(19)
(11) EP 3 358 045 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
08.08.2018  Patentblatt  2018/32

(21) Anmeldenummer: 17155082.5

(22) Anmeldetag:  07.02.2017
(51) Internationale Patentklassifikation (IPC): 
C25D 3/56(2006.01)
B23K 5/18(2006.01)
C23C 4/11(2016.01)
C25D 21/14(2006.01)
C25D 17/10(2006.01)
C23C 4/06(2016.01)
C25D 21/18(2006.01)
(84) Benannte Vertragsstaaten:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
Benannte Erstreckungsstaaten:
BA ME
Benannte Validierungsstaaten:
MA MD

(71) Anmelder: Dr.Ing. Max Schlötter GmbH & Co. KG
73312 Geislingen (DE)

(72) Erfinder:
  • Wohlfarth, Volker
    89073 Ulm (DE)
  • Krauß, Ralph
    73560 Böbingen (DE)
  • Zöllinger, Michael
    73084 Salach (DE)

(74) Vertreter: Hoffmann Eitle 
Patent- und Rechtsanwälte PartmbB Arabellastraße 30
81925 München
81925 München (DE)

   


(54) VERFAHREN ZUR GALVANISCHEN ABSCHEIDUNG VON ZINK- UND ZINKLEGIERUNGSÜBERZÜGEN AUS EINEM ALKALISCHEN BESCHICHTUNGSBAD MIT REDUZIERTEM ABBAU VON ORGANISCHEN BADZUSÄTZEN


(57) Die vorliegende Erfindung betrifft ein Verfahren zur galvanischen Abscheidung von Zink- und Zinklegierungsüberzügen aus einem alkalischen Beschichtungsbad mit reduziertem Abbau von organischen Badzusätzen. Hierbei wird als Anode eine im Bad unlösliche, metallisches Mangan und/oder Manganoxid enthaltende Elektrode eingesetzt, die aus metallischem Mangan oder einer Manganhaltigen Legierung hergestellt ist, wobei die Mangan-haltige Legierung mindestens 5 Gew.% Mangan enthält, oder aus einem elektrisch leitfähigen Träger und einer darauf aufgebrachten metallisches Mangan und/oder Manganoxid enthaltenden Beschichtung hergestellt ist, oder aus einem Verbundmaterial hergestellt ist, wobei sowohl die metallisches Mangan und/oder Manganoxid enthaltende Beschichtung als auch das Verbundmaterial mindestens 5 Gew.% Mangan, bezogen auf die Gesamtmenge an Mangan, die sich aus metallischem Mangan und Manganoxid ergibt, enthält. Das erfindungsgemäße Verfahren ist besonders für die galvanische Abscheidung von Zinknickellegierungsüberzügen aus alkalischen Zinknickelbädern geeignet, da die Bildung von Cyaniden sehr effektiv unterdrückt werden kann.


Beschreibung

Technisches Gebiet



[0001] Die vorliegende Erfindung betrifft ein Verfahren zur galvanischen Abscheidung von Zink- und Zinklegierungsüberzügen aus einem alkalischen Beschichtungsbad mit Zink- und Zinklegierungselektrolyten und organischen Badzusätzen, wie z.B. Komplexbildner, Glanzbildner und Netzmittel. Des Weiteren betrifft die Erfindung die Verwendung von Materialien als Anode zur galvanischen Abscheidung eines Zink- und Zinklegierungsüberzugs aus einem alkalischen Beschichtungsbad mit Zink- und Zinklegierungselektrolyten und organischen Badzusätzen, sowie eine entsprechende galvanische Vorrichtung zur Abscheidung von Zink- und Zinklegierungsüberzügen.

Technischer Hintergrund



[0002] Alkalische Zink- und Zinklegierungsbäder werden typischerweise nicht mit löslichen Zinkanoden betrieben. Bei löslichen Zinkanoden wird das Zink während des anodischen Betriebes elektrochemisch zu Zn(II) oxidiert. Die gebildeten Zn(II)-Ionen gehen dabei mit den umgebenden Hydroxidionen den löslichen Zinkat-Komplex, Zn[(OH)4]2-, ein. Zink wird, zusätzlich zur elektrochemischen Auflösung, durch das alkalische Milieu unter Bildung von Wasserstoff zu Zn(II) oxidiert. Das bedeutet, dass sich die Zinkanode durch die obengenannte Redox-Reaktion zusätzlich chemisch auflöst, was zu einem unkontrollierten Anstieg der Zn(II)-Konzentration im Zinklegierungselektrolyten führt.

[0003] Dies bedingt zum einen eine Verringerung der Prozesssicherheit, und zum anderen die Notwendigkeit, weitere Analysen zur Bestimmung des zusätzlich gelösten Zinkgehaltes durchführen zu müssen, um das Konzentrationsverhältnis im Zinklegierungselektrolyten richtig einstellen zu können.

[0004] Daher werden alkalische Zink- und Zinklegierungsbäder in der Regel mit unlöslichen Anoden betrieben, und Zink wird häufig in einem separaten Zinklösebehälter unter Bildung von Zn(II) aufgelöst und dem Bad zudosiert.

[0005] Als Anodenmaterial kommen daher Materialien, die elektrisch leitfähig und chemisch zumindest gegenüber Basen inert sind, zum Einsatz. Dies sind unter anderem Metalle wie Nickel, Eisen, Edelstahl, Kobalt oder Legierungen der genannten Metalle. Eine weitere Möglichkeit, um beispielsweise die günstigen Eigenschaften von Nickel als Anodenmaterial zu nutzen, andererseits aber Kosten einzusparen, besteht im Einsatz galvanisch vernickelter Stahlanoden (glanzvernickelte Stahlanoden) mit Nickelauflagen von z.B. 30 µm Schichtdicke. Als Hauptreaktion erfolgt an der unlöslichen Anode die oxidative Bildung von Sauerstoff.

[0006] Beim Betrieb von alkalischen Beschichtungsbädern zur galvanischen Abscheidung eines Zink- oder Zinklegierungsüberzugs werden üblicherweise zusätzlich zum Zink- oder Zinklegierungselektrolyten auch organische Badzusätze, wie Komplexbildner, Glanzbildner und Netzmittel, eingesetzt.

[0007] Es lässt sich in der Praxis nicht vermeiden, dass an der Oberfläche der unlöslichen Anode nicht nur selektiv die Sauerstoffentwicklung erfolgt. Es tritt zum Teil auch eine ungewollte anodische Oxidation der organischen Badzusätze auf. Das bedeutet, dass aufgrund dieser Zersetzung das Konzentrationsverhältnis von Badzusatz zu Zink- oder Zinklegierungselektrolyten im alkalischen Beschichtungsbad nicht mehr stimmt, weshalb an Additiven nachdosiert werden muss. Die Prozesskosten werden im Zuge dessen unvermeidlich in die Höhe getrieben.

[0008] Durch die anodische Oxidation der organischen Badzusätze können außerdem unerwünschte Nebenprodukte, wie Oxalate, Karbonate usw., gebildet werden, die beim galvanischen Beschichtungsprozess störend wirken können.

[0009] Besonders bei alkalischen Zink- und Zinklegierungsbädern, wo mit Amin-haltigen Komplexbildnern gearbeitet wird, kann durch die unerwünschte anodische Oxidation der Amin-haltigen Additive zudem eine vermehrte Bildung von Cyaniden beobachtet werden.

[0010] Amin-haltige Komplexbildner werden beispielsweise in Beschichtungsbädern zur galvanischen Abscheidung eines Zinknickellegierungsüberzugs eingesetzt. Das Nickel wird dabei in Form von Ni(II) verwendet, welches in alkalischem Milieu mit den umgebenden Hydroxidionen einen schwerlöslichen Nickelhydroxid-Komplex bildet. Alkalische Zinknickelelektrolyte müssen daher spezielle Komplexbildner enthalten, mit denen Ni(II) bevorzugter einen Komplex eingeht als mit den Hydroxidionen, um das Nickel in Form von Ni(II) in Lösung bringen zu können. Bevorzugt werden dabei Amin-Verbindungen, wie Triethanolamin, Ethylendiamin, Diethylentetramin oder homologe Verbindungen des Ethylendiamins, wie z.B. Diethylentriamin, Tetraethylenpentamin usw., eingesetzt.

[0011] Beim Betrieb solcher Beschichtungsbäder zur Abscheidung eines Zinknickellegierungsüberzugs mit Amin-haltigen Komplexbildnern können sich im Praxiselektrolyten Werte von bis zu 1000 mg/l Cyanid einstellen, bis ein Gleichgewicht aus Neubildung und Ausschleppung erreicht wird. Die Bildung von Cyaniden ist aus mehreren Gründen nachteilig.

[0012] Bei der Entsorgung von alkalischen Zink- und Zinklegierungsbädern, sowie den Spül-Abwässern, die beim Betrieb anfallen, müssen bestimmte Grenzwerte eingehalten und überwacht werden. Ein häufig geforderter Grenzwert für die Belastung von Cyaniden in Abwässern liegt bei 1 mg/l. Aufgrund von nationalen oder regionalen Gesetzgebungen können die erlaubten Grenzwerte für die Cyanid-Belastungen in Abwässern noch unterhalb dieses Wertes liegen. Die gebildeten Cyanide müssen deshalb aufwendig entgiftet werden. Dieses geschieht in der Praxis durch Oxidation, z.B. mit Natriumhypochlorit, Wasserstoffperoxid, Natriumperoxodisulfat, Kaliumperoxomonosulfat oder ähnlichen Verbindungen. Außerdem enthält der ausgeschleppte Elektrolyt neben dem Cyanid noch weitere oxidierbare Substanzen, weshalb zur vollständigen Oxidation wesentlich mehr Oxidationsmittel verbraucht wird als sich theoretisch aus dem Cyanid-Gehalt ermitteln ließe.

[0013] Abgesehen von dem obengenannten Aspekt führt eine erhöhte Cyanid-Bildung des Weiteren zu dem Problem, dass ungewollte Komplexe mit den Badzusätzen gebildet werden können.

[0014] Aus technischer Sicht ist der Cyanid-Gehalt bei der Nutzung eines Zinknickelelektrolyten sehr nachteilig, da Nickel mit den gebildeten Cyanidionen den stabilen Tetracyanonickelatkomplex, Ni[(CN)4]2- bildet, wodurch das in diesem Komplex gebundene Nickel für die Abscheidung nicht mehr zur Verfügung steht. Da bei der laufenden Elektrolytanalyse nicht zwischen dem durch Cyanid komplexierten und den durch die Amine komplexierten Nickel unterschieden werden kann, bedeutet der Anstieg des Cyanid-Gehaltes im Elektrolyten eine Verringerung der Prozesssicherheit.

[0015] Die Abscheidung von Zinknickellegierungsüberzügen mit einem Anteil von 10-16 Gew.% Nickel bewirkt einen sehr guten Korrosionsschutz auf Bauteilen aus Eisenwerkstoffen und hat daher eine hohe Bedeutung für den technischen Korrosionsschutz. Für die Beschichtung von Bauteilen, insbesondere von Zubehörteilen für die Automobilfertigung, werden stark alkalische Elektrolyte zur Abscheidung von Zinknickellegierungsüberzügen eingesetzt, um auch auf komplexen dreidimensionalen Geometrien der zu beschichtenden Bauteile eine gleichmäßige Schichtdickenverteilung zu gewährleisten. Zum Erreichen einer vorbestimmten Korrosionsbeständigkeit muss dabei eine Mindestschichtdicke am Bauteil eingehalten werden, welche üblicherweise 5 - 10 µm beträgt.

[0016] Um die geforderte Legierungszusammensetzung von 10-16 Gew.% Nickel über den gesamten Stromdichtebereich einhalten zu können, muss im Laufe des Betriebes die Nickelkonzentration entsprechend der Cyanid-Konzentration im Elektrolyten angepasst werden, da der durch Cyanid komplexierte Anteil an Nickel nicht zur Abscheidung zur Verfügung steht. Mit der Zunahme des Cyanid-Gehaltes im Elektrolyten muss der Nickelgehalt daher entsprechend angepasst werden, um den Nickelanteil in der Schicht konstant halten zu können. Zur Aufrechterhaltung der geforderten Legierungszusammensetzung müssen außerplanmäßige Ergänzungen von Nickelsalzen zum Elektrolyten vorgenommen werden. Geeignete Ergänzungslösungen sind Nickelsalze, die eine hohe Wasserlöslichkeit aufweisen. Bevorzugt werden dazu Nickelsulfatlösungen in Kombination mit diversen Amin-Verbindungen eingesetzt.

[0017] Die Auswirkungen einer Cyanid-Konzentration von 350 mg/l in einem handelsüblichen Zinknickellegierungsbad (Zinknickellegierungsbad SLOTOLOY ZN 80, Fa. Schlötter) sind in den nachfolgenden Beispielen in Tabelle 1 dargestellt.
[Tabelle 1]
Elektrolyt Stromdichte (A/dm2) Stromausbeute (%) Legierungszusammensetzung (Gew.% Ni)
Neuansatz SLOTOLOY ZN 80 6,5 g/l Zn; 0,6 g/l Ni 2 50 14,3
0,5 86 13,2
Neuansatz SLOTOLOY ZN 80 6,5 g/l Zn; 0,6 g/l Ni, 350 mg/l CN- (660 mg/l NaCN) 2 73 8,1
0,5 83 8,9
Neuansatz SLOTOLOY ZN 80 6,5 g/l Zn; 0,6 g/l Ni, 350 mg/l CN- (660 mg/l NaCN) + 0,6 g/l Ni 2 49 13,9
0,5 80 14,6


[0018] Die obigen Versuche zeigen, dass eine bewusste Zugabe von 350 mg/l Cyanid zu einem neu angesetzten Zinknickellegierungsbad SLOTOLOY ZN 80 die Nickeleinbaurate bei einer Abscheidungsstromdichte von 2 A/dm2 von 14,3 Gew.% auf 8,1 Gew.% verringert. Um die Legierungszusammensetzung wieder in den spezifizierten Bereich von 10-16 Gew.% zu bringen, ist eine Zugabe von 0,6 g/l Nickel notwendig. Das bedeutet gegenüber dem Neuansatz eine Verdoppelung des Nickelgehaltes im Elektrolyten.

[0019] Die Anreicherung von Cyanid in einem Zinknickellegierungselektrolyten kann sich auch negativ auf das optische Erscheinungsbild der Abscheidung auswirken. Es kann im hohen Stromdichtebereich zu einer milchigverschleierten Abscheidung kommen. Diese lässt sich zum Teil durch höhere Dosierung von Glanzbildnern wieder korrigieren. Diese Maßnahme ist aber mit einem erhöhten Verbrauch an Glanzbildnern und dadurch Mehrkosten bei der Abscheidung verbunden.

[0020] Wenn die Cyanid-Konzentration in einem Zinknickellegierungselektrolyten Werte von ca. 1000 mg/l erreicht, kann es zudem notwendig werden, den Elektrolyten teilweise zu erneuern, was wiederum die Prozesskosten in die Höhe treibt. Außerdem fallen bei solchen teilweisen Baderneuerungen große Mengen an Altelektrolyten an, die aufwändig entsorgt werden müssen.

Literatur



[0021] Im Stand der Technik gibt es einige Ansatzpunkte, um die vorstehend beschriebene Problematik zu lösen:

In EP 1 344 850 B1 wird ein Verfahren beansprucht, bei dem der Kathodenraum und der Anodenraum durch eine Ionenaustauschermembran abgetrennt werden. Dadurch wird verhindert, dass die Komplexbildner aus dem Kathodenraum an die Anode gelangen können. Eine Cyanid-Bildung wird dadurch verhindert. Als Anode wird eine platinierte Titananode eingesetzt. Der Anolyt ist sauer und enthält Schwefelsäure, Phosphorsäure, Methansulfonsäure, Amidosulfonsäure und/oder Phosphonsäure.



[0022] Ein ähnliches Verfahren wird in EP 1 292 724 B1 beschrieben. Hier werden ebenfalls Kathoden- und Anodenraum durch eine Ionenaustauschermembran abgetrennt. Als Anolyt wird eine Natrium- oder Kaliumhydroxidlösung eingesetzt. Als Anode wird ein Metall oder ein Metallüberzug aus der Gruppe, die aus Nickel, Kobalt, Eisen, Chrom oder Legierungen davon besteht, ausgewählt.

[0023] Bei beiden Verfahren wird die Bildung von Cyaniden reduziert. Nachteilig ist bei beiden Verfahren, dass durch den Einbau der Ionenaustauschermembranen sehr hohe Investitionskosten entstehen. Zusätzlich muss noch eine Vorrichtung für eine getrennte Kreislaufführung des Anolyten installiert werden. Der Einbau von Ionenaustauschermembranen ist bei Verfahren zur Zinknickelabscheidung außerdem nicht generell realisierbar. Zur Erhöhung der Produktivität und somit zur Senkung der Beschichtungskosten werden oftmals Hilfsanoden eingesetzt, um bei dichter Behängung der Gestelle die Schichtdickenverteilung zu optimieren. Aus technischen Gründen ist es hier nicht möglich, diese Hilfsanoden durch Ionenaustauschermembranen abzutrennen. Eine Cyanid-Bildung kann bei dieser Anwendung daher nicht vollständig vermieden werden.

[0024] EP 1 702 090 B1 beansprucht ein Verfahren, welches die Abtrennung des Kathoden- und Anodenraumes durch ein offenporiges Material vorsieht. Der Separator besteht aus Polytetrafluorethylen oder Polyolefin, wie Polypropylen oder Polyethylen. Die Porendurchmesser weisen eine Abmessung zwischen 10 nm und 50 µm auf. Im Unterschied zum Einsatz von Ionenaustauschermembranen, wo der Ladungstransport durch die Membran durch den Austausch von Kationen oder Anionen erfolgt, kann er bei Einsatz von offenporigen Separatoren nur durch den Elektrolyttransport durch den Separator erfolgen. Eine vollständige Abtrennung des Katholyten vom Anolyten ist nicht möglich. Es kann daher auch nicht vollständig verhindert werden, dass Amine an die Anode gelangen und dort oxidiert werden. Eine Cyanid-Bildung ist bei diesem Verfahren deshalb nicht vollständig auszuschließen.

[0025] Nachteilig ist bei diesem Verfahren außerdem, dass bei Einsatz von Separatoren mit sehr kleinem Porendurchmesser (z.B. 10 nm) der Elektrolytaustausch und somit der Stromtransport sehr stark behindert ist, was zu einer Überspannung führt. Obwohl die Überspannung anspruchsgemäß weniger als 5 Volt betragen soll, wäre eine Badspannung mit höchstens 5 Volt Überspannung, verglichen mit einem Verfahren, welches ohne Abtrennung von Kathoden- und Anodenraum arbeitet, dennoch nahezu verdoppelt. Dadurch ist ein wesentlich höherer Energieverbrauch bei der Abscheidung der Zinknickelschichten gegeben. Die bis zu 5 Volt höhere Badspannung bewirkt außerdem eine starke Erwärmung des Elektrolyten. Da zur Abscheidung einer konstanten Legierungszusammensetzung die Elektrolyttemperatur im Bereich von +/- 2°C konstant gehalten werden soll, muss bei Anlegen einer höheren Badspannung der Elektrolyt durch erheblichen Aufwand gekühlt werden. Zwar ist beschrieben, dass der Separator auch einen Porendurchmesser von 50 µm betragen kann, was die Bildung von Überspannung möglicherweise verhindert, jedoch erlaubt der relativ große Porendurchmesser wiederum einen nahezu ungehinderten Elektrolytaustausch zwischen Kathoden- und Anodenraum und kann somit die Bildung von Cyaniden nicht verhindern.

[0026] Ein ähnliches Konzept wird in der EP 1 717 353 B1 beschrieben. Der Anoden- und Kathodenraum wird dort durch eine Filtrationsmembran abgetrennt. Die Größe der Poren der Filtrationsmembran liegt im Bereich von 0,1 bis 300 nm. Ein gewisser Übertritt von Elektrolyt aus dem Kathoden- in den Anodenraum wird dabei bewusst in Kauf genommen.

[0027] Bei Verwendung bestimmter organischer Glanzbildner arbeiten Zinknickelelektrolyte nicht zufriedenstellend, wenn Membranverfahren entsprechend EP 1 344 850 oder EP 1 292 724 verwendet werden. Diese Glanzbildner benötigen offensichtlich eine anodische Aktivierung, um ihre volle Wirkung zu erzeugen. Diese Reaktion ist bei Einsatz von Filtrationsmembranen, wie in EP 1 717 353 beschrieben, gewährleistet. Allerdings bedingt das auch, dass die Bildung von Cyaniden nicht vollständig vermieden werden kann. Der Tabelle 4 der EP 1 717 353 kann entnommen werden, dass bei Einsatz der Filtrationsmembranen bei einer Badbelastung von 50 Ah/l eine Neubildung von 63 mg/l Cyanid erfolgt. Ohne Einsatz von Filtrationsmembranen erfolgt unter sonst gleichen Bedingungen eine Neubildung von 647 mg/l Cyanid. Der Einsatz der Filtrationsmembranen kann die Neubildung von Cyanid somit um ca. 90% verringern, aber nicht vollständig verhindern.

[0028] Alle vorstehend genannten Membranverfahren haben zudem den Nachteil, dass sie einen erheblichen Platzbedarf in einem Badbehälter eines Zinknickelelektrolyten haben. Ein nachträglicher Einbau in eine bestehende Anlage ist daher aus Platzgründen meistens nicht möglich.

[0029] Ferner wird in DE 103 45 594 A1 eine Zelle zur anodischen Oxidation von Cyaniden in wässrigen Lösungen, umfassend eine Festbettanode sowie eine Kathode beschrieben, die dadurch gekennzeichnet ist, dass das Partikelbett der Anode aus Partikeln aus Mangan oder den Oxiden des Titans oder Mischungen dieser Partikel besteht. In der Offenlegungsschrift ist beschrieben, dass dieses Verfahren zur Reduzierung von Cyanometallat-Komplexen in Abwässern geeignet ist. Demnach ist es bei der Behandlung der in DE 103 45 594 A1 beschriebenen Cyanid-haltigen wässrigen Lösungen das Ziel, bereits vorhandene Cyanide und Cyanometallat-Komplexe aus dem Abwasser zu entfernen. Dies steht im Gegensatz zu der Aufgabe der vorliegenden Erfindung, bei der überhaupt erst die Entstehung von Cyaniden verhindert werden soll.

Aufgabenstellung



[0030] Die Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zur galvanischen Abscheidung von Zink- und Zinklegierungsüberzügen aus einem alkalischen Beschichtungsbad mit Zink- und Zinklegierungselektrolyten und organischen Badzusätzen zur Verfügung zu stellen, das eine verminderte anodische Oxidation und einen damit einhergehenden reduzierten Abbau der organischen Badzusätze, wie Komplexbildnern, Glanzbildnern, Netzmitteln usw., sowie eine reduzierte Bildung von unerwünschten Abbauprodukten, wie z.B. Cyaniden, bewirkt. Das erfindungsgemäße Verfahren soll es ermöglichen, ohne zusätzlichen Aufwand in bestehende alkalische Zink- und Zinklegierungsbäder integriert werden zu können, und einen deutlich wirtschaftlicheren Betrieb der Verfahren erlauben.

Lösung der Aufgabe und detaillierte Beschreibung



[0031] Die vorstehend definierte Aufgabe wird durch das Bereitstellen eines Verfahrens zur galvanischen Abscheidung von Zink- und Zinklegierungsüberzügen aus einem alkalischen Beschichtungsbad mit Zink- und Zinklegierungselektrolyten und organischen Badzusätzen gelöst, in dem als Anode eine im Bad unlösliche, metallisches Mangan und/oder Manganoxid enthaltende Elektrode eingesetzt wird, die
  1. 1) aus metallischem Mangan oder einer Mangan-haltigen Legierung hergestellt ist, wobei die Mangan-haltige Legierung mindestens 5 Gew.% Mangan enthält, oder
  2. 2) aus einem elektrisch leitfähigen Träger und einer darauf aufgebrachten metallisches Mangan und/oder Manganoxid enthaltenden Beschichtung hergestellt ist, wobei die metallisches Mangan und/oder Manganoxid enthaltende Beschichtung mindestens 5 Gew.% Mangan, bezogen auf die Gesamtmenge an Mangan, die sich aus metallischem Mangan und Manganoxid ergibt, enthält, oder
  3. 3) aus einem Verbundmaterial hergestellt ist, das metallisches Mangan und/oder Manganoxid und ein elektrisch leitfähiges Material umfasst, wobei das Verbundmaterial mindestens 5 Gew.% Mangan, bezogen auf die Gesamtmenge, die sich aus metallischem Mangan und Manganoxid ergibt, enthält.


[0032] Überraschenderweise wurde gefunden, dass sich der Einsatz von unlöslichen, metallisches Mangan und/oder Manganoxid enthaltenden Elektroden, wie oben beschrieben, sehr positiv auf die Reduzierung des Abbaus von organischen Badzusätzen, wie Komplexbildnern, Glanzbildnern, Netzmitteln usw., auswirkt. Dies ist besonders vorteilhaft in Beschichtungsbädern mit Amin-haltigen Komplexbildnern, da im Zuge des geringeren Abbaus der Amin-Verbindungen auch gleichzeitig eine deutliche Verringerung der Cyanid-Konzentration auftritt.

[0033] Spektroskopische Untersuchungen haben gezeigt, dass der maßgebliche Bestandteil für den verminderten Abbau der organischen Badzusätze, sowie der verringerten Bildung von Cyaniden, Manganoxid ist. Jedoch kann auch metallisches Mangan eingesetzt werden, da während des Betriebes als Anode im alkalischen Zink- und Zinklegierungselektrolyten in situ Manganoxide, häufig in Form eines braun-schwarzen Films, ausgebildet werden. Die gebildeten Manganoxide können dabei in unterschiedlichen Oxidationsstufen vorliegen.

[0034] Im Folgenden werden die oben aufgeführten Ausführungsformen der metallisches Mangan und/oder Manganoxid enthaltenden Elektrode näher erläutert.

Vollelektroden



[0035] Im erfindungsgemäßen Verfahren kommen Elektroden, die aus metallischem Mangan oder einer Mangan-haltigen Legierung hergestellt sind, und die sich für den Einsatz als unlösliche Anode in einem alkalischen Zink- und Zinklegierungsbad eignen, in Frage. Die Mangan-haltige Legierung wird vorzugsweise aus einer Mangan-haltigen Stahllegierung oder einer Mangan-haltigen Nickellegierung ausgewählt. Im erfindungsgemäßen Verfahren ist dabei der Einsatz einer Mangan-haltigen Stahllegierung besonders bevorzugt. Der Legierungsanteil der Mangan-haltigen Legierung weist einen Mangan-Gehalt von mindestens 5 Gew.% Mangan, bevorzugt 10 - 90 Gew.% Mangan, besonders bevorzugt 50 - 90 Gew.% Mangan auf. Kommerziell erhältliche Stahlelektroden weisen z.B. einen Mangan-Gehalt von 12 Gew.% Mangan (X120Mn12 mit der Werkstoffnr.: 1.3401) oder 50 Gew.% Mangan (Spiegeleisen) auf.

Beschichtete Trägerelektroden



[0036] Neben den obengenannten Vollelektroden, die aus metallischem Mangan oder einer Mangan-haltigen Legierung hergestellt sind, kommen auch Elektroden aus einem elektrisch leitfähigen Trägermaterial, das sich für den Einsatz als unlösliche Anode in einem alkalischen Zink- und Zinklegierungsbad eignet, mit einer darauf aufgebrachten metallisches Mangan und/oder Manganoxid enthaltenden Beschichtung in Frage. Das Trägermaterial wird vorzugsweise aus Stahl, Titan, Nickel oder Graphit ausgewählt. Im erfindungsgemäßen Verfahren ist dabei der Einsatz von Stahl als Trägermaterial besonders bevorzugt. Die metallisches Mangan und/oder Manganoxid enthaltende Beschichtung weist einen Mangan-Gehalt von mindestens 5 Gew.% Mangan, bevorzugt 10 - 100 Gew.% Mangan, besonders bevorzugt 50 - 100 Gew.% Mangan, und insbesondere bevorzugt 80 - 100 Gew.% Mangan, bezogen auf die Gesamtmenge an Mangan, die sich aus metallischem Mangan und Manganoxid ergibt, auf.

[0037] Es ist dabei nicht ausschlaggebend, wie die metallisches Mangan und/oder Manganoxid enthaltende Beschichtung auf die Oberfläche des Trägers aufgebracht wird, solange sie haftfest ist. Die metallisches Mangan und/oder Manganoxid enthaltende Beschichtung kann deshalb durch mehrere Verfahren, unter anderem durch thermisches Spritzen, Auftragsschweißen oder Gasphasenabscheidung, wie physikalische Gasphasenabscheidung (PVD von engl. physical vapor deposition) auf den Träger aufgebracht werden. Die Schichtdicke der metallisches Mangan und/oder Manganoxid enthaltenden Beschichtung ist dabei nicht ausschlaggebend, und kann je nach Verfahren einige Nanometer (z.B. mittels PVD Verfahren) bis hin zu mehreren Millimetern (z.B. mittels thermischen Spritzverfahrens) betragen.

Thermisches Spritzen



[0038] Wie oben bereits ausgeführt, kann die metallisches Mangan und/oder Manganoxid enthaltende Beschichtung durch thermisches Spritzen auf den Träger aufgebracht werden. Das zum thermischen Spritzen verwendete Mangan-haltige Beschichtungsmaterial kann dabei sowohl aus metallischem Mangan als auch aus einer Mischung, die neben metallischem Mangan Eisen und/oder Nickel enthält, bestehen.

[0039] Das zum thermischen Spritzen verwendete Mangan-haltige Beschichtungsmaterial weist dabei vorzugsweise einen Mangan-Gehalt von 80 Gew.% Mangan oder mehr, bevorzugt 90 Gew.% Mangan oder mehr, besonders bevorzugt 100 Gew.% Mangan auf.

[0040] Das Mangan-haltige Beschichtungsmaterial wird bevorzugt in einer für das thermische Spritzen geeigneten Form, beispielsweise als Pulver oder Draht, eingesetzt.

[0041] Üblicherweise werden beim thermischen Spritzen innerhalb oder außerhalb eines Spritzbrenners erhitzte an-, ab- bzw. aufgeschmolzene Spritzpartikel mittels Zerstäubergas (z.B. Druckluft oder Inertgas, wie Stickstoff und Argon) beschleunigt und auf die Oberfläche des zu beschichtenden Trägers geschleudert. Hierdurch wird, hauptsächlich durch mechanische Verklammerung, eine gute Anbindung an die Trägeroberfläche und eine haftfeste metallische Mangan- und/oder Manganoxidschicht gebildet.

[0042] Um eine besonders gute Schichthaftung auf der Oberfläche des Trägers zu erzielen, können zusätzliche Maßnahmen getroffen werden. So kann der zu beschichtende Träger beispielsweise vor dem thermischen Spritzverfahren mittels Korundstrahlen (Strahlgut ist hierbei Zirkonkorund) aufgeraut werden. Eine weitere Möglichkeit besteht im Anordnen eines zusätzlichen Haftgrundes zwischen dem Träger und der metallischen Mangan und/oder Manganoxid enthaltenden Beschichtung. Der Haftgrund kann beispielsweise aus Nickel bestehen. Durch die Verwendung eines Haftgrunds wird die Anhaftung der thermisch gespritzten Schicht auf dem Träger weiter verbessert. Ein Haftgrund wird bevorzugt flächig unmittelbar auf den Träger aufgetragen, bevor das Mangan-haltige Beschichtungsmaterial thermisch aufgespritzt wird. Der Haftgrund kann mit demselben thermischen Spritzverfahren wie die metallisches Mangan und/oder Manganoxid enthaltende Beschichtung erzeugt werden, beispielsweise Flammspritzen oder Lichtbogenspritzen. Üblicherweise wird der Haftgrund mit einer Schichtdicke von 50 - 100 µm erzeugt. Wenn ein Haftgrund verwendet wird, so wird das Mangan-haltige Beschichtungsmaterial in aller Regel unmittelbar auf den Haftgrund thermisch aufgespritzt.

[0043] Wenn kein Haftgrund verwendet wird, so wird das Mangan-haltige Beschichtungsmaterial in der Regel unmittelbar auf den zu beschichtenden Träger thermisch aufgespritzt.

[0044] Das Mangan-haltige Beschichtungsmaterial kann mittels herkömmlicher Spritzverfahren auf den Träger thermisch aufgespritzt werden. Diese sind unter anderem: Lichtbogen-Drahtspritzen, Thermo-Spray-Pulverspritzen, Flammspritzen, Hochgeschwindigkeits-Flammspritzen, Plasma-Spritzen, Autogenes Stabspritzen, Autogenes Drahtspritzen, Laserstrahlspritzen, Kaltgasspritzen, Detonationsspritzen und PTWA-Spritzen (Plasma Transferred Wire Arc). Diese Verfahren sind dem Fachmann an sich bekannt. Das Mangan-haltige Beschichtungsmaterial kann insbesondere mittels Flammspritzen oder Lichtbogenspritzen auf den Träger aufgetragen werden. Für den Einsatz eines pulverförmigen Mangan-haltigen Beschichtungsmaterials eignet sich insbesondere das Flammspritzen.

[0045] Beim Pulver-Flammspritzen wird zwischen selbstfließenden und selbsthaftenden Pulvern unterschieden. Die selbstfließenden Pulver benötigen meist zusätzlich eine thermische Nachbehandlung, wodurch die Haftung von der Spritzschicht auf dem Träger erheblich gesteigert wird. Die thermische Nachbehandlung erfolgt üblicherweise mit Acetylen-Sauerstoff-Brennern. Durch das thermische Nachbehandeln wird die Spritzschicht sowohl gas- als auch flüssigkeitsdicht, weshalb das Mangan-haltige Beschichtungsmaterial bevorzugt mittels Pulver-Flammspritzen auf den Träger aufgebracht wird.

[0046] Aus technischer Sicht können mittels obengenannter Verfahren Schichtdicken von 50 µm bis zu mehreren Millimetern auf den Träger aufgebracht werden.

[0047] Des Weiteren kann das thermische Spritzen sowohl unter Luftatmosphäre als auch unter Inertgas-Atmosphäre durchgeführt werden. Dies kann in der Regel durch die Art des Zerstäubergases geregelt werden. Bei der Verwendung von einem Inertgas, wie Stickstoff oder Argon, als Zerstäubergas wird eine Oxidation des Mangan-haltigen Beschichtungsmaterials weitgehend unterbunden. So kann beispielsweise eine Manganschicht aus metallischem Mangan oder einer Manganlegierung auf den Träger aufgebracht werden. Im erfindungsgemäßen Verfahren würden sich dann im Laufe des galvanischen Abscheidungsprozesses an der Trägeranode mit der darauf aufgebrachten metallischen Mangan- oder Manganlegierungsschicht Manganoxide bilden, welche die aktive Oberfläche darstellen. Diese können alternativ auch schon vorab auf dem Träger aufgebracht sein. Dies hat den Vorteil, dass sich die aktive Oberfläche nicht erst während des galvanischen Abscheidungsverfahrens bilden muss, sodass ein positiver Effekt, i.e. Unterdrückung der anodischen Oxidation der organischen Badzusätze, bereits nach kurzer Zeit sichtbar wird. Durch die Verwendung von z.B. Druckluft bilden sich durch die hohen Temperaturen aus dem eingesetzten Mangan-haltigen Beschichtungsmaterial Oxidationsprodukte, die an der Oberfläche des Belages mit der Schmelze erstarren und so einen haftfesten Film bilden. Das unter Luftatmosphäre gespritzte Mangan-haltige Beschichtungsmaterial enthält dann als auf dem Träger aufgebrachte Schicht neben metallischem Mangan und gegebenenfalls Eisen und/oder Nickel auch Manganoxide, sowie gegebenenfalls Eisenoxide und/oder Nickeloxide oder Kombinationen davon.

Auftragsschweißen



[0048] Neben dem thermischen Spritzverfahren kann die metallisches Mangan und/oder Manganoxid enthaltende Beschichtung auch durch Auftragsschweißen, auch Schweißplattieren genannt, aufgebracht werden. Das zum Auftragsschweißen verwendete Mangan-haltige Beschichtungsmaterial kann dabei sowohl aus metallischem Mangan als auch aus einer Mischung, die neben metallischem Mangan Eisen und/oder Nickel enthält, bestehen.

[0049] Das Mangan-haltige Beschichtungsmaterial weist dabei vorzugsweise einen Mangan-Gehalt von 80 Gew.% Mangan oder mehr, bevorzugt 90 Gew.% Mangan oder mehr, besonders bevorzugt 100 Gew.% Mangan auf.

[0050] Das Mangan-haltige Beschichtungsmaterial wird bevorzugt in einer für das Auftragsschweißen geeigneten Form, beispielsweise als Pulver, Draht, Stab, Band, Paste oder Fülldraht, eingesetzt.

[0051] Üblicherweise werden beim Auftragsschweißen sowohl das Beschichtungsmaterial als auch eine dünne Oberflächenschicht des zu beschichtenden Trägers durch geeignete Energiequellen aufgeschmolzen und metallurgisch miteinander verbunden. Durch die Diffusion und Vermischung des Beschichtungsmaterials mit dem Trägermaterial entsteht so eine haftfeste und porenfreie Schicht. Das Auftragsschweißen unterscheidet sich im Wesentlichen von dem thermischen Spritzen darin, dass die Oberfläche des Trägers beim Auftragsschweißen aufgeschmolzen wird.

[0052] Das Mangan-haltige Beschichtungsmaterial kann mittels herkömmlicher Auftragsschweiß-Verfahren auf den Träger aufgebracht werden. Geeignete Energiequellen dafür sind unter anderem: Lichtbogen, Flamme, Joulesche Wärme, Plasmastrahl, Laserstrahl und Elektronenstrahl. Diese Energiequellen sind dem Fachmann an sich bekannt.

[0053] Aus technischer Sicht können mittels obengenannter Verfahren relativ hohe Schichtdicken von 1 mm und mehr auf den Träger aufgebracht werden. Dazu wird die Energiequelle in Pendelbewegungen über den Träger geführt, wodurch das Mangan-haltige Beschichtungsmaterial dann in einzelnen Lagen aufgetragen wird.

[0054] Des Weiteren kann das Auftragsschweißen, ähnlich wie beim thermischen Spritzen auch, sowohl unter Luftatmosphäre als auch unter Inertgas-Atmosphäre, wie Stickstoff oder Argon, durchgeführt werden. Unter Inertgas-Atmosphäre kann beispielsweise eine Manganschicht aus metallischem Mangan oder einer Manganlegierung auf den Träger aufgebracht werden. Unter Luftatmosphäre bilden sich durch die hohen Temperaturen aus dem eingesetzten Mangan-haltigen Beschichtungsmaterial Oxidationsprodukte. Die unter Luftatmosphäre gebildete Schicht enthält dann neben metallischem Mangan und gegebenenfalls Eisen und/oder Nickel auch Manganoxide, sowie gegebenenfalls Eisenoxide und/oder Nickeloxide oder Kombinationen davon.

Gasphasenabscheidung



[0055] Des Weiteren kann die metallisches Mangan und/oder Manganoxid enthaltende Beschichtung auch durch Gasphasenabscheidung, wie physikalische Gasphasenabscheidung (PVD), auf den Träger aufgebracht werden.

[0056] Das zur physikalischen Gasphasenabscheidung verwendete Mangan-haltige Beschichtungsmaterial ist üblicherweise metallisches Mangan, es können aber auch andere für dieses Verfahren geeignete Mangan-haltige Feststoffe, wie Manganoxid, eingesetzt werden.

[0057] Das Mangan-haltige Beschichtungsmaterial kann mittels herkömmlicher Gasphasenabscheidungs-Verfahren auf den Träger aufgebracht werden. Die Prozesse der physikalischen Abscheidung aus der Gasphase umfassen die Verfahren: Verdampfen, wie thermisches Verdampfen, Elektronenstrahlverdampfen, Laserstrahlverdampfen und Lichtbogenverdampfen, Sputtern, und Ionenplattieren, sowie reaktive Varianten dieser Verfahren.

[0058] Üblicherweise wird beim PVD-Verfahren das Mangan-haltige Beschichtungsmaterial durch den Beschuss mit Laserstrahlen, magnetisch abgelenkten Ionen, Elektronen oder durch Lichtbogenentladung zerstäubt (z.B. beim Sputtern) oder in die Gasphase gebracht (z.B. beim Verdampfen), um sich anschließend als Mangan-haltiger Feststoff an der Oberfläche des zu beschichtenden Trägers abzuscheiden.

[0059] Damit das gasförmige Mangan-haltige Beschichtungsmaterial den zu beschichtenden Träger auch erreicht, muss das Verfahren unter reduziertem Druck von etwa 10-4 - 10 Pa durchgeführt werden.

[0060] Aus technischer Sicht können mittels PVD-Verfahren Schichtdicken von 100 nm - 2 mm auf den Träger aufgebracht werden.

Verbundanoden



[0061] Neben den Mangan-haltigen Vollelektroden und mit metallischem Mangan und/oder Manganoxid beschichteten Trägerelektroden kommen auch Elektroden, die aus einem Verbundmaterial bestehen, das metallisches Mangan und/oder Manganoxid und ein leitfähiges Material umfasst, in Frage. Als leitfähiges Material kann beispielsweise Kohlenstoff, bevorzugt Graphit, eingesetzt werden.

[0062] Das metallisches Mangan und/oder Manganoxid enthaltende Verbundmaterial weist einen Mangan-Gehalt von mindestens 5 Gew.% Mangan, bevorzugt mindestens 10 Gew.% Mangan, besonders bevorzugt mindestens 50 Gew.% Mangan, bezogen auf die Gesamtmenge an Mangan, die sich aus metallischem Mangan und Manganoxid ergibt, auf.

[0063] Die Herstellungsweise einer solchen Mangan-haltigen Verbundelektrode ist nicht speziell beschränkt. Es eignen sich daher gängige Verfahren, wie Sintern oder Pressen mit Bindemittel. Des Weiteren kann die Mangan-haltige Verbundelektrode auch durch Einlagern von metallischem Mangan oder Manganoxid in Schaummetall hergestellt werden. Diese Verfahren sind dem Fachmann an sich bekannt.

Zink- und Zinklegierungsbäder



[0064] Im erfindungsgemäßen Verfahren zur galvanischen Abscheidung eines Zink- und Zinklegierungsüberzugs aus einem alkalischen Elektrolyten sind die Zink- und Zinklegierungsbäder nicht speziell beschränkt, sofern sie alkalisch sind und organische Badzusätze, wie Komplexbildner, Glanzbildner, Netzmittel usw., enthalten.

[0065] Ein typisches Zink- und Zinklegierungsbad für das erfindungsgemäße Verfahren ist beispielsweise ein alkalisches Zinknickellegierungsbad. Ein solches Zinknickellegierungsbad wird für die Abscheidung eines Zinknickellegierungsüberzugs aus einem alkalischen Zinknickelelektrolyten auf einem als Kathode geschalteten Substrat verwendet. Dieser enthält im Neuansatz typischerweise eine Zinkionenkonzentration im Bereich von 5 bis 15 g/l, bevorzugt 6 bis 10 g/l berechnet als Zink, und eine Nickelionenkonzentration im Bereich von 0,5 bis 3 g/l, bevorzugt 0,6 bis 1,5 g/l, berechnet als Nickel. Die für die Herstellung des Zinknickelelektrolyten verwendeten Zink- und Nickelverbindungen sind nicht speziell beschränkt. Verwendbar sind beispielsweise Nickelsulfat, Nickelchlorid, Nickelsulfamat oder Nickelmethansulfonat. Besonders bevorzugt ist die Verwendung von Nickelsulfat.

[0066] Ferner enthalten die alkalischen Zink- und Zinklegierungsbäder organische Badzusätze, wie Komplexbildner, Glanzbildner, Netzmittel usw..

[0067] Insbesondere bei der Verwendung von Zinknickelelektrolyten ist die Zugabe von Komplexbildnern unvermeidlich, da das Nickel nicht amphoter ist und sich im alkalischen Elektrolyten deshalb nicht auflöst. Alkalische Zinknickelelektrolyte enthalten daher spezielle Komplexbildner für Nickel. Die Komplexbildner sind nicht speziell beschränkt, und es können jegliche bekannte Komplexbildner verwendet werden. Bevorzugt werden Aminverbindungen wie Triethanolamin, Ethylendiamin, Tetrahydroxopropylethylendiamin (Lutron Q 75), Diethylentetramin oder homologe Verbindungen des Ethylendiamins, wie z.B. Diethylentriamin, Tetraethylenpentamin usw., eingesetzt. Der Komplexbildner und/oder Mischungen dieser Komplexbildner wird/werden gewöhnlich in einer Konzentration im Bereich von 5 - 100 g/l eingesetzt, bevorzugt 10 - 70 g/l, noch bevorzugter 15 - 60 g/l.

[0068] Außerdem kommen in Zink- und Zinklegierungsbädern üblicherweise zusätzlich Glanzbildner zum Einsatz. Diese sind nicht speziell beschränkt, und es können jegliche bekannte Glanzbildner verwendet werden. Bevorzugt werden aromatische oder heteroaromatische Verbindungen, wie Benzylpyridiniumcarboxylat oder Pyridinium-N-propan-3-sulfonsäure (PPS), als Glanzbildner eingesetzt.

[0069] Des Weiteren ist der im erfindungsgemäßen Verfahren verwendete Elektrolyt basisch. Zur Einstellung des pH-Wertes kann beispielsweise, aber nicht beschränkt, Natriumhydroxid und/oder Kaliumhydroxid verwendet werden. Besonders bevorzugt ist dabei Natriumhydroxid. Der pH-Wert der wässrigen, alkalischen Lösung beträgt üblicherweise 10 oder mehr, bevorzugt 12 oder mehr, besonders bevorzugt 13 oder mehr. Gewöhnlich enthält ein Zinknickelbad daher 80 - 160 g/l Natriumhydroxid. Dies entspricht einer etwa 2 - 4 molaren Lösung.

Kathoden bzw. zu beschichtende Substrate



[0070] Das als Kathode geschaltete Substrat ist nicht speziell beschränkt, und es können jegliche bekannte Materialien, die zur Verwendung als Kathode in einem galvanischen Beschichtungsverfahren zur Abscheidung eines Zink- oder Zinklegierungsüberzugs aus einem alkalischen Elektrolyten geeignet sind, verwendet werden. Im erfindungsgemäßen Verfahren können deshalb beispielsweise Substrate aus Stahl, gehärtetem Stahl, Schmiedeguss oder Zinkdruckguss als Kathode eingesetzt werden.

[0071] Neben den vorstehend beschriebenen Verfahren betrifft die Erfindung weiterhin die Verwendung
  1. 1) von metallischem Mangan oder einer Mangan-haltigen Legierung, wobei die Mangan-haltige Legierung mindestens 5 Gew.% Mangan enthält, oder
  2. 2) von einem elektrisch leitfähigen Träger und einer darauf aufgebrachten metallisches Mangan und/oder Manganoxid enthaltenden Beschichtung, wobei die metallisches Mangan und/oder Manganoxid enthaltende Beschichtung mindestens 5 Gew.% Mangan, bezogen auf die Gesamtmenge an Mangan, die sich aus metallischem Mangan und Manganoxid ergibt, enthält, oder
  3. 3) von einem Verbundmaterial, das metallisches Mangan und/oder Manganoxid und ein elektrisch leitfähiges Material umfasst, wobei das Verbundmaterial mindestens 5 Gew.% Mangan, bezogen auf die Gesamtmenge, die sich aus metallischem Mangan und Manganoxid ergibt, enthält,
als Anode zur galvanischen Abscheidung von Zink- und Zinklegierungsüberzügen aus einem alkalischen Beschichtungsbad mit Zink- und Zinklegierungselektrolyten und organischen Badzusätzen.

[0072] Des Weiteren wird eine galvanische Vorrichtung zur Abscheidung von Zink- und Zinklegierungsüberzügen aus einem alkalischen Beschichtungsbad mit Zink- und Zinklegierungselektrolyten und organischen Badzusätzen bereitgestellt, die als Anode eine unlösliche, metallisches Mangan und/oder Manganoxid enthaltende Elektrode, wie oben beschrieben, enthält.

[0073] Die erfindungsgemäße Vorrichtung erfordert nicht, dass Anoden- und Kathodenraum durch Membranen und/oder Separatoren voneinander getrennt sind.

[0074] Im Folgenden wird die Erfindung anhand von Beispielen näher erläutert.

Beispiele


Testbeispiel 1.1



[0075] Mit dem alkalischen Zinknickelelektrolyten SLOTOLOY ZN 80 (Fa. Schlötter) wurden unter Verwendung unterschiedlicher Anodenmaterialien Belastungsversuche durchgeführt. Hierbei wurde über einen längeren Zeitraum das Abscheidungsverhalten mit einer konstanten kathodischen und anodischen Stromdichte analysiert. In Abhängigkeit der durchgesetzten Strommenge wurde der Zinknickelelektrolyt im Hinblick auf die sich an der Anode bildenden Abbauprodukte, wie z.B. Cyanid, untersucht. Zudem wurde eine Analyse der organischen Komplexbildner und Glanzbildner durchgeführt.

Versuchsbedingungen:



[0076] Der Grundbadansatz (2 Liter SLOTOLOY ZN 80) wies folgende Zusammensetzung auf:
Zn: 7,5 g/l als ZnO
Ni: 0,6 g/l als NiSO4 x 6 H2O
NaOH: 120 g/l
SLOTOLOY ZN 81: 40 ml/l (Komplexbildner-Gemisch)
SLOTOLOY ZN 82: 75 ml/l (Komplexbildner-Gemisch)
SLOTOLOY ZN 87: 2,5 ml/l (Grundglanzadditiv)
SLOTOLOY ZN 83: 2,5 ml/l (Grundglanzadditiv)
SLOTOLOY ZN 86: 1,0 ml/l (Spitzenglanzbildner)


[0077] Der obengenannte Grundbadansatz enthält: 10,0 g/l DETA (Diethylentriamin), 9,4 g/l TEA (85 Gew.% Triethanolamin), 40,0 g/l Lutron Q 75 (BASF; 75 Gew.% Tetrahydroxopropylethylendiamin) und 370 mg/l PPS (1-(3-Sulfopropyl)-pyridinium-betain).

[0078] Die Badtemperatur wurde auf 35 °C eingestellt. Die Rührbewegung während der Stromausbeuteblechbeschichtung betrug 250 bis 300 U/min. Die Rührbewegung während der Belastungsblechbeschichtung betrug dagegen 0 U/min. Die Stromdichten an der Anode, sowie an der Kathode wurden konstant gehalten. Die kathodische Stromdichte betrug dabei Ik= 2,5 A/dm2, die anodische Stromdichte betrug Ia= 15 A/dm2.

[0079] Folgende Anoden- bzw. Kathodenmaterialien wurden eingesetzt:

Kathodenmaterial: Stahlblech aus Kaltbandstahl gemäß DIN EN 10139/10140 (Qualität: DC03 LC MA RL)


Anodenmaterialien:



[0080] 

Vergleichsanode 1 : Stahl mit der Werkstoffnummer 1.0330, bzw. DC 01 (Zusammensetzung: C 0,12%; Mn 0,6%; P 0,045%; S 0,045%); kommerziell erhältlich

Vergleichsanode 2 : Glanzvernickelter Stahl; Stahl (Werkstoffnummer 1.0330) mit einer Schichtauflage von 30 µm Glanznickel (beschichtet mit SLOTONIK 20 Elektrolyt der Fa. Schlötter);
Herstellung: Siehe hierzu J. N. Unruh, Tabellenbuch Galvanotechnik, 7. Auflage, EUGEN G. LEUZE Verlag, Bad Saulgau, S.515)

Vergleichsanode 3: Stahl (Werkstoffnummer 1.0330) mit einer durch thermisches Spritzen darauf aufgebrachten Eisenoxidschicht (im Folgenden als "Fe-Oxidanode" definiert); Herstellung: Ein 2 mm dickes Stahlblech (Werkstoffnummer 1.0330) wurde entfettet, mit Glasperlen (Durchmesser 150 bis 250 µm) gestrahlt und anschließend mit Druckluft von anhaftenden Resten befreit. Das Stahlblech wurde dann zur Verbesserung des Haftgrundes mittels Lichtbogenspritzen zunächst mit Nickel thermisch bespritzt. Dabei wurde ein Nickeldraht im Lichtbogen (Temperatur am Brennerkopf 3000 bis 4000°C) abgeschmolzen und mit Druckluft (6 bar) als Zerstäubergas in einem Abstand von 15 bis 18 cm auf das Stahlblech aufgespritzt. Anschließend wurde die Eisenoxidschicht ebenfalls durch Lichtbogenspritzen aufgebracht. Dabei wurde ein Eisendraht (sogenannter Eisen-Lichtbogendraht mit 0,7 Gew.% Mn, 0,07 Gew.% C und dem Rest Fe; Durchmesser 1,6 mm) im Lichtbogen (Temperatur am Brennerkopf 3000 bis 4000°C) abgeschmolzen und mit Druckluft (6 bar) als Zerstäubergas in einem Abstand von 15 bis 18 cm auf das Stahlblech aufgespritzt. Durch schwenkende Bewegungen wurde so lange beschichtet, bis eine gleichmäßige, ca. 300 µm dicke thermisch gespritzte Eisenoxidschicht erzeugt worden ist.



[0081] Erfindungsgemäße Anode 1: Stahl (Werkstoffnummer 1.0330) mit einer durch thermisches Spritzen darauf aufgebrachten Manganoxidschicht (im Folgenden als "Mn-Oxidanode" definiert);
Herstellung: Ein 2 mm dickes Stahlblech (Werkstoffnummer 1.0330) wurde entfettet, mit Korundstrahlen (Strahlgut ist hierbei Zirkonkorund) aufgeraut und anschließend mit Druckluft von anhaftenden Resten befreit. Das Stahlblech wurde dann zur Verbesserung des Haftgrundes mittels Lichtbogenspritzen zunächst mit Nickel thermisch bespritzt. Dabei wurde ein Nickeldraht im Lichtbogen (Temperatur am Brennerkopf 3000 bis 4000°C) abgeschmolzen und mit Druckluft (6 bar) als Zerstäubergas in einem Abstand von 15 bis 18 cm auf das Stahlblech aufgespritzt. Anschließend wurde die Manganoxidschicht mittels Pulver-Flammspritzen thermisch aufgespritzt. Dabei wurde metallisches Manganpulver (-325 mesh, ≥99%ig von Sigma Aldrich) in einer Acetylen-Sauerstoff-Flamme (Temperatur der Brennerflamme betrug 3160°C) geschmolzen und mit Druckluft (maximal 3 bar) als Zerstäubergas in einem Abstand von 15 bis 20 cm auf das Stahlblech aufgespritzt. Durch schwenkende Bewegungen wurde so lange beschichtet, bis eine gleichmäßige, ca. 250 µm dicke thermisch gespritzte Manganoxidschicht erzeugt worden ist.

[0082] Nach einer durchgesetzten Strommenge von jeweils 5 Ah/l wurden nachfolgend aufgeführte Glanzbildner bzw. Feinkornzusätze dem Zinknickelelektrolyten zudosiert:

SLOTOLOY ZN 86: 1 ml (entspricht einer Zugabemenge von 1 1/10kAh)

SLOTOLOY ZN 83: 0,3 ml (entspricht einer Zugabemenge von 0,3 1/10kAh)



[0083] Nach einer durchgesetzten Strommenge von jeweils 2,5 Ah/l wurde die auf dem Abscheidungsblech (Kathode) vorhandene abgeschiedene Zinknickellegierungsmenge durch Auswaage ermittelt. Die durch die Abscheidung im Zinknickelelektrolyten fehlende Gesamtmetallmenge wurde auf 85 Gew. % Zink und 15 Gew. % Nickel umgerechnet (beispielsweise sind für eine abgeschiedene Gesamtmetallmenge von 1,0 g Zinknickellegierungsschicht 850 mg Zink und 150 mg Nickel zudosiert worden).

[0084] Das im Elektrolyten verbrauchte Zink wurde als Zinkoxid zugegeben, das verbrauchte Nickel wurde über das nickelhaltige Flüssigkonzentrat SLOTOLOY ZN 85 ergänzt. In SLOTOLOY ZN 85 sind Nickelsulfat, sowie die Amine Triethanolamin, Diethylentriamin und Lutron Q 75 enthalten (1 ml SLOTOLOY ZN 85 enthält 63 mg Nickel).

[0085] Der NaOH-Gehalt wurde nach jeweils 10 Ah/l durch Säure-Base-Titration ermittelt und jeweils auf 120 g/l eingestellt.

Versuchsdurchführung und Ergebnisse:



[0086] Es wurde jeweils nach einer durchgesetzten Strommenge von 50 Ah/l und 100 Ah/l die Menge an gebildetem Cyanid bestimmt. Die Ergebnisse der analytischen Bestimmung in Abhängigkeit der Badbelastung sind in Tabelle 2 aufgeführt.
[Tabelle 2]
Anode Anodenmaterial Cyanid-Gehalt (mg/l) nach 50 Ah/l Belastung Cyanid-Gehalt (mg/l) nach 100 Ah/l Belastung
Vergleichsanode 1 Stahlanode 116 224
Vergleichsanode 2 glanzvernickelte Stahlanode 130 234
Vergleichsanode 3 Fe-Oxidanode 195 288
Erfindungsgemäße Anode 1 Mn-Oxidanode 75 106


[0087] Die Bestimmung des Cyanids erfolgte mit dem Küvetten-Test LCK 319 für leicht freisetzbare Cyanide der Firma Dr. Lange (heute Firma Hach). Leicht freisetzbare Cyanide werden dabei durch eine Reaktion in gasförmiges HCN umgewandelt und durch eine Membran in eine Indikatorküvette überführt. Die Farbänderung des Indikators wird anschließend photometrisch ausgewertet.

[0088] Wie in Tabelle 2 gezeigt, erfolgte unter Verwendung der erfindungsgemäßen Mn-Oxidanode die geringste Bildung von Cyanid. Selbst nach einer durchgesetzten Strommenge von 100 Ah/l war der Cyanid-Gehalt unter Verwendung der erfindungsgemäßen Mn-Oxidanode verglichen mit den Vergleichsanoden 1 bis 3 nur noch halb so hoch.

[0089] Des Weiteren wurde jeweils nach einer durchgesetzten Strommenge von 50 Ah/l und 100 Ah/l die Menge an noch vorhandenen Komplexbildnern bestimmt. Die Ergebnisse der analytischen Bestimmung in Abhängigkeit der Badbelastung sind in Tabelle 3 zusammengefasst.
[Tabelle 3]
Anode Anodenmaterial Nach 50 Ah/l Belastung Nach 100 Ah/l Belastung
DETA (g/l) TEA (85 Gew.%) (g/l) Lutron Q 75 (g/l) DETA (g/l) TEA (85 Gew.%) (g/l) Lutron Q 75 (g/l)
Vergleichs anode 1 Stahlanode 7,8 9,0 41,0 7,3 9,8 45,3
Vergleichs anode 2 glanzvernickelte Stahlanode 8,0 9,1 42,1 7,0 9,4 46,9
Vergleichs anode 3 Fe-Oxidanode 7,8 8,8 41,6 6,8 8,0 43,7
Erfindungs gemäße Anode 1 Mn-Oxidanode 10,2 9,9 41,1 10,2 10,8 43,2


[0090] Wie in Tabelle 3 gezeigt, wurden unter Verwendung der erfindungsgemäßen Mn-Oxidanode deutlich weniger Amine (DETA und TEA) verbraucht. Selbst nach einer durchgesetzten Strommenge von 100 Ah/l war der Verbrauch an DETA und TEA unter Verwendung der erfindungsgemäßen Mn-Oxidanode verglichen mit den Vergleichsanoden 1 bis 3 deutlich geringer.

Testbeispiel 1.2


Versuchsbedingungen:



[0091] Testbeispiel 1.2 wurde unter den gleichen Bedingungen, wie in Testbeispiel 1.1 beschrieben, durchgeführt.

Versuchsdurchführung und Ergebnisse:



[0092] Je ein als Kathode geschaltetes, gerades Kaltbandstahlblech (DIN EN 10139/10140; Qualität: DC03 LC MA RL) mit 1 dm2 Blechoberfläche wurde unter Verwendung der Vergleichsanoden 1 bis 3, sowie der erfindungsgemäßen Mn-Oxidanode mit einem Zinknickelelektrolyten beschichtet. Dabei wurden die Stromausbeute sowie der Nickellegierungsanteil im Ausgangszustand und nach einer durchgesetzten Strommenge von 100 Ah/l bei kathodischen Stromdichten von 0,25, 2,5 und 4 A/dm2 ermittelt.

[0093] Das Ergebnis der Bestimmung von Stromausbeute und Nickellegierungsanteil in Abhängigkeit der Badbelastung ist in Tabellen 4 bis 7 aufgeführt.
[Tabelle 4]
Vergleichsanode 1 // Stahlanode
Belastung 0,25 A/dm2 2,5 A/dm2 4,0 A/dm2
  Ni [%] Sa [%] Ni [%] Sa [%] Ni [%] Sa [%]
0 Ah/l 12,2 87,2 15,4 33,7 15,6 26,7
100 Ah/l 12,8 61,9 14,0 33,8 14,6 27,2
[Tabelle 5]
Vergleichsanode 2 // glanzvernickelte Stahlanode
Beslastung 0,25 A/dm2 2,5 A/dm2 4,0 A/dm2
  Ni [%] Sa [%] Ni [%] Sa [%] Ni [%] Sa [%]
0 Ah/l 11,8 84,0 15,3 32,6 15,6 26,1
100 Ah/l 12,8 55,7 14,4 32,6 14,3 25,5
[Tabelle 6]
Vergleichsanode 3 // Fe-Oxidanode
Belastung 0,25 A/dm2 2,5 A/dm2 4,0 A/dm2
  Ni [%] Sa [%] Ni [%] Sa [%] Ni [%] Sa [%]
0 Ah/l 12,1 89,3 15,4 34,1 15,3 26,8
100 Ah/l 11,8 69,2 14,0 40,5 14,3 31,1
[Tabelle 7]
Erfindungsgemäße Anode 1 // Mn-Oxidanode
Belastung 0,25 A/dm2 2,5 A/dm2 4,0 A/dm2
  Ni [%] Sa [%] Ni [%] Sa [%] Ni [%] Sa [%]
0 Ah/l 11,7 89,7 15,1 32,4 15,4 26,5
100 Ah/l 12,9 63,4 15,0 37,5 15,3 28,6


[0094] Tabelle 7 zeigt, dass bei einem ungefähr gleichen Nickellegierungsanteil, je nach angelegter kathodischer Stromdichte, nach 100 Ah/l Belastung eine um 3 bis 8 % höhere Stromausbeute durch Verwendung der erfindungsgemäßen Mn-Oxidanode erzielt werden konnte, verglichen mit der üblicherweise als Standardanode verwendeten Vergleichsanode 2 (glanzvernickelter Stahl; siehe Tabelle 5).

[0095] Durch den Einsatz der erfindungsgemäßen Mn-Oxidanode kann somit in der Praxis in kürzerer Zeit die vorgegebene Schichtdicke auf Bauteilen erzielt werden. Dies führt zu einer deutlichen Reduktion der Prozesskosten.

Testbeispiel 1.3


Versuchsbedingungen:



[0096] Testbeispiel 1.3 wurde unter den gleichen Bedingungen, wie in Testbeispiel 1.1 beschrieben, durchgeführt.

[0097] Nach 100 Ah/l Belastung wurde die Abscheidung des Zinknickelelektrolyten mittels einem Hullzellentest nach DIN 50957 überprüft. Die Elektrolyttemperatur wurde auf 35 °C eingestellt. Es wurde eine 250 ml Hullzelle eingesetzt. Als Kathodenblech wurde Kaltbandstahl DIN EN 10139/10140 (Qualität: DC03 LC MA RL) verwendet. Der Zellstrom betrug dabei 2 A, die Beschichtungszeit lag bei 15 Minuten.

Versuchsergebnisse:



[0098] Das Ergebnis der Hullzellenbeschichtung zur Bestimmung der Optik und der Legierungsverteilung in Abhängigkeit der Badbelastung ist in Schema 1 und 2 dargestellt.

[0099] Schema 1 zeigt das Ergebnis der Versuchsbleche, welche in einem Bad beschichtet wurden, die mit Vergleichsanoden 1 bis 3 betrieben wurden. Schema 2 zeigt das Ergebnis des Versuchsblechs, welches in einem Bad beschichtet wurde, das mit der erfindungsgemäßen Mn-Oxidanode betrieben wurde.





[0100] Das Hullzellenblech, welches mit der erfindungsgemäßen Mn-Oxidanode betrieben wurde (siehe Schema 2), zeigt nach 100 Ah/l eine über den gesamten Stromdichtebereich gleichmäßige halbglänzende bis glänzende Optik, welches ein Maß für die noch vorhandenen und unzerstörten Badzusätze ist.

[0101] Die Hullzellenbleche aus den Zinknickelelektrolyten der Vergleichsanoden 1 bis 3 zeigen lediglich im Bereich < 2 A/dm2 (entspricht einem Abstand von 4 cm von der rechten Blechkante bis zur rechten Blechkante) eine halbglänzende bis glänzende Optik. Der restliche Blechbereich ist seidenmatt bis matt.

[0102] Aus den Testbeispielen 1.1 bis 1.3 ist ersichtlich, dass die Verwendung der erfindungsgemäßen Mn-Oxidanode einen positiven Effekt auf den Verbrauch von organischen Badzusätzen hat. Es hat sich gezeigt, dass die Amin-haltigen Komplexbildner, insbesondere DETA und TEA, deutlich weniger verbraucht werden, was zu einer Reduktion der Prozesskosten führt. Des Weiteren kann eine deutlich reduzierte Bildung von Cyaniden beobachtet werden. Außerdem kann nach 100 Ah/l durch die Verwendung der erfindungsgemäßen Mn-Oxidanode, je nach Stromdichte, eine 3 bis 8 % höhere Stromausbeute als mit der Vergleichsanode 2 erreicht werden, was wiederum Prozesskosten deutlich senkt. Neben den vorstehend genannten Aspekten kommt es unter Verwendung der erfindungsgemäßen Mn-Oxidanode selbst nach 100 Ah/l Belastung zu keiner verschlechterten Glanzbildung, verglichen mit dem Einsatz von Vergleichsanoden 1 bis 3.

Testbeispiel 2



[0103] Mit dem alkalischen Zinknickelelektrolyten SLOTOLOY ZN 210 (Fa. Schlötter) wurden unter Verwendung unterschiedlicher Anodenmaterialien Belastungsversuche durchgeführt. Hierbei wurde über einen längeren Zeitraum das Abscheidungsverhalten mit einer konstanten kathodischen und anodischen Stromdichte analysiert. In Abhängigkeit der durchgesetzten Strommenge wurde der Zinknickelelektrolyt im Hinblick auf die sich an der Anode bildenden Abbauprodukte, wie z.B. Cyanid, untersucht. Zudem wurde eine Analyse der organischen Komplexbildner und Glanzbildner durchgeführt.

Versuchsbedingungen:



[0104] Der Grundbadansatz (2 Liter SLOTOLOY ZN 210) wies folgende Zusammensetzung auf:
Zn: 7,5 g/l als ZnO
Ni: 1,0 g/l als NiSO4 x 6 H2O
NaOH: 120 g/l
SLOTOLOY ZN 211: 100 ml/l (Komplexbildner-Gemisch)
SLOTOLOY ZN 212: 30 ml/l (Komplexbildner-Gemisch)
SLOTOLOY ZN 215: 14 ml/l (Nickellösung)
SLOTOLOY ZN 213: 5 ml/l (Grundglanzadditiv)
SLOTOLOY ZN 216: 0,2 ml/l (Spitzenglanzbildner)


[0105] Der obengenannte Grundbadansatz enthält: 22,4 g/l TEPA (Tetraethylenpentamin), 10,2 g/l TEA (85 Gew.%) und 5,4 g/l Lutron Q 75 (BASF; 75 Gew.% Tetrahydroxopropylethylendiamin) und 75 mg/l PPS (1-(3-Sulfopropyl)-pyridinium-betain).

[0106] Die Badtemperatur wurde auf 28 °C eingestellt. Die Rührbewegung während der Belastungsblechbeschichtung betrug 0 U/min. Die Stromdichten an der Anode, sowie an der Kathode wurden konstant gehalten. Die kathodische Stromdichte betrug dabei Ik= 2,0 A/dm2, die anodische Stromdichte betrug Ia= 12,5 A/dm2.

[0107] Folgende Anoden- bzw. Kathodenmaterialien wurden eingesetzt:

Kathodenmaterial: Stahlblech aus Kaltbandstahl gemäß DIN EN 10139/10140 (Qualität: DC03 LC MA RL)


Anodenmaterialien:



[0108] 

Vergleichsanode 2: Glanzvernickelter Stahl; Stahl (Werkstoffnummer 1.0330) mit einer Schichtauflage von 30 µm Glanznickel (beschichtet mit SLOTONIK 20 Elektrolyt der Fa. Schlötter);
Herstellung: Siehe hierzu J. N. Unruh, Tabellenbuch Galvanotechnik, 7. Auflage, EUGEN G. LEUZE Verlag, Bad Saulgau, S.515)

Erfindungsgemäße Anode 2 : Stahl mit der Werkstoffnummer 1.3401 bzw. X120Mn12 (Zusammensetzung: C 1,2%; Mn 12,5%; Si 0,4%; P 0,1%; S 0,04%); kommerziell erhältlich (im Folgenden als "Manganlegierungsanode" definiert)



[0109] Nach einer durchgesetzten Strommenge von jeweils 2,5 Ah/l wurden nachfolgend aufgeführte Glanzbildner bzw. Feinkornzusätze dem Zinknickelelektrolyten zudosiert:

SLOTOLOY ZN 214: 0,25 ml (entspricht einer Zugabemenge von 1 1/10kAh)

SLOTOLOY ZN 216: 0,1 ml (entspricht einer Zugabemenge von 0,4 1/10kAh)



[0110] Nach einer durchgesetzten Strommenge von jeweils 2,5 Ah/l wurde die auf dem Abscheidungsblech (Kathode) vorhandene abgeschiedene Zinknickellegierungsmenge durch Auswaage ermittelt. Die durch die Abscheidung im Zinknickelelektrolyten fehlende Gesamtmetallmenge wurde auf 85 Gew. % Zink und 15 Gew. % Nickel umgerechnet (beispielsweise sind für eine abgeschiedene Gesamtmetallmenge von 1,0 g Zinknickellegierungsschicht 850 mg Zink und 150 mg Nickel zudosiert worden).

[0111] Das im Elektrolyten verbrauchte Nickel wurde über das nickelhaltige Flüssigkonzentrat SLOTOLOY ZN 215 ergänzt. Im SLOTOLOY ZN 215 sind Nickelsulfat, sowie die Amine Triethanolamin, Tetraethylenpentamin und Lutron Q 75 enthalten (1 ml SLOTOLOY ZN 215 enthält 70 mg Nickel).

[0112] Der NaOH-Gehalt wurde nach jeweils 10 Ah/l durch Säure-Base-Titration ermittelt und jeweils auf 120 g/l eingestellt.

[0113] Um während des gesamten Beschichtungszeitraums den Zinkgehalt im Zinknickelelektrolyten möglichst konstant zu halten, wurden stromlos entsprechend Zinkpellets in den Elektrolyten eingebracht. Hierbei kommt es aufgrund der Alkalität des Elektrolyten zur Zinkauflösung. Der Zinkgehalt wurde hierbei auch regelmäßig analytisch mittels Titration im Labor analysiert.

Versuchsdurchführung und Ergebnisse:



[0114] Es wurde nach einer durchgesetzten Strommenge von 50 Ah/l die Menge an gebildetem Cyanid bestimmt.
Die Ergebnisse der analytischen Bestimmung in Abhängigkeit der Badbelastung sind in Tabelle 8 aufgeführt.
[Tabelle 8]
Anode Anodenmaterial Cyanid-Gehalt (mg/l) nach 50 Ah/l Belastung
Vergleichsanode 2 glanzvernickelte Stahlanode 98
Erfindungsgemäße Anode 2 Manganlegierungsanode 37


[0115] Die Bestimmung des Cyanids erfolgte mit dem Küvetten-Test LCK 319 für leicht freisetzbare Cyanide der Firma Dr. Lange (heute Firma Hach). Leicht freisetzbare Cyanide werden dabei durch eine Reaktion in gasförmiges HCN umgewandelt und durch eine Membran in eine Indikatorküvette überführt. Die Farbänderung des Indikators wird anschließend photometrisch ausgewertet.

[0116] Wie in Tabelle 8 gezeigt, erfolgte unter Verwendung der erfindungsgemäßen Manganlegierungsanode eine deutlich geringere Cyanid-Bildung, als bei der Vergleichsanode 2 (glanzvernickelter Stahl).

[0117] Des Weiteren wurde nach einer durchgesetzten Strommenge von 50 Ah/l die Menge an noch vorhandenen Additiven bestimmt. Die Ergebnisse der analytischen Bestimmung der organischen Badzusätze, i.e. Amin-haltige Komplexbildner, wie TEPA und TEA, sowie Glanzbildner, wie PPS, in Abhängigkeit der Badbelastung sind in Tabelle 9 gezeigt.
[Tabelle 9]
Anode Anodenmaterial Nach 50 Ah/l Belastung
TEPA (g/l) TEA (85 Gew.%) (g/l) Lutron Q 75 (g/l) PPS (mg/l)
Vergleichsanode 2 glanzvernickelte Stahlanode 25,8 13,6 6,1 111
Erfindungsgemäße Anode 2 Manganlegierungsanode 29,6 15,6 6,2 148


[0118] Wie in Tabelle 9 gezeigt, wurden unter Verwendung der erfindungsgemäßen Manganlegierungsanode deutlich weniger Amine (TEPA und TEA), sowie PPS verbraucht, als unter Verwendung der Vergleichsanode 2. Diese Stoffe wurden folglich an der erfindungsgemäßen Manganlegierungsanode weniger stark oxidiert.

Testbeispiel 3



[0119] Die erfindungsgemäße Manganlegierungsanode wurde mit der Vergleichsanode 2 aus hochglanzvernickeltem Stahl auch im Technikum verglichen. Dazu wurde zunächst ein neuangesetzter SLOTOLOY ZN 80 (Fa. Schlötter) Elektrolyt für ca. 6 Monate mit vier Standardanoden aus hochglanzvernickeltem Stahl (Vergleichsanode 2) betrieben, dabei wurde ein Cyanid-Gehalt im Zinknickelelektrolyten von 372 mg/l erreicht. Nach 6 Monaten wurden die Standardanoden aus hochglanzvernickeltem Stahl durch erfindungsgemäße Manganlegierungsanoden ausgetauscht. Der Zinknickelelektrolyt wurde anschließend weitere 4 Monate unter gleichen Bedingungen belastet.

Versuchsbedingungen:



[0120] Der Grundbadansatz (200 Liter SLOTOLOY ZN 80) wies folgende Zusammensetzung auf:
Zn: 7,5 g/l als ZnO
Ni: 0,6 g/l als NiSO4 x 6 H2O
NaOH: 110 g/l
SLOTOLOY ZN 81: 40 ml/l (Komplexbildner-Gemisch)
SLOTOLOY ZN 82: 75 ml/l (Komplexbildner-Gemisch)
SLOTOLOY ZN 87: 2,5 ml/l (Grundglanzadditiv)
SLOTOLOY ZN 83: 2,5 ml/l (Grundglanzadditiv)
SLOTOLOY ZN 86: 1,0 ml/l (Spitzenglanzbildner)


[0121] Der obengenannte Grundbadansatz enthält: 10,0 g/l DETA (Diethylentriamin), 9,4 g/l TEA (85 Gew.% Triethanolamin), 40,0 g/1 Lutron Q 75 (BASF; 75 Gew.% Tetrahydroxopropylethylendiamin) und 370 mg/l PPS (1-(3-Sulfopropyl)-pyridinium-betain).

[0122] Das Badvolumen betrug 200 Liter. Die Badtemperatur wurde auf 33 °C eingestellt. Die Stromdichten an der Anode, sowie an der Kathode wurden konstant gehalten. Die kathodische Stromdichte betrug dabei Ik= 2,5 A/dm2, die anodische Stromdichte betrug Ia= 25 A/dm2. Die monatliche Badbelastung betrug 25000 Ah.

[0123] Folgende Anoden- bzw. Kathodenmaterialien wurden eingesetzt:

Kathodenmaterial: Stahlblech aus Kaltbandstahl gemäß DIN EN 10139/10140 (Qualität: DC03 LC MA RL)


Anodenmaterialien:



[0124] 

Vergleichsanode 2: Glanzvernickelter Stahl; Stahl (Werkstoffnummer 1.0330) mit einer Schichtauflage von 30 µm Glanznickel (beschichtet mit SLOTONIK 20 Elektrolyt der Fa. Schlötter);
Herstellung: Siehe hierzu J. N. Unruh, Tabellenbuch Galvanotechnik, 7. Auflage, EUGEN G. LEUZE Verlag, Bad Saulgau, S.515)

Erfindungsgemäße Anode 2: Stahl mit der Werkstoffnummer 1.3401 bzw. X120Mn12 (Zusammensetzung: C 1,2%; Mn 12,5%; Si 0,4%; P 0,1% ; S 0,04%); kommerziell erhältlich (im Folgenden als "Manganlegierungsanode" definiert)



[0125] Die Belastung im Technikum erfolgte unter Praxisbedingungen, d.h. dass die Badzusätze, Metalle und die Natronlauge kontinuierlich nachdosiert wurden.

[0126] Folgende Dosiermengen an Glanzbildnern bzw. Feinkornzusätzen wurden dem Zinknickelelektrolyten nach einer durchgesetzten Strommenge von jeweils 5 Ah/l zudosiert:

Beim Betrieb mit glanzvernickelten Stahlanoden (Vergleichsanode 2):

SLOTOLOY ZN 86: 100 ml (entspricht einer Zugabemenge von 1 1/10kAh)

SLOTOLOY ZN 83: 60 ml (entspricht einer Zugabemenge von 0,6 1/10kAh)

Beim Betrieb mit erfindungsgemäßen Manganlegierungsanoden (erfindungsgemäße Anode 2):

SLOTOLOY ZN 86: 60 ml (entspricht einer Zugabemenge von 0,6 1/10kAh)

SLOTOLOY ZN 83: 60 ml (entspricht einer Zugabemenge von 0,6 1/10kAh)



[0127] Die Dosiermenge an Zusatz SLOTOLOY ZN 86 wurde hier bewusst reduziert, da der Zusatzabbau an den erfindungsgemäßen Manganlegierungsanoden geringer ist.

[0128] Das im Elektrolyten verbrauchte Nickel wurde über das nickelhaltige Flüssigkonzentrat SLOTOLOY ZN 85 ergänzt. Im SLOTOLOY ZN 85 sind Nickelsulfat, sowie die Amine Triethanolamin, Diethylentriamin und Lutron Q 75 enthalten (1 ml SLOTOLOY ZN 85 enthält 63 mg Nickel). Die notwendige Menge an Nickel wurde hierbei mittels geeigneter Analysenverfahren ermittelt (z.B. ICP, AAS).

[0129] Um während des gesamten Beschichtungszeitraums den Zinkgehalt im Zinknickelelektrolyten möglichst konstant zu halten, wurden stromlos entsprechend Zinkpellets in den Elektrolyten eingebracht. Hierbei kommt es aufgrund der Alkalität des Elektrolyten zur Zinkauflösung. Der Zinkgehalt wurde hierbei auch regelmäßig analytisch mittels Titration im Labor analysiert.

[0130] Um während des gesamten Beschichtungszeitraums den Gehalt an Natriumhydroxid im Elektrolyten möglichst konstant zu halten, wurde hierbei regelmäßig (nach je 5 Ah/l Belastung) der Gehalt an Natriumhydroxid analytisch mittels Titration im Labor analysiert und entsprechend ergänzt.

[0131] Außerdem wurde überschüssiges Karbonat entfernt. Dem Fachmann ist bekannt, dass bei längerem Betrieb des Elektrolyten der Karbonat-Gehalt im Bad ansteigt. Um diesen konstant auf einem Wert von kleiner 60 g/l Natriumkarbonat halten zu können, wurde mittels sogenannter Ausfriergeräte das Karbonat in regelmäßigen Abständen abgetrennt.
Unter Praxisbedingungen erfolgt eine gewisse Verdünnung des Elektrolyten durch Ausschleppungsverluste und durch das notwendige Ausfrieren von Karbonat.

Versuchsdurchführung und Ergebnisse:



[0132] Der neuangesetzte SLOTOLOY ZN 80 Elektrolyt, welcher mit vier Standardanoden aus hochglanzvernickeltem Stahl (Vergleichsanode 2) betrieben wurde, wies nach ca. 6 Monaten einen Cyanid-Gehalt von 372 mg/l auf. Nach dieser Zeit wurden die Standardanoden aus hochglanzvernickeltem Stahl durch erfindungsgemäße Manganlegierungsanoden ausgetauscht (in Tabelle 10 als "Start" definiert). Der Zinknickelelektrolyt wurde anschließend weitere 4 Monate unter gleichen Bedingungen belastet. In einem Abstand von je einem Monat wurde der Einfluss der erfindungsgemäßen Manganlegierungsanoden auf den Cyanid-Gehalt und die organischen Badzusätze untersucht.

[0133] Die Ergebnisse der analytischen Bestimmung von Cyanid, sowie den organischen Badzusätzen in Abhängigkeit der Badbelastung sind in Tabelle 10 aufgeführt.
[Tabelle 10]
Datum Cyanid (mg/l) Zink (g/l) Nickel (g/l) NaOH (g/l) DETA (g/l) TEA (85 Gew.) (g/l) Lutron Q 75 (g/l) SLOTO -LOY ZN 86 (ml/l) PPS (mg/l)
Start 372 6,5 1,1 107 6,5 9,7 18,1 1,5 555
nach 1 Monat 206 6,9 0,9 109 9,3 11,7 20,2 1,3 481
nach 2 Monaten 92 6,5 0,94 108 11 14,9 14,9 1,5 555
nach 3 Monaten 18 6,7 1,0 102 11,8 18,1 12,8 1,2 444
nach 4 Monaten 23 7,5 1,1 101 12,8 21,4 14,9 1,4 518


[0134] Die Bestimmung des Cyanids erfolgte mit dem Küvetten-Test LCK 319 für leicht freisetzbare Cyanide der Firma Dr. Lange (heute Firma Hach). Leicht freisetzbare Cyanide werden dabei durch eine Reaktion in gasförmiges HCN umgewandelt und durch eine Membran in eine Indikatorküvette überführt. Die Farbänderung des Indikators wird anschließend photometrisch ausgewertet.

[0135] Aus Tabelle 10 ist zu erkennen, dass mit den erfindungsgemäßen Manganlegierungsanoden der Cyanid-Gehalt im Elektrolyten innerhalb des Versuchszeitraumes (4 Monate) deutlich absinkt.

[0136] Während des Betriebs mit den erfindungsgemäßen Manganlegierungsanoden stieg der Glanzgrad der abgeschiedenen Schicht in dem Maße an, wie der Cyanid-Gehalt abgenommen hat.

[0137] Unter der Prämisse, über den gesamten Versuchsverlauf einen gleichbleibenden Glanzgrad der abgeschiedenen galvanischen Schicht zu erhalten, konnte deshalb die Zudosierung der Feinkorn- und Glanzzusätze, wie PPS, deutlich reduziert werden, da weniger Feinkorn- und Glanzzusatz verbraucht wurde. Daher konnte der Zusatz SLOTOLOY ZN 86, welcher PPS enthält, von einer Zugabemenge von 100 ml während des Betriebes mit Vergleichsanoden 2, auf 60 ml durch die Verwendung der erfindungsgemäßen Manganlegierungsanoden gesenkt werden.

[0138] Des Weiteren ist zu erkennen, dass die Amine DETA und TEA unter Verwendung der erfindungsgemäßen Manganlegierungsanoden weniger verbraucht werden, als bei den Vergleichsanoden 2.

[0139] Dies sind zwei Argumente, welche für einen reduzierten Additivabbau durch den Einsatz der erfindungsgemäßen Manganlegierungsanode sprechen. Ein nicht unerheblicher Kostenvorteil bei den Prozesskosten kann somit durch den reduzierten Verbrauch an organischen Bestandteilen realisiert werden.

Testbeispiel 4



[0140] Mit dem alkalischen Zinknickelelektrolyten SLOTOLOY ZN 80 (Fa. Schlötter) wurden unter Verwendung unterschiedlicher Anodenmaterialien Belastungsversuche durchgeführt. Hierbei wurde über einen längeren Zeitraum das Abscheidungsverhalten mit einer konstanten kathodischen und anodischen Stromdichte analysiert. In Abhängigkeit der durchgesetzten Strommenge wurde der Zinknickelelektrolyt im Hinblick auf die sich an der Anode bildenden Abbauprodukte, wie z.B. Cyanid, untersucht. Zudem wurde eine Analyse der organischen Komplexbildner und Glanzbildner durchgeführt.

Versuchsbedingungen:



[0141] Der Grundbadansatz (2 Liter SLOTOLOY ZN 80) wies folgende Zusammensetzung auf:
Zn: 7,5 g/l als ZnO
Ni: 0,6 g/l als NiSO4 x 6 H2O
NaOH: 120 g/l
SLOTOLOY ZN 81: 40 ml/l (Komplexbildner-Gemisch)
SLOTOLOY ZN 82: 75 ml/l (Komplexbildner-Gemisch)
SLOTOLOY ZN 87: 2,5 ml/l (Grundglanzadditiv)
SLOTOLOY ZN 83: 2,5 ml/l (Grundglanzadditiv)
SLOTOLOY ZN 86: 1,0 ml/l (Spitzenglanzbildner)


[0142] Der obengenannte Grundbadansatz enthält: 10,0 g/l DETA (Diethylentriamin), 9,4 g/l TEA (85 Gew.% Triethanolamin), 40,0 g/l Lutron Q 75 (BASF; 75 Gew.% Tetrahydroxopropylethylendiamin) und 370 mg/l PPS (1-(3-Sulfopropyl)-pyridinium-betain).

[0143] Die Badtemperatur wurde auf 35 °C eingestellt. Die Rührbewegung während der Stromausbeuteblechbeschichtung betrug 250 bis 300 U/min. Die Rührbewegung während der Belastungsblechbeschichtung betrug dagegen 0 U/min. Die Stromdichten an der Anode, sowie an der Kathode wurden konstant gehalten. Die kathodische Stromdichte betrug dabei Ik= 2,5 A/dm2, die anodische Stromdichte betrug Ia= 15 A/dm2.

[0144] Folgende Anoden- bzw. Kathodenmaterialien wurden eingesetzt:

Kathodenmaterial: Stahlblech aus Kaltbandstahl gemäß DIN EN 10139/10140 (Qualität: DC03 LC MA RL)


Anodenmaterialien:



[0145] Vergleichsanode 2: Glanzvernickelter Stahl; Stahl (Werkstoffnummer 1.0330) mit einer Schichtauflage von 30 µm Glanznickel (beschichtet mit SLOTONIK 20 Elektrolyt der Fa. Schlötter);
Herstellung: Siehe hierzu J. N. Unruh, Tabellenbuch Galvanotechnik, 7. Auflage, EUGEN G. LEUZE Verlag, Bad Saulgau, S.515)

[0146] Erfindungsgemäße Anode 3: Stahl (Werkstoffnummer 1.0330) mit einer durch thermisches Spritzen darauf aufgebrachten Mangan-Eisen-Oxidschicht (im Folgenden als "Mn-Fe-Oxidanode" definiert);
Herstellung: Ein 2 mm dickes Stahlblech (Werkstoffnummer 1.0330) wurde entfettet, mit Korundstrahlen (Strahlgut ist hierbei Zirkonkorund) aufgeraut und anschließend mit Druckluft von anhaftenden Resten befreit. Das Stahlblech wurde dann zur Verbesserung des Haftgrundes mittels Lichtbogenspritzen zunächst mit Nickel thermisch bespritzt. Dabei wurde ein Nickeldraht im Lichtbogen (Temperatur am Brennerkopf 3000 bis 4000°C) abgeschmolzen und mit Druckluft (6 bar) als Zerstäubergas in einem Abstand von 15 bis 18 cm auf das Stahlblech aufgespritzt. Anschließend wurde die Mangan-Eisen-Oxidschicht mittels Pulver-Flammspritzen thermisch aufgespritzt. Als Beschichtungsmaterial wurde eine Mischung aus 90 Gew.% metallischem Manganpulver (-325 mesh, ≥99%ig von Sigma Aldrich) und 10 Gew.% metallischem Eisenpulver (-325 mesh, 97%ig von Sigma Aldrich) verwendet. Es wurde dabei darauf geachtet, dass die beiden Pulver vor dem thermischen Spritzvorgang homogen miteinander vermischt wurden. Anschließend wurde die metallische Mangan-Eisen-Mischung in einer Acetylen-Sauerstoff-Flamme (Temperatur der Brennerflamme betrug 3160°C) geschmolzen und mit Druckluft (maximal 3 bar) als Zerstäubergas in einem Abstand von 15 bis 20 cm auf das Stahlblech aufgespritzt. Durch schwenkende Bewegungen wurde so lange beschichtet, bis eine gleichmäßige, ca. 250 µm dicke thermisch gespritzte Mangan-Eisen-Oxidschicht erzeugt worden ist.

[0147] Erfindungsgemäße Anode 4: Stahl (Werkstoffnummer 1.0330) mit einer durch thermisches Spritzen darauf aufgebrachten Mangan-Nickel-Oxidschicht (im Folgenden als "Mn-Ni-Oxidanode" definiert);
Herstellung: Ein 2 mm dickes Stahlblech (Werkstoffnummer 1.0330) wurde entfettet, mit Korundstrahlen (Strahlgut ist hierbei Zirkonkorund) aufgeraut und anschließend mit Druckluft von anhaftenden Resten befreit. Das Stahlblech wurde dann zur Verbesserung des Haftgrundes mittels Lichtbogenspritzen zunächst mit Nickel thermisch bespritzt. Dabei wurde ein Nickeldraht im Lichtbogen (Temperatur am Brennerkopf 3000 bis 4000°C) abgeschmolzen und mit Druckluft (6 bar) als Zerstäubergas in einem Abstand von 15 bis 18 cm auf das Stahlblech aufgespritzt. Anschließend wurde die Mangan-Nickel-Oxidschicht mittels Pulver-Flammspritzen thermisch aufgespritzt. Als Beschichtungsmaterial wurde eine Mischung aus 80 Gew.% metallischem Manganpulver (-325 mesh, ≥99%ig von Sigma Aldrich) und 20 Gew.% metallischem Nickelpulver (-325 mesh, ≥99%ig von Alfa Aesar) verwendet. Es wurde dabei darauf geachtet, dass die beiden Pulver vor dem thermischen Spritzvorgang homogen miteinander vermischt wurden. Anschließend wurde die metallische Mangan-Nickel-Mischung in einer Acetylen-Sauerstoff-Flamme (Temperatur der Brennerflamme betrug 3160°C) geschmolzen und mit Druckluft (maximal 3 bar) als Zerstäubergas in einem Abstand von 15 bis 20 cm auf das Stahlblech aufgespritzt. Durch schwenkende Bewegungen wurde so lange beschichtet, bis eine gleichmäßige, ca. 250 µm dicke thermisch gespritzte Mangan-Nickel-Oxidschicht erzeugt worden ist.

[0148] Nach einer durchgesetzten Strommenge von jeweils 5 Ah/l wurden nachfolgend aufgeführte Glanzbildner bzw. Feinkornzusätze dem Zinknickelelektrolyten zudosiert:

SLOTOLOY ZN 86: 1 ml (entspricht einer Zugabemenge von 1 1/10kAh)

SLOTOLOY ZN 83: 0,3 ml (entspricht einer Zugabemenge von 0,3 1/10kAh)



[0149] Nach einer durchgesetzten Strommenge von jeweils 2,5 Ah/l wurde die auf dem Abscheidungsblech (Kathode) vorhandene abgeschiedene Zinknickellegierungsmenge durch Auswaage ermittelt. Die durch die Abscheidung im Zinknickelelektrolyten fehlende Gesamtmetallmenge wurde auf 85 Gew. % Zink und 15 Gew. % Nickel umgerechnet (beispielsweise sind für eine abgeschiedene Gesamtmetallmenge von 1,0 g Zinknickellegierungsschicht 850 mg Zink und 150 mg Nickel zudosiert worden). Das im Elektrolyten verbrauchte Zink wurde als Zinkoxid zugegeben, das verbrauchte Nickel wurde über das nickelhaltige Flüssigkonzentrat SLOTOLOY ZN 85 ergänzt. In SLOTOLOY ZN 85 sind Nickelsulfat, sowie die Amine Triethanolamin, Diethylentriamin und Lutron Q 75 enthalten (1 ml SLOTOLOY ZN 85 enthält 63 mg Nickel).

[0150] Der NaOH-Gehalt wurde nach jeweils 10 Ah/l durch Säure-Base-Titration ermittelt und jeweils auf 120 g/l eingestellt.

Versuchsdurchführung und Ergebnisse:



[0151] Es wurde nach einer durchgesetzten Strommenge von 50 Ah/l die Menge an gebildetem Cyanid bestimmt.
Die Ergebnisse der analytischen Bestimmung in Abhängigkeit der Badbelastung sind in Tabelle 11 aufgeführt.
[Tabelle 11]
Anode Anodenmaterial Cyanid-Gehalt (mg/l) nach 50 Ah/l Belastung
Vergleichsanode 2 glanzvernickelte Stahlanode 130
Erfindungsgemäße Anode 3 Mn-Fe-Oxidanode 42
Erfindungsgemäße Anode 4 Mn-Ni-Oxidanode 75


[0152] Die Bestimmung des Cyanids erfolgte mit dem Küvetten-Test LCK 319 für leicht freisetzbare Cyanide der Firma Dr. Lange (heute Firma Hach). Leicht freisetzbare Cyanide werden dabei durch eine Reaktion in gasförmiges HCN umgewandelt und durch eine Membran in eine Indikatorküvette überführt. Die Farbänderung des Indikators wird anschließend photometrisch ausgewertet.

[0153] Wie in Tabelle 11 gezeigt, erfolgte unter Verwendung der erfindungsgemäßen Anoden 3 und 4 eine deutlich geringere Cyanid-Bildung als bei der Vergleichsanode 2 (glanzvernickelter Stahl).

[0154] Des Weiteren wurde nach einer durchgesetzten Strommenge von 50 Ah/l die Menge an noch vorhandenen Additiven bestimmt. Die Ergebnisse der analytischen Bestimmung der organischen Badzusätze, d.h. Amin-haltige Komplexbildner, wie DETA und TEA sowie Lutron Q 75, in Abhängigkeit der Badbelastung sind in Tabelle 12 gezeigt.
[Tabelle 12]
Anode Anodenmaterial Nach 50 Ah/l Belastung
DETA (g/l) TEA (85 Gew.%) (g/l) Lutron Q 75 (g/l)
Vergleichsanode 2 glanzvernickelte Stahlanode 8, 0 9,1 42,1
Erfindungsgemäße Anode 3 Mn-Fe-Oxidanode 10,0 9,8 41,7
Erfindungsgemäße Anode 4 Mn-Ni-Oxidanode 9,8 9,7 41,5


[0155] Wie in Tabelle 12 gezeigt, wurden unter Verwendung der erfindungsgemäßen Anoden 3 und 4 deutlich weniger Amine (DETA und TEA) verbraucht als unter Verwendung der Vergleichsanode 2. Diese Stoffe wurden folglich an den erfindungsgemäßen Anoden 3 und 4 weniger stark oxidiert und müssen deshalb in geringerem Maße nachdosiert werden. Dies bietet einen nicht unerheblichen Kostenvorteil bei den Prozesskosten.


Ansprüche

1. Verfahren zur galvanischen Abscheidung von Zink- und Zinklegierungsüberzügen aus einem alkalischen Beschichtungsbad mit Zink- und Zinklegierungselektrolyten und organischen Badzusätzen, das als Anode eine im Bad unlösliche, metallisches Mangan und/oder Manganoxid enthaltende Elektrode einsetzt, worin die Elektrode

1) aus metallischem Mangan oder einer Mangan-haltigen Legierung hergestellt ist, wobei die Mangan-haltige Legierung mindestens 5 Gew.% Mangan enthält, oder

2) aus einem elektrisch leitfähigen Träger und einer darauf aufgebrachten metallisches Mangan und/oder Manganoxid enthaltenden Beschichtung hergestellt ist, wobei die Mangan und/oder Manganoxid enthaltende Beschichtung mindestens 5 Gew.% Mangan, bezogen auf die Gesamtmenge an Mangan, die sich aus metallischem Mangan und Manganoxid ergibt, enthält, oder

3) aus einem Verbundmaterial hergestellt ist, das metallisches Mangan und/oder Manganoxid und ein elektrisch leitfähiges Material umfasst, wobei das Verbundmaterial mindestens 5 Gew.% Mangan, bezogen auf die Gesamtmenge, die sich aus metallischem Mangan und Manganoxid ergibt, enthält.


 
2. Verfahren nach Anspruch 1, worin die Mangan-haltige Legierung aus einer Mangan-haltigen Stahllegierung oder einer Mangan-haltigen Nickellegierung ausgewählt ist.
 
3. Verfahren nach einem der Ansprüche 1 und 2, worin die Mangan-haltige Legierung 10 - 90 Gew.% Mangan, besonders bevorzugt 50 - 90 Gew.% Mangan enthält.
 
4. Verfahren nach Anspruch 1, worin der elektrisch leitfähige Träger aus Stahl, Titan, Nickel oder Graphit ausgewählt ist.
 
5. Verfahren nach einem der Ansprüche 1 und 4, worin die metallisches Mangan und/oder Manganoxid enthaltende Beschichtung durch thermisches Spritzen von metallischem Mangan oder einer Mischung von metallischem Mangan mit Eisen und/oder Nickel, auf dem Träger aufgebracht ist.
 
6. Verfahren nach einem der Ansprüche 1 und 4, worin die metallisches Mangan und/oder Manganoxid enthaltende Beschichtung durch Auftragsschweißen von metallischem Mangan oder einer Mischung von metallischem Mangan mit Eisen und/oder Nickel, auf dem Träger aufgebracht ist.
 
7. Verfahren nach einem der Ansprüche 1 und 4, worin die metallisches Mangan und/oder Manganoxid enthaltende Beschichtung durch Gasphasenabscheidung auf dem Träger aufgebracht ist.
 
8. Verfahren nach einem der Ansprüche 1 und 4 bis 7, worin die metallisches Mangan und/oder Manganoxid enthaltende Beschichtung 10 - 100 Gew.% Mangan, besonders bevorzugt 50 - 100 Gew.% Mangan, und insbesondere bevorzugt 80 - 100 Gew.% Mangan, bezogen auf die Gesamtmenge an Mangan, die sich aus metallischem Mangan und Manganoxid ergibt, enthält.
 
9. Verfahren nach Anspruch 1, wobei das elektrisch leitfähige Material des Verbundmaterials Kohlenstoff, bevorzugt Graphit, ist.
 
10. Verfahren nach einem der Ansprüche 1 und 9, worin das Verbundmaterial mindestens 10 Gew.% Mangan, besonders bevorzugt mindestens 50 Gew.% Mangan enthält.
 
11. Verfahren nach einem der Ansprüche 1 bis 10, worin der Zinklegierungselektrolyt ein Zinknickelelektrolyt ist.
 
12. Verfahren nach einem der Ansprüche 1 bis 11, worin das alkalische Beschichtungsbad organische Badzusätze in Form Amin-haltiger Komplexbildner umfasst.
 
13. Verwendung von metallischem Mangan oder einer Mangan-haltigen Legierung, wie in einem der Ansprüche 1 bis 3 definiert, oder einem elektrisch leitfähigen Träger mit einer darauf aufgebrachten metallisches Mangan und/oder Manganoxid enthaltenden Beschichtung, wie in einem der Ansprüche 1 und 4 bis 8 definiert, oder einem Verbundmaterial, das metallisches Mangan und/oder Manganoxid und ein elektrisch leitfähiges Material umfasst, wie in einem der Ansprüche 1, 9 und 10 definiert, als Anode zur galvanischen Abscheidung von Zink- und Zinklegierungsüberzügen aus einem alkalischen Beschichtungsbad mit Zink- und Zinklegierungselektrolyten und organischen Badzusätzen.
 
14. Galvanische Vorrichtung zur Abscheidung von Zink- und Zinklegierungsüberzügen aus einem alkalischen Beschichtungsbad mit Zink- und Zinklegierungselektrolyten und organischen Badzusätzen, die als Anode eine unlösliche, metallisches Mangan und/oder Manganoxid enthaltende Elektrode, wie in einem der Ansprüche 1-10 definiert, umfasst.
 





Recherchenbericht









Recherchenbericht




Angeführte Verweise

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE



Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente