual storage array system is allowed to reserves
space in the storage block cache for the specified storage
blocks; otherwise this request is denied.
[0083] If the storage block cache has sufficient capac-
ity to satisfy the pinning request, the cache also may in-
itiate a proactive prefetch process to retrieve any request-
ed storage blocks that are not already in the storage block
cache from the data center via the WAN. For large pinning
requests, such as an entire virtual storage array, it may
take hours or days for this proactive prefetch to be com-
pleted. In a further embodiment, this proactive prefetch-
ing of pinned storage blocks may be performed asyn-
chronously and at a lower priority than storage clients’
requests for virtual storage array read operations, asso-

19 20

EP 2 411 918 B1

12

5

10

15

20

25

30

35

40

45

50

55

ciated prefetching (discussed above), and the virtual stor-
age array write operations (discussed below). This em-
bodiment may be used to deploy data to a new branch
location. For example, upon activation of the branch stor-
age array interface, the virtual storage array data is cop-
ied asynchronously via the WAN to the branch location
storage block cache. Although this data transfer may take
some time to complete, storage clients at this new branch
location can access virtual storage array data immedi-
ately using the virtual storage array read and write oper-
ations, with the above-described storage block prefetch-
ing hiding the bandwidth and latency limitations of the
WAN when storage clients access storage blocks that
have yet to be copied to the branch location.
[0084] In another embodiment, the storage block
cache may allow users, administrators, and administra-
tion applications the ability to directly specify the pinning
of high-level data structure entities, such as files or da-
tabase elements, as opposed to specifying storage
blocks for pinning in the storage block cache. In this em-
bodiment, the virtual storage array uses the ISSD to iden-
tify storage blocks corresponding with the specified high-
level data structure entities. In a further embodiment, the
virtual storage array may allow user, administrators, and
administrative applications to specify only a portion of
high-level data structure entities for pinning, such as file
metadata and frequently used indices within high-level
data structure entities. The virtual storage array then us-
es the associations between storage blocks and high-
level data structure entities from the ISSD to identify spe-
cific storage blocks to be pinned in the storage block
cache.
[0085] Similarly, the virtual storage array cache can be
used to hide latency and bandwidth limitations of the
WAN during virtual storage array writes. Figure 3 illus-
trates a method 300 of processing storage block write
requests to improve virtualized data storage system per-
formance according to an embodiment of the invention.
[0086] An embodiment of method 300 starts with step
305 receiving a storage block write request from a stor-
age client within the branch location LAN. The storage
block write request may be received from a storage client
by a branch location virtual storage interface.
[0087] In response to the receipt of the storage block
write request, decision block 310 determines if the stor-
age block write cache in the virtual storage array cache
at the branch location is capable of accepting additional
write requests or is full. In an embodiment, the virtual
storage array cache may use some or all of its storage
as a storage block write cache for pending virtual storage
array write operations.
[0088] If the storage block write cache in the virtual
storage array cache can accept an additional storage
block write request, then step 315 stores the storage
block write request, including the storage block data to
be written, in the storage block write cache. Step 320
then sends a write acknowledgement to the storage cli-
ent. Following the storage client’s receipt of this write

request, the storage client believes its storage block write
request is complete and can continue to operation nor-
mally. Step 325 then transfers the queued written storage
block via the WAN to the physical storage array at the
data center LAN. This transfer may occur in the back-
ground and asynchronously with the operation of storage
clients.
[0089] While a storage block write request is queued
in the storage block write cache and waiting to be trans-
ferred to the data center, a storage client may wish to
access this storage block for a read or an additional write.
In this situation, the virtual storage array interface inter-
cepts the storage block access request. In the case of a
storage block read, the virtual storage array interface pro-
vides the storage client with the previously queued stor-
age block. In the case of a storage block write, the virtual
storage array interface will update the queued storage
block data and send a write acknowledgement to the stor-
age client for this additional storage block access.
[0090] Conversely, if decision block 310 determines
that the storage block read cache cannot accept an ad-
ditional storage block write request, then step 330 imme-
diately transfers the storage block via the WAN to the
physical storage array at the data center LAN. In an em-
bodiment of step 335, the branch location virtual storage
array interface receives a write confirmation that the stor-
age block write operation is complete. This confirmation
may be received from a data center virtual storage array
interface or directly from a physical storage array or other
data storage device. Following completion of this trans-
fer, step 340 sends a write acknowledgement to the stor-
age client, allowing the storage client to resume normal
operation.
[0091] In a further embodiment, a branch location vir-
tual storage array interface may throttle storage block
read and/or write requests from storage clients to prevent
the virtual storage array cache from filling up under typical
usage scenarios.
[0092] To prevent data loss or corruption in the face of
unexpected events such as power failures, typical file
systems and databases issue data writes to block stor-
age devices in a specific order and with certain depend-
encies to maintain internal consistency of structures and
ensure the desired semantics for modifications. For ex-
ample, most transactional databases employ write ahead
logging techniques when modifying index structures, so
that in case of failure, any operations that are logged but
not completed can be replayed upon restart.
[0093] Embodiments of the virtual storage array use
write order preservation to maintain data consistency. In
these embodiments, the storage block cache tracks the
order in which write requests are received and can use
this ordering information when forwarding the storage
block write requests to the physical storage array via the
WAN, as described by step 325.
[0094] Figures 4A-4C illustrate three write order pres-
ervation policies according to an embodiment of the in-
vention. Figure 4A illustrates the contents of an example

21 22

EP 2 411 918 B1

13

5

10

15

20

25

30

35

40

45

50

55

storage block write WAN queue 400. Storage block write
WAN queue 400 is used by embodiments of a branch
virtual storage array interface to schedule the transmis-
sion of storage blocks written by storage clients at the
branch location from the storage block write cache to the
physical storage array at the data center location. In the
example storage block write WAN queue 400, a se-
quence of ten write operations from one or more branch
storage clients is recorded. For each write operation in
this example sequence, the storage block write WAN
queue 400 includes a reference to the storage block writ-
ten by this write operation. For example, the first or ear-
liest write operation received, write operation 1, is a write
to storage block 4 and the last write or most recent write
operation received, write operation 10, is a write to stor-
age block 5.
[0095] In an embodiment of the invention, a first write
order preservation policy is to preserve the semantics of
the original file system, database, or other high-level data
structure entity by forwarding all block write requests over
the WAN to the physical storage array in the same order
that they were received by the virtual array storage cache.
Thus, the branch virtual storage array interface will com-
municate written storage blocks to the physical storage
array at the data center via the WAN in the same se-
quence as shown in example storage block write WAN
queue 400.
[0096] When using this policy, the image of the file sys-
tem or database that exists on the physical storage array
is always an internally consistent replica of the modifica-
tions made by storage clients at some point in time. Ad-
ditionally, snapshots of the virtual storage array data,
such as snapshots A and B, are guaranteed to be inter-
nally consistent, because they include all of the write op-
erations prior to the snapshot time. However, if the same
storage blocks are written to multiple times prior to their
transfer to the physical storage array, this write order
preservation policy requires the storage block write
cache to keep track of multiple versions of these storage
blocks and forward all of the write operations to these
different versions of the storage block in the order re-
ceived. Moreover, this policy requires more WAN band-
width because every version of a storage block in the
storage block write WAN queue must be forwarded to
the data center, even if these versions are superseded
by more recent versions of the storage block already in
the storage block write WAN queue. For example, in stor-
age block write WAN queue 400, storage block 3 is writ-
ten to in write operations 2, 4, and 7. Thus, the storage
block write cache must transmit all three of these versions
of storage block 3 in the order that they were received.
[0097] In another embodiment of the invention, a sec-
ond write order preservation policy forwards only the
most recently written version of each storage block in the
storage block write cache. Figure 4B illustrates an exam-
ple storage block WAN transmission order 405 according
to this embodiment of the invention. Example storage
block WAN transmission order 405 is based on the ex-

ample storage block writes WAN queue 400 shown in
figure 4A. In example storage block WAN transmission
order 405, only the most recent versions of each storage
block in storage block writes WAN queue 400 are com-
municated to the data center via the WAN. For example,
write operation 5 in storage block writes WAN queue 400
is the most recent version of storage block 4. Similarly,
write operations 7, 8, 9, 10 in storage block writes WAN
queue 400 are the most recent version of storage block
3, 1, 2, and 5, respectively. Thus, storage block opera-
tions 5, 7, 8, 9, and 10 are the only write operations in
storage block writes WAN queue 400 that need to be
transmitted to the physical storage array at the data cent-
er, as shown by example storage block WAN transmis-
sion order 405. The remaining storage block write oper-
ations in the storage block writes WAN queue 400 may
be discarded.
[0098] The most recent version policy shown by figure
4B reduces the WAN bandwidth required, because mul-
tiple versions of the same storage block need not be
transmitted. However, by ignoring the write ordering de-
pendencies of the original sequence of write operations,
the virtual storage array data on the physical storage ar-
ray may not be internally consistent until all of the write
operations in the storage block write cache have been
processed, if necessary, and transmitted back to the
physical storage device at the data center.
[0099] Additionally, this policy does not preserve con-
sistent snapshots of the virtual storage array, because
some write operations prior to a snapshot may be omitted
from the storage block WAN transmission order 405 if
there are further writes to the same storage block after
the snapshot time. For example, write operations 1, 2,
and 3 from the storage block writes WAN queue 400,
which occur before the time of snapshot A, are omitted
from the storage block WAN transmission order 405.
Thus, snapshot A will not be internally consistent be-
cause it is missing the most recent version of storage
blocks 4, 3, and 1 prior to the time of snapshot A.
[0100] In another embodiment of the invention, a third
write order preservation policy forwards the most recently
written versions of storage blocks before each snapshot
time. Figure 4C illustrates an example storage block
WAN transmission order 410 according to this embodi-
ment of the invention. Example storage block WAN trans-
mission order 410 is based on the example storage block
writes WAN queue 400 shown in figure 4A. In example
storage block WAN transmission order 410, the most re-
cent versions of each storage block before each snap-
shot time in storage block writes WAN queue 400 are
communicated to the data center via the WAN.
[0101] For example, storage block writes WAN queue
400 includes two snapshot times, snapshot A and snap-
shot B. For each snapshot time, an embodiment of the
storage block write cache forwards only the most recent
version of storage blocks updated by write operations
prior to this snapshot time. For example, storage block
4 is updated by write operations 1 and 3 and storage

23 24

EP 2 411 918 B1

14

5

10

15

20

25

30

35

40

45

50

55

block 3 is updated by write operation 2 prior to snapshot
time A. In this example, the storage block WAN trans-
mission order 410 output by the storage block write cache
will include write operations 2 and 3 to update storage
blocks 3 and 4, reflecting the most recent updates of
these storage blocks prior to the snapshot time A. In this
example, write operation 1 is omitted because the write
operation 3 is a more recent update the same storage
block before the snapshot time A.
[0102] Similarly, the storage block WAN transmission
order 410 includes write operations 5, 6, and 7, reflecting
the most recent updates of storage blocks 4, 2, and 3,
respectively, prior to the snapshot time B. In this example,
the storage block WAN transmission order 410 include
multiple versions of the same storage block if there is
one or more snapshots between the associated write op-
erations. For example, write operations 3 and 5 are both
included in storage block WAN transmission order 410
because they update storage block 4 prior to and follow-
ing the snapshot time A.
[0103] Additionally, the storage block WAN transmis-
sion order 410 includes write operations 8, 9, and 10,
which are the most recent updates to storage blocks 1,
2, and 5, respectively, following snapshot time B.
[0104] In this embodiment, although the physical stor-
age array may contain an inconsistent view of the virtual
storage array data at some arbitrary points in time, this
embodiment ensures that the virtual storage array data
will be internally consistent at the times of snapshots.
[0105] As discussed above, the data of a virtual stor-
age array may be stored in physical storage array or other
data storage device. In some applications, such as with
virtual machine applications, the physical storage blocks
used by the virtual storage array belong to a virtual ma-
chine file system, such as VMFS. In these applications,
there may be many layers of abstraction between virtual
storage array storage blocks and the high-level data
structure entities used by a virtual machine application
and its hosted applications. Because of this, embodi-
ments of the invention may perform multiple transforma-
tions to identify high-level data structure entities corre-
sponding with given virtual storage array storage blocks
and, once these high-level data structure entities are
identified, may perform multiple optimizations to attempt
to predict and prefetch virtual storage array storage
blocks that will be requested by a storage client in the
near future.
[0106] Figure 5 illustrates an example arrangement
500 for successively applying transformations and opti-
mizations to improve virtualized data storage system per-
formance according to an embodiment of the invention.
In example 500, successive levels of translation may be
used to convert storage block requests to corresponding
intermediate level data structure entities and then into
corresponding high-level data structure entities. Exam-
ple arrangement 500 includes a physical data storage
system 505, such as a physical data storage array or file
server. The physical data storage system 505 may be

associated with a file system or volume manager that
provides an interface for accessing physical storage
blocks. In this example arrangement 500, a virtual stor-
age array interface receives a request for a virtual storage
array storage block from a storage client. This request
for a virtual storage array storage block is converted by
one or more virtual storage array interfaces to a request
507 for a corresponding physical storage block in the
physical data storage system 505.
[0107] To identify additional physical storage blocks
for prefetching, example arrangement 500 includes a
physical storage block to virtual machine storage struc-
ture translation module 510. Module 510 maps a given
physical storage block to a corresponding portion of a
virtual machine storage structure 515. For example, vir-
tual machine storage structure 515 may be a VMFS stor-
age volume. The VMFS storage volume appears as a
logical storage unit, such as a LUN, to the virtual storage
array interface. In this example, the VMFS storage vol-
ume may include multiple virtual machine disk images.
Although the VMFS storage volume appears as a single
logical storage unit to the storage client, each disk image
within the VMFS storage volume appears to a virtual ma-
chine application as a separate virtual logical storage
unit. In this example, module 510 may identify a portion
of a virtual logical storage unit within the VMFS storage
volume as corresponding with the requested physical
storage block.
[0108] Module 520 maps the identified portion of a vir-
tual machine storage structure, such as a virtual logical
storage unit within a VMFS storage volume, to one or
more corresponding virtual file system storage blocks
within a virtual file system 525. Virtual file system 525
may be any type of file system implemented within a vir-
tual logical storage unit. Examples of virtual file systems
include FAT, NTFS, and the ext family of file systems.
For example, a virtual logical storage unit may be a disk
image used by a virtual machine application. The disk
image represents as data as virtual storage blocks of a
virtual data storage device. The virtual storage blocks in
this disk image are organized according to the virtual file
system 525.
[0109] As with physical storage blocks and physical
file systems, virtual machine applications and their host-
ed applications typically access data in terms of files in
the virtual file system 525, rather than storage blocks.
Moreover, high-level data structure entities within the vir-
tual file system, such as files or directories, may be
spread out over multiple non-contiguous virtual storage
blocks in the virtual file system 525. Thus, a virtual file
system inferred storage structure database 530 and vir-
tual file system block access optimizer 532 leverage an
understanding of the semantics and structure of the high-
level data structures associated with the virtual storage
blocks to predict which virtual storage blocks are likely
to be requested by a storage client in the near future.
The virtual file system ISSD 530 and virtual file system
block access optimizer 532 are similar to the ISSD and

25 26

EP 2 411 918 B1

15

5

10

15

20

25

30

35

40

45

50

55

block access optimizer, respectively, for physical data
storage discussed above.
[0110] In arrangement 500, the virtual file system block
access optimizer 532 receives an identification of one or
more virtual storage blocks in the virtual file system 525
that correspond with the requested physical storage
block in request 507. The virtual file system block access
optimizer 532 uses the virtual file system ISSD 530 to
identify one or more virtual file system high-level data
structure entities, such as virtual file system files, corre-
sponding with these virtual file system storage blocks.
The virtual file system block access optimizer 532 uses
its knowledge of the high-level data structure entities and
reactive and/or policy-based prefetching techniques to
identify one or more additional high-level data structure
entities or portions thereof for prefetching. The virtual file
system block access optimizer 532 then uses the virtual
file system ISSD 530 to identify additional virtual storage
blocks in the virtual file system 525 corresponding with
these additional high-level data structure entities or por-
tions thereof. The additional virtual storage blocks in the
virtualfile system 525 are selected for prefetching.
[0111] Once the virtual file system block access opti-
mizer 532 has selected one or more virtual file system
storage blocks for prefetching, a request 533 for these
virtual file system storage blocks is generated. In an em-
bodiment of arrangement 500, module 520 translates the
prefetch request 533 for virtual file system storage blocks
into an equivalent prefetch request 535 for a portion of
the virtual machine storage structure. Then, module 510
translates the prefetch request 525 for a portion of the
virtual machine storage structure into an equivalent
prefetch request 537 for physical storage blocks in the
physical data storage system 505. The physical storage
blocks indicated by request 537 correspond with the vir-
tual file system storage blocks from request 533. These
requested physical storage blocks may be retrieved from
the physical data storage system 505 and communicated
via the WAN to a branch location virtual storage array
interface for storage in a storage block read cache.
[0112] Arrangement 500 is one example for succes-
sively applying transformations and optimizations to im-
prove virtualized data storage system performance ac-
cording to an embodiment of the invention. Further em-
bodiments of the invention may apply any number of suc-
cessive transformations to physical storage blocks to
identify associated high-level data structure entities. Ad-
ditionally, once one or more associated high-level data
structure entities have been identified, embodiments of
the invention may apply optimizations at the level of high-
level data structure entities or at any lower level of ab-
straction. For example, optimizations may be performed
at the level of virtual machine file system files, virtual
machine file system storage blocks, virtual machine stor-
age structures, physical storage blocks, and/or at any
other intermediate data structure level of abstraction.
[0113] Figure 6 illustrates a method 600 of creating a
data storage snapshot in a virtualized data storage sys-

tem performance according to an embodiment of the in-
vention. Method 300 begins with step 605 initiating of a
virtual storage array checkpoint. A virtual storage array
checkpoint may be initiated automatically by a branch
location virtual storage array interface according to a
schedule or based on criteria, such as the amount of data
changed since the last checkpoint. In a further embodi-
ment, a virtual storage array checkpoint may be initiated
in response to a request for a virtual storage array snap-
shot from a system administrator or administration appli-
cation.
[0114] To create a virtual storage array checkpoint,
step 610 sets the branch location virtual storage array
interface to a quiescent state. This entails completing
any pending operations with storage clients (though not
necessarily background operations between the branch
location and data center virtual storage array interfaces,
such as transferring new or updated storage blocks from
the storage block write cache to the data center via the
WAN). While in the quiescent state, the branch location
virtual storage interface will not accept any new storage
operations from storage clients.
[0115] Once the branch location virtual storage array
interface is set to a quiescent state, step 615 identifies
new or updated storage blocks in the branch location
virtual storage array cache. These new or updated stor-
age blocks include data that has been created or updated
by storage clients but have yet to be transferred via the
WAN back to the data center LAN for storage in the phys-
ical data storage array.
[0116] Once all of the updated storage blocks have
been identified, step 615 creates a checkpoint data struc-
ture. The checkpoint data structure specifies a time of
checkpoint creation and the set of new and updated stor-
age blocks at that moment of time. Following the creation
of the checkpoint data structure, step 620 reactivates the
branch location’s virtual storage array. The branch loca-
tion virtual storage array interface can resume servicing
storage operations from storage clients. Additionally, the
branch location virtual storage array interface may
resume transferring new or updated storage blocks via
the WAN to the data center LAN for storage in the physical
data storage array. In a further embodiment, the virtual
storage array cache may maintain a copy of an updated
storage block even after a copy is transferred back to the
data center LAN for storage. This allows subsequent
snapshots to be created based on this data.
[0117] In an embodiment, following the reactivation of
the virtual storage array, the branch location virtual stor-
age array interface preserves the updated storage blocks
specified by the checkpoint data structure from further
changes. If a storage client attempts to update a storage
block that is associated with a checkpoint, an embodi-
ment of the branch location virtual storage array interface
creates a duplicate of this storage block in the virtual
storage array cache to store the updated data. By making
a copy of this storage block, rather than replacing it with
further updated data, this embodiment preserves the da-

27 28

EP 2 411 918 B1

16

5

10

15

20

25

30

35

40

45

50

55

ta of this storage block at the time of the checkpoint for
potential future reference.
[0118] Optionally, an embodiment of method 600 may
initiate one or more additional virtual storage array check-
points at later times or in response to criteria or condi-
tions. Embodiments of the branch location virtual storage
array interface may maintain any arbitrary number of
checkpoint data structures and automatically delete out-
dated checkpoint data structures. For example, a branch
location virtual storage interface may maintain only the
most recently created checkpoint data structure, or
checkpoint data structures from the beginning of the most
recent business day and the most recent hour.
[0119] At some point, a system administrator or admin-
istration application may request a snapshot of the virtual
storage array data. A snapshot of the virtual storage array
data represents the complete set of virtual storage array
data at a specific moment of time. Step 625 receives a
snapshot request. In response to a snapshot request,
step 630 transfers a copy of the appropriate checkpoint
data structure from the branch location virtual storage
array interface to the data center virtual storage interface.
Additionally, step 630 transfers a copy of any updated
storage blocks specified by this checkpoint data structure
from the branch location virtual storage array interface
to the data center virtual storage array interface for stor-
age in the physical storage array.
[0120] In an embodiment of step 630, the data center
virtual storage array interface creates a snapshot of the
data of the virtual storage array. The snapshot includes
a copy of all of the virtual storage array data in the physical
data storage array unchanged from the time of creation
of the checkpoint data structure. The snapshot also in-
cludes a copy of the updated storage blocks specified by
the checkpoint data structure. An embodiment of the data
center virtual storage array interface may store the snap-
shot in the physical storage array or using a data backup.
In an embodiment, the data center virtual storage array
interface automatically sends storage operations to the
physical storage array interface to create a snapshot from
a checkpoint data structure. These storage operations
can be carried out in the background by the data center
virtual storage array interface in addition to translating
virtual storage array operations from one or more branch
location virtual storage array interfaces into correspond-
ing physical storage array operations.
[0121] Embodiments of the invention can implement
virtual storage array interfaces at the branch and/or data
center as standalone devices or as part of other devices,
computer systems, or applications. Figure 7 illustrates
an example computer system capable of implementing
a virtual storage array interface according to an embod-
iment of the invention. Figure 7 is a block diagram of a
computer system 2000, such as a personal computer or
other digital device, suitable for practicing an embodi-
ment of the invention. Embodiments of computer system
2000 may include dedicated networking devices, such
as wireless access points, network switches, hubs, rout-

ers, hardware firewalls, network traffic optimizers and ac-
celerators, network attached storage devices, storage ar-
ray network interfaces, and combinations thereof.
[0122] Computer system 2000 includes a central
processing unit (CPU) 2005 for running software appli-
cations and optionally an operating system. CPU 2005
may be comprised of one or more processing cores. In
a further embodiment, CPU 2005 may execute virtual
machine software applications to create one or more vir-
tual processors capable of executing additional software
applications and optional additional operating systems.
Virtual machine applications can include interpreters,
recompilers, and just-in-time compilers to assist in exe-
cuting software applications within virtual machines. Ad-
ditionally, one or more CPUs 2005 or associated
processing cores can include virtualization specific hard-
ware, such as additional register sets, memory address
manipulation hardware, additional virtualization-specific
processor instructions, and virtual machine state main-
tenance and migration hardware.
[0123] Memory 2010 stores applications and data for
use by the CPU 2005. Examples of memory 2010 include
dynamic and static random access memory. Storage
2015 provides non-volatile storage for applications and
data and may include fixed or removable hard disk drives,
flash memory devices, ROM memory, and CD-ROM,
DVD-ROM, Blu-ray, or other magnetic, optical, or solid
state storage devices. In an embodiment, storage 2015
includes multiple storage devices configured to act as a
storage array for improved performance and/or reliability.
In a further embodiment, storage 2015 includes a storage
array network utilizing a storage array network interface
and storage array network protocols to store and retrieve
data. Examples of storage array network interfaces suit-
able for use with embodiments of the invention include
Ethernet, Fibre Channel, IP, and InfiniBand interfaces.
Examples of storage array network protocols include
ATA, Fibre Channel Protocol, and SCSI. Various combi-
nations of storage array network interfaces and protocols
are suitable for use with embodiments of the invention,
including iSCSI, HyperSCSI, Fibre Channel over Ether-
net, and iFCP.
[0124] Optional user input devices 2020 communicate
user inputs from one or more users to the computer sys-
tem 2000, examples of which may include keyboards,
mice, joysticks, digitizer tablets, touch pads, touch
screens, still or video cameras, and/or microphones. In
an embodiment, user input devices may be omitted and
computer system 2000 may present a user interface to
a user over a network, for example using a web page or
network management protocol and network manage-
ment software applications.
[0125] Computer system 2000 includes one or more
network interfaces 2025 that allow computer system
2000 to communicate with other computer systems via
an electronic communications network, and may include
wired or wireless communication over local area net-
works and wide area networks such as the Internet. Com-

29 30

EP 2 411 918 B1

17

5

10

15

20

25

30

35

40

45

50

55

puter system 2000 may support a variety of networking
protocols at one or more levels of abstraction. For exam-
ple, computer system may support networking protocols
at one or more layers of the seven layer OSI network
model. An embodiment of network interface 2025 in-
cludes one or more wireless network interfaces adapted
to communicate with wireless clients and with other wire-
less networking devices using radio waves, for example
using the 802.11 family of protocols, such as 802.11a,
802.11b, 802.11g, and 802.11n.
[0126] An embodiment of the computer system 2000
may also include a wired networking interface, such as
one or more Ethernet connections to communicate with
other networking devices via local or wide-area networks.
[0127] The components of computer system 2000, in-
cluding CPU 2005, memory 2010, data storage 2015,
user input devices 2020, and network interface 2025 are
connected via one or more data buses 2060. Additionally,
some or all of the components of computer system 2000,
including CPU 2005, memory 2010, data storage 2015,
user input devices 2020, and network interface 2025 may
be integrated together into one or more integrated circuits
or integrated circuit packages. Furthermore, some or all
of the components of computer system 2000 may be im-
plemented as application specific integrated circuits
(ASICS) and/or programmable logic.
[0128] Further embodiments can be envisioned to one
of ordinary skill in the art after reading the attached doc-
uments. For example, embodiments of the invention can
be used with any number of network connections and
may be added to any type of network device, client or
server computer, or other computing device in addition
to the computer illustrated above. In other embodiments,
combinations or sub-combinations of the above dis-
closed invention can be advantageously made. The block
diagrams of the architecture and flow charts are grouped
for ease of understanding. However it should be under-
stood that combinations of blocks, additions of new
blocks, re-arrangement of blocks, and the like are con-
templated in alternative embodiments of the present in-
vention.
[0129] The specification and drawings are, according-
ly, to be regarded in an illustrative rather than a restrictive
sense. It will, however, be evident that various modifica-
tions and changes may be made thereunto without de-
parting from the scope of the invention as set forth in the
claims.
One aspect of the invention provides a method of opti-
mizing a block storage protocol read access to a block
storage device via a wide area network, the method com-
prising receiving a storage request specifying at least a
first storage block from a storage client, wherein the stor-
age client is connected with a wide area network at a first
network location; identifying at least a first portion of a
set of file system entities corresponding with the first stor-
age block; identifying at least at a second portion of the
set of file system entities likely to be associated with a
future storage request based on the first portion of the

set of file system entities; identifying at least a second
storage block corresponding with the second portion of
the set of file system entities; retrieving the second stor-
age block from a data storage connected with the wide
area network at a second network location; communicat-
ing via the wide area network the second storage block
from the data storage to a storage block cache at the first
network location; and storing the second storage block
in the storage block cache.
In one embodiment the first portion of the set of file system
entities and the second portion of the set of file system
entities include a first one of the set of file system entities.
In one embodiment the first portion of the set of file system
entities includes a first one of the set of file system entities
and the second portion of the set of file system entities
includes a second one of the set of file system entities.
In one embodiment the set of file system entities includes
a file system entity.
In one embodiment the set of file system entities includes
a directory.
In one embodiment the set of file system entities includes
a file system data structure.
In one embodiment identifying at least the first portion of
a set of file system entities corresponding with the first
storage block comprises accessing a storage structure
database including mappings from storage block loca-
tions to portions of the set of file system entities. In one
embodiment identifying at least the second storage block
corresponding with the second portion of the set of file
system entities comprises accessing a data storage
structure including previously determined mappings from
portions of the set of file system entities to storage block
locations.
[0130] In one embodiment the method further compris-
es receiving a second storage request from the storage
client;determining if the second storage request includes
a request for the second storage block;in response to the
determination that the second storage request includes
the request for the second storage block, retrieving the
second storage block from the storage block cache at
the first network location; and in response to the deter-
mination that the second storage request does not in-
clude the request for the second storage block, retrieving
at least one additional storage block from the data stor-
age connected with the wide area network at the second
network location.
[0131] Another aspect of the invention provides a
method of optimizing a block storage protocol read ac-
cess to a block storage device via a wide area network,
the method comprising receiving a storage request spec-
ifying at least a first storage block from a storage client,
wherein the storage client is connected with a wide area
network at a first network location; identifying at least a
first portion of a set of database entities corresponding
with the first storage block; identifying at least at a second
portion of the set of database entities likely to be asso-
ciated with a future storage request based on the first
portion of the set of database entities; identifying at least

31 32

EP 2 411 918 B1

18

5

10

15

20

25

30

35

40

45

50

55

a second storage block corresponding with the second
portion of the set of database entities; retrieving the sec-
ond storage block from a data storage connected with
the wide area network at a second network location; com-
municating via the wide area network the second storage
block from the data storage to a storage block cache at
the first network location; and storing the second storage
block in the storage block cache.
[0132] In one embodiment the first portion of the set of
database entities and the second portion of the set of
database entities include a first one of the set of database
entities.
[0133] In one embodiment the first portion of the set of
database entities includes a first one of the set of data-
base entities and the second portion of the set of data-
base entities includes a second one of the set of database
entities.
[0134] In one embodiment the set of database entities
includes a table.
[0135] In one embodiment the set of database entities
includes a database system node.
[0136] In one embodiment identifying at least the first
portion of a set of database entities corresponding with
the first storage block comprises accessing a storage
structure database including mappings from storage
block locations to portions of the set of database entities.
[0137] In one embodiment identifying at least the sec-
ond storage block corresponding with the second portion
of the set of database entities comprises accessing a
data storage structure including previously determined
mappings from portions of the set of database entities to
storage block locations.
[0138] In one embodiment the method further compris-
es receiving a second storage request from the storage
client; determining if the second storage request includes
a request for the second storage block; in response to
the determination that the second storage request in-
cludes the request for the second storage block, retriev-
ing the second storage block from the storage block
cache at the first network location; and in response to
the determination that the second storage request does
not include the request for the second storage block, re-
trieving at least one additional storage block from the
data storage connected with the wide area network at
the second network location.

Claims

1. A method of optimizing a block storage protocol read
access to a block storage device via a wide area
network, the method comprising:

selecting a first file system entity from a set of
file system entities, wherein the first file system
entity is associated with a requested first storage
block, and wherein the first file system entity is
a file, a directory, or a file system node;

analysing the first file system entity to identify at
least a first portion of the set of file system enti-
ties likely to be associated with at least one fu-
ture storage request, wherein said analysing in-
cludes one or more of:

identifying, in the first file system entity, ref-
erences to one or more portions of the set
of file system entities; and
identifying access patterns that associate
the first file system entity with the one or
more portions of the set of file system enti-
ties;

identifying at least a second storage block cor-
responding with the first portion of the set of file
system entities;
retrieving the second storage block from a data
storage connected with the wide area network
at a first network location;
communicating via the wide area network the
second storage block from the data storage to
a storage block cache at a second network lo-
cation; and
storing the second storage block in the storage
block cache.

2. The method of claim 1, wherein the second location
includes a storage client adapted to originate storage
requests.

3. The method of claim 1, wherein the first portion of
the set of file system entities includes a second por-
tion of the first file system entity.

4. The method of claim 1, wherein the first potion of the
set of file system entities includes at least a second
portion of a second file system entity.

5. The method of claim 4, comprising:

selecting the second file system entity;
analysing the second file system entity to identify
an additional portion of the set of file system en-
tities likely to be associated with the future stor-
age request;
identifying at least a third storage block corre-
sponding with the additional portion of the set of
file system entities;
retrieving the third storage block from the data
storage connected with the wide area network
at the first network location;
communicating via the wide area network the
third storage block from the data storage to the
storage block cache at the second network lo-
cation; and
storing the third storage block in the storage
block cache.

33 34

EP 2 411 918 B1

19

5

10

15

20

25

30

35

40

45

50

55

6. A method of optimizing a block storage protocol read
access to a block storage device via a wide area
network, the method comprising:

selecting a first database entity from a set of
database entities, wherein the first database en-
tity is associated with a requested first storage
block, and wherein set of database entities in-
cludes a database table, or a database system
node.;
analysing the first database entity to identify at
least a first portion of the set of database entities
likely to be associated with at least one future
storage request, wherein said analysing in-
cludes one or more of:

identifying, in the first database entity, ref-
erences to one or more portions of the set
of database entities; and
identifying access patterns that associate
the first database entity with the one or more
portions of the set of database entities;

identifying at least a second storage block cor-
responding with the first portion of the set of da-
tabase entities;
retrieving the second storage block from a data
storage connected with the wide area network
at a first network location;
communicating via the wide area network the
second storage block from the data storage to
a storage block cache at a second network lo-
cation; and
storing the second storage block in the storage
block cache.

7. The method of claim 6, wherein the second location
includes a storage client adapted to originate storage
requests.

8. The method of claim 6, wherein the first portion of
the set of database entities includes a second portion
of the first database entity, or at least a second por-
tion of a second database entity.

9. The method of claim 8, comprising:

selecting the second database entity;
analysing the second database entity to identify
an additional portion of the set of database en-
tities likely to be associated with the future stor-
age request;
identifying at least a third storage block corre-
sponding with the additional portion of the set of
database entities;
retrieving the third storage block from the data
storage connected with the wide area network
at the first network location;

communicating via the wide area network the
third storage block from the data storage to the
storage block cache at the second network lo-
cation; and
storing the third storage block in the storage
block cache,

10. A computer readable medium comprising computer
readable instructions that when executed by a com-
puter will cause the computer to carry out the method
of any one of claims 6 to 9.

Patentansprüche

1. Verfahren zum Optimieren eines Blockspeicherpro-
tokoll-Lesezugangs zu einer Blockspeichereinrich-
tung über ein Weitbereichsnetz, wobei das Verfah-
ren Folgendes umfasst:

Auswählen einer ersten Dateisystementität aus
einem Satz von Dateisystementitäten, worin die
erste Dateisystementität mit einem angeforder-
ten ersten Speicherblock assoziiert ist und worin
die erste Dateisystementität eine Datei, ein Ver-
zeichnis oder ein Dateisystemknoten ist;
Analysieren der ersten Dateisystementität zum
Identifizieren von mindestens einem ersten Teil
des Satzes von Dateisystementitäten, die wahr-
scheinlich mit mindestens einer zukünftigen
Speicheranforderung zu assoziieren sind, worin
das Analysieren eins oder mehrere von Folgen-
den enthält:

Identifizieren in der ersten Dateisystemen-
tität von Referenzen für einen oder mehrere
Teile des Satzes von Dateisystementitäten;
und
Identifizieren von Zugangsmustern, die die
erste Dateisystementität mit dem einen
oder den mehreren Teilen des Satzes von
Dateisystementitäten assoziieren;

Identifizieren von mindestens einem zweiten
Speicherblock, der dem ersten Teil des Satzes
von Dateisystementitäten entspricht;
Abrufen des zweiten Speicherblocks aus einem
Datenspeicher, der mit dem Weitbereichsnetz
an einem ersten Netz-Ort verbunden ist;
Kommunizieren über das Weitbereichsnetz des
zweiten Speicherblocks aus dem Datenspei-
cher an einen Speicherblockcache an einem
zweiten Netz-Ort; und
Speichern des zweiten Speicherblocks im
Speicherblockcache.

2. Verfahren nach Anspruch 1, worin der zweite Ort
einen Speicher-Client enthält, der dazu angepasst

35 36

EP 2 411 918 B1

20

5

10

15

20

25

30

35

40

45

50

55

ist, Speicheranforderungen zu initiieren.

3. Verfahren nach Anspruch 1, worin der erste Teil des
Satzes von Dateisystementitäten einen zweiten Teil
der ersten Dateisystementität enthält.

4. Verfahren nach Anspruch 1, worin der erste Teil des
Satzes von Dateisystementitäten mindestens einen
zweiten Teil einer zweiten Dateisystementität ent-
hält.

5. Verfahren nach Anspruch 4, Folgendes umfassend:

Auswählen der zweiten Dateisystementität;
Analysieren der zweiten Dateisystementität, um
einen weiteren Teil des Satzes von Dateisyste-
mentitäten zu identifizieren, die wahrscheinlich
mit der zukünftigen Speicheranforderung zu as-
soziieren sind;
Identifizieren mindestens eines dritten
Speicherblocks, der dem weiteren Teil des Sat-
zes von Dateisystementitäten entspricht;
Abrufen des dritten Speicherblocks vom Daten-
speicher, der mit dem Weitbereichsnetz am ers-
ten Netz-Ort verbunden ist;
Kommunizieren über das Weitbereichsnetz des
dritten Speicherblocks aus dem Datenspeicher
an den Speicherblockcache am zweiten Netz-
Ort; und
Speichern des dritten Speicherblocks im
Speicherblockcache.

6. Verfahren zum Optimieren eines Blockspeicherpro-
tokoll-Lesezugangs für eine Blockspeichereinrich-
tung über ein Weitbereichsnetz, wobei das Verfah-
ren Folgendes umfasst:

Auswählen einer ersten Datenbankentität aus
einem Satz von Datenbankentitäten, worin die
erste Datenbankentität mit einem angeforderten
ersten Speicherblock assoziiert ist und worin der
Satz von Datenbankentitäten eine Datenbank-
tabelle oder einen Datenbank-Systemknoten
enthält;
Analysieren der ersten Datenbankentität zum
Identifizieren von mindestens einem ersten Teil
des Satzes von Datenbankentitäten, die wahr-
scheinlich mit mindestens einer zukünftigen
Speicheranforderung zu assoziieren sind, worin
das Analysieren eins oder mehrere von Folgen-
den enthält:

Identifizieren in der ersten Datenbankenti-
tät von Referenzen für einen oder mehrere
Teile des Satzes von Datenbankentitäten;
und
Identifizieren von Zugangsmustern, die die
erste Datenbankentität mit dem einen oder

den mehreren Teilen des Satzes von Da-
tenbankentitäten assoziieren;

Identifizieren von mindestens einem zweiten
Speicherblock, der dem ersten Teil des Satzes
von Datenbankentität entspricht;
Abrufen des zweiten Speicherblocks aus einem
Datenspeicher, der mit dem Weitbereichsnetz
an einem ersten Netz-Ort verbunden ist;
Kommunizieren über das Weitbereichsnetz des
zweiten Speicherblocks aus dem Datenspei-
cher an einen Speicherblockcache an einem
zweiten Netz-Ort; und
Speichern des zweiten Speicherblocks im
Speicherblockcache.

7. Verfahren nach Anspruch 6, worin der zweite Ort
einen Speicherclient enthält, der dazu angepasst ist,
Speicheranforderungen zu initiieren.

8. Verfahren nach Anspruch 6, worin der erste Teil des
Satzes von Datenbankentitäten einen zweiten Teil
der ersten Datenbankentität oder mindestens einen
zweiten Teil einer zweiten Datenbankentität enthält.

9. Verfahren nach Anspruch 8, Folgendes umfassend:

Auswählen der zweiten Datenbankentität;
Analysieren der zweiten Datenbankentität zum
Identifizieren eines weiteren Teils des Satzes
von Datenbankentitäten, die wahrscheinlich mit
der zukünftigen Speicheranforderung zu asso-
ziieren sind;
Identifizieren von mindestens einem dritten
Speicherblock, der dem weiteren Teil des Sat-
zes von Datenbankentitäten entspricht;
Abrufen des dritten Speicherblocks aus dem
Datenspeicher, der mit dem Weitbereichsnetz
am ersten Netz-Ort verbunden ist;
Kommunizieren über das Weitbereichsnetz des
dritten Speicherblocks aus dem Datenspeicher
an den Speicherblockcache am zweiten Netz-
Ort; und
Speichern des dritten Speicherblocks im
Speicherblockcache.

10. Computerlesbares Medium, computerlesbare An-
weisungen umfassend, die, wenn sie von einem
Computer ausgeführt werden, den Computer veran-
lassen, das Verfahren nach einem der Ansprüche 6
bis 9 auszuführen.

Revendications

1. Procédé d’optimisation d’un accès en lecture de pro-
tocole de stockage de blocs sur un dispositif de stoc-
kage de blocs via un réseau étendu, le procédé

37 38

EP 2 411 918 B1

21

5

10

15

20

25

30

35

40

45

50

55

comprenant :

la sélection d’une première entité de système
de fichiers parmi un jeu d’entités de système de
fichiers, dans lequel la première entité de sys-
tème de fichiers est associée à un premier bloc
de stockage demandé en requête, et dans le-
quel la première entité de système de fichiers
est un fichier, un répertoire ou un noeud de sys-
tème de fichiers ;
l’analyse de la première entité de système de
fichiers de manière à identifier au moins une pre-
mière partie du jeu d’entités de système de fi-
chiers qui est susceptible d’être associée à au
moins une requête de stockage future, dans le-
quel ladite analyse inclut une ou plusieurs ac-
tion(s) prise(s) parmi :

l’identification, dans la première entité de
système de fichiers, de références à une ou
plusieurs partie(s) du jeu d’entités de sys-
tème de fichiers ; et
l’identification de motifs d’accès qui asso-
cient la première entité de système de fi-
chiers aux une ou plusieurs parties du jeu
d’entités de système de fichiers ;

l’identification d’au moins un deuxième bloc de
stockage qui correspond à la première partie du
jeu d’entités de système de fichiers ;
l’extraction du deuxième bloc de stockage à par-
tir d’un stockage de données qui est connecté
au réseau étendu au niveau d’un premier em-
placement de réseau ;
la communication, via le réseau étendu, du
deuxième bloc de stockage depuis le stockage
de données jusqu’à un cache de bloc de stoc-
kage au niveau d’un second emplacement de
réseau ; et
le stockage du deuxième bloc de stockage dans
le cache de bloc de stockage.

2. Procédé selon la revendication 1, dans lequel le se-
cond emplacement inclut un client de stockage qui
est adapté de manière à ce qu’il soit à l’origine de
requêtes de stockage.

3. Procédé selon la revendication 1, dans lequel la pre-
mière partie du jeu d’entités de système de fichiers
inclut une seconde partie de la première entité de
système de fichiers.

4. Procédé selon la revendication 1, dans lequel la pre-
mière partie du jeu d’entités de système de fichiers
inclut au moins une seconde partie d’une seconde
entité de système de fichiers.

5. Procédé selon la revendication 4, comprenant :

la sélection de la seconde entité de système de
fichiers ;
l’analyse de la seconde entité de système de
fichiers de manière à identifier une partie addi-
tionnelle du jeu d’entités de système de fichiers
qui est susceptible d’être associée à la requête
de stockage future ;
l’identification d’au moins un troisième bloc de
stockage qui correspond à la partie additionnelle
du jeu d’entités de système de fichiers ;
l’extraction du troisième bloc de stockage à par-
tir du stockage de données qui est connecté au
réseau étendu au niveau du premier emplace-
ment de réseau ;
la communication, via le réseau étendu, du troi-
sième bloc de stockage depuis le stockage de
données jusqu’au cache de bloc de stockage au
niveau du second emplacement de réseau ; et
le stockage du troisième bloc de stockage dans
le cache de bloc de stockage.

6. Procédé d’optimisation d’un accès en lecture de pro-
tocole de stockage de blocs sur un dispositif de stoc-
kage de blocs via un réseau étendu, le procédé
comprenant :

la sélection d’une première entité de base de
données parmi un jeu d’entités de base de don-
nées, dans lequel la première entité de base de
données est associée à un premier bloc de stoc-
kage demandé en requête, et dans lequel le jeu
d’entités de base de données inclut une table
de base de données ou un noeud de système
de bases de données ;
l’analyse de la première entité de base de don-
nées de manière à identifier au moins une pre-
mière partie du jeu d’entités de base de données
qui est susceptible d’être associée à au moins
une requête de stockage future, dans lequel la-
dite analyse inclut une ou plusieurs action(s) pri-
se(s) parmi :

l’identification, dans la première entité de
base de données, de références à une ou
plusieurs partie(s) du jeu d’entités de base
de données ; et
l’identification de motifs d’accès qui asso-
cient la première entité de base de données
aux une ou plusieurs parties du jeu d’entités
de base de données ;

l’identification d’au moins un deuxième bloc de
stockage qui correspond à la première partie du
jeu d’entités de base de données ;
l’extraction du deuxième bloc de stockage à par-
tir d’un stockage de données qui est connecté
au réseau étendu au niveau d’un premier em-
placement de réseau ;

39 40

EP 2 411 918 B1

22

5

10

15

20

25

30

35

40

45

50

55

la communication, via le réseau étendu, du
deuxième bloc de stockage depuis le stockage
de données jusqu’à un cache de bloc de stoc-
kage au niveau d’un second emplacement de
réseau ; et
le stockage du deuxième bloc de stockage dans
le cache de bloc de stockage.

7. Procédé selon la revendication 6, dans lequel le se-
cond emplacement inclut un client de stockage qui
est adapté de manière à ce qu’il soit à l’origine de
requêtes de stockage.

8. Procédé selon la revendication 6, dans lequel la pre-
mière partie du jeu d’entités de base de données
inclut une seconde partie de la première entité de
base de données, ou au moins une seconde partie
d’une seconde entité de base de données.

9. Procédé selon la revendication 8, comprenant :

la sélection de la seconde entité de base de
données ;
l’analyse de la seconde entité de base de don-
nées de manière à identifier une partie addition-
nelle du jeu d’entités de base de données qui
est susceptible d’être associée à la requête de
stockage future ;
l’identification d’au moins un troisième bloc de
stockage qui correspond à la partie additionnelle
du jeu d’entités de base de données ;
l’extraction du troisième bloc de stockage à par-
tir du stockage de données qui est connecté au
réseau étendu au niveau du premier emplace-
ment de réseau ;
la communication, via le réseau étendu, du troi-
sième bloc de stockage depuis le stockage de
données jusqu’au cache de bloc de stockage au
niveau du second emplacement de réseau ; et
le stockage du troisième bloc de stockage dans
le cache de bloc de stockage.

10. Support lisible par ordinateur comprenant des ins-
tructions lisibles par ordinateur qui, lorsqu’elles sont
exécutées par un ordinateur, amènent un ordinateur
à mettre en oeuvre le procédé selon l’une quelcon-
que des revendications 6 à 9.

41 42

EP 2 411 918 B1

23

EP 2 411 918 B1

24

EP 2 411 918 B1

25

EP 2 411 918 B1

26

EP 2 411 918 B1

27

EP 2 411 918 B1

28

EP 2 411 918 B1

29

EP 2 411 918 B1

30

EP 2 411 918 B1

31

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 61162463 A [0001] • WO 2008138008 A [0005]

Non-patent literature cited in the description

• NAGAPRAMOD MANDAGERE et al. GreenStor:
Application-Aided Energy-Efficient Storage, ISBN
978-0-7695-3025-3 [0005]

	bibliography
	description
	claims
	drawings
	cited references

