(19)
(11) EP 2 788 989 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
19.09.2018 Bulletin 2018/38

(21) Application number: 12824875.4

(22) Date of filing: 06.12.2012
(51) International Patent Classification (IPC): 
G21G 1/00(2006.01)
(86) International application number:
PCT/NL2012/050856
(87) International publication number:
WO 2013/085383 (13.06.2013 Gazette 2013/24)

(54)

RADIONUCLIDE GENERATOR HAVING FIRST AND SECOND ATOMS OF A FIRST ELEMENT

RADIONUKLIDERZEUGER MIT ERSTEN UND ZWEITEN ATOMEN EINES ERSTEN ELEMENTS

GÉNÉRATEUR DE RADIONUCLÉIDES COMPRENANT UN PREMIER ET UN SECOND ATOME D'UN PREMIER ÉLÉMENT


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 06.12.2011 NL 2007925

(43) Date of publication of application:
15.10.2014 Bulletin 2014/42

(73) Proprietor: Technische Universiteit Delft
2628 CN Delft (NL)

(72) Inventors:
  • BODE, Peter
    2600 AA Delft (NL)
  • WOLTERBEEK, Hubertus Theodoor
    2600 AA Delft (NL)
  • DE VRIES, Daniel Justin
    2600 AA Delft (NL)
  • DE BRUIN, Marcelis
    2641 CX Pijnacker (NL)

(74) Representative: Vogels, Leonard Johan Paul 
Octrooibureau Los en Stigter B.V. Weteringschans 96
1017 XS Amsterdam
1017 XS Amsterdam (NL)


(56) References cited: : 
US-A- 4 782 231
US-B1- 6 716 353
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF THE INVENTION



    [0001] The invention is in the field of a radionuclide generator.

    BACKGROUND OF THE INVENTION



    [0002] A radionuclide is an atom with an unstable nucleus, which is a nucleus characterized by excess energy available to be imparted either to a newly created radiation particle within the nucleus or to an atomic electron. The radionuclide, in this process, undergoes radioactive decay, and emits one or more of the following; photons, electron, positron, or alpha particles, directly or indirectly. These particles constitute ionizing radiation. Radionuclides occur naturally, and can also be artificially produced.

    [0003] The number of radionuclides is uncertain. Some nuclides are stable and some decay. The decay is characterized by a half-life. Including artificially produced nuclides, more than 3300 nuclides are known (including ∼3000 radionuclides), including many more (> ∼2400) that have decay half-lives shorter than 60 minutes. This list expands as new radionuclides with very short half-lives are identified.

    [0004] Radionuclides are often referred to by chemists and physicists as radioactive isotopes or radioisotopes. Radioisotopes with suitable half-lives play an important part in a number of constructive technologies (for example, nuclear medicine).

    [0005] Radionuclide generators are devices in which a (daughter) radionuclide is generated from its parent precursor radionuclide and is optionally separated therefrom. The parent is usually produced in a nuclear reactor, which is a complex and expensive system. A typical example is the technetium-99m generator used in nuclear medicine. The parent produced in the reactor is molybdenum-99.

    [0006] US 4,782,231 recites a standard component 99mTC elution generator useful for medical purposes. The invention further provides for efficient generation of 99mTC radionuclides from medium neutron flux irradiation of molybdenum in a natural isotopic mixture.

    [0007] The generator of US 4,782,231 and similar generators are not relevant to the present invention. US 4,782,231 recites standard chemical separation of two radionuclides of chemically different elements.

    [0008] Radionuclides are used in two major ways: for their chemical properties and as sources of radiation. Radionuclides of familiar elements such as carbon can serve as tracers because they are assumed to be chemically identical to the nonradioactive nuclides, so almost all chemical, biological, and ecological processes treat them in the same way.

    [0009] In nuclear medicine, radioisotopes are used for diagnosis, treatment, and research. Radioactive tracers emitting gamma rays or positrons can provide diagnostic information about a person's internal anatomy and the functioning of specific organs. This is used in some forms of tomography: single-photon emission computed tomography (SPECT) and positron emission tomography (PET) scanning.

    [0010] Radioisotopes are also a method of treatment in hemopoietic forms of tumors; the success for treatment of solid tumors has been limited. More powerful gamma sources sterilize syringes and other medical equipment.

    [0011] Other uses are e.g. in biochemistry, genetics, and food preservation.

    [0012] In gamma de-excitation, a nucleus gives off excess energy, by emitting a gamma ray. The element is not changed to another element in the process (no nuclear transmutation is involved) .

    [0013] Various examples of use of radionuclides exist.

    [0014] For instance, according to current practice, 177Lu (half-life 6.7 d) is produced by a neutron activation of stable 176Yb containing targets according to the nuclear reaction 176Yb (n,γ)177Yb(β-)177Lu. Subsequently, the 177Lu is chemically separated from the target 176Yb and parent radionuclide 177Yb, and a no-carrier added product of high specific activity is obtained. This approach exists next to a previously employed production route wherein activation of stable 176Lu containing targets takes place, which result by the nuclear reaction 176Lu (n,γ) 177Lu+177mLu in a mixture of the radionuclides 177Lu and 177mLu. The presence of the long-lived (161 d) radionuclide 177mLu - which production can not be prevented- is a strong drawback of this approach for application in nuclear medicine; moreover, the presence of 176Lu atoms of the target material result in a lower specific radioactivity.

    [0015] In order to emphasize relevance of provision of radionuclides, currently 500 patients per year are treated in Erasmus Medical Centre (EMC) in The Netherlands alone. The EMC purchases 2 batches of 1 Ci 177Lu per week.

    [0016] Some problems with state of the art processes relate amongst others to:
    1. a) Availability of 177Lu 'on demand' of a medical centre is limited. Therefore there is a need for regular purchase of new amounts of 177Lu. The supply however may be interrupted, e.g. due to break-down of a supplier facility.
    2. b) Production of no-carrier added 177Lu without the need of irradiating isotopically enriched 176Yb and associated chemical separations is not possible.


    [0017] Medical centers depend e.g. on application of 177Lu-PRRT (peptide receptor radiation therapy) on the market availability and operationally of nuclear production reactors. It is noted that recently, research reactors have broken down unexpectedly, and that reactors have scheduled maintenance times as well.

    [0018] Up till now, Medical centers have to regularly purchase new amounts of 177Lu and depend in this on the availability at the market and reactor schedules and -operation c) Irradiation of isotopically enriched 176Yb and chemical separations, is not done 'on demand' of a specific medical centre.

    [0019] Disadvantages mentioned for specific examples such as 177Lu are in principle also applicable to other radionuclides or isotopes.

    [0020] The present invention therefore relates to a method of providing a radionuclide generator, the generator, products comprising said generator, and use thereof, which overcomes one or more of the above disadvantages, without jeopardizing functionality and advantages.

    SUMMARY OF THE INVENTION



    [0021] The present invention relates in a first aspect to a method for production of a long-lived radioisotope generator capable of yielding high specific, and/or carrier-free, radioactivity according to claim 1, a long-lived radioisotope generator, a product comprising said radioisotope generator, a single amount, a kit, and use thereof.

    [0022] The present invention is particularly suited for production of a 177mLu-177Lu generator, as well as production of 44mSc, 127mTe, 129mTe, 137mCe, and 186mRe. The examples below also specifically relate to the aforementioned. It is noted that in principle the example of the 177mLu-177Lu generator is equally well applicable to other examples mentioned, and by no means limited to the 177mLu-177Lu example.

    [0023] The present invention solves one or more of the above mentioned problems. The risk of lack of market availability and operational disruption of nuclear reactors is limited to a large extent; the present invention provides for on demand delivery of radio isotopes in a required amount for a significant longer period of time. In the case of Lu the period is extended from a multiple of 6.7 days (the half-life of 177Lu) to a multiple of 160 days (the half-life of 177mLu), in other words an increase by a factor of about 25. A similar improvement is obtained for other atoms, specifically the ones mentioned above.

    [0024] Further the need for a carrier is reduced or absent.

    [0025] Therefore the present invention provides a generator with high specific activity. The specific activity is significantly increased, typically by at least a factor of 10, compared to chemically identical atoms, such as in an example 177mLu and 176Lu where the increase factor is at least 100.

    [0026] As indicated above the present invention provides a long-lived radioisotope generator. Long-lived is relative to the half-life of a daughter nuclide. The increase in generator life time is typically at least a factor 2, i.e. being useful two times longer, although a factor of more than 1000 is also achievable.

    [0027] The present invention provides for production of high specific activity no-carrier added isotopes, such as 177Lu, without a need of irradiating an isotopically enriched target, such as 176Yb, and depending on the isotope without a need of associated chemical separations thereof. The present invention is therefore amongst others easier, e.g. in terms of process steps, and as a consequence is available on-demand, contrary to most prior art isotopes, which have to be purchased.

    [0028] It is noted that the invention relates to a generator comprising first and second radionuclides of the same chemical element: isotopes of the same chemical element have in principle the same chemical behavior and therefore can not normally be separated by conventional chemical methods; in an aspect, the invention provides separation.

    [0029] The present invention provides medical centers with an easy option to apply the present isotopes, such as 177Lu-PRRT, largely without being dependent on e.g. the market availability and operational schedule of nuclear reactors.

    [0030] The present invention provides continuous production of a, in an example 177mLu-177Lu, radionuclide generator of in the example 177Lu (half-life 6.7 d) from a parent (in the example 177mLu (half-life 160 d)) during a prolonged period, in the example at least half a year after availability of the generator. Moreover, an eluted radio isotope, e.g. 177Lu, is no-carrier added.

    [0031] Prior art techniques provide availability of an once-only amount of a radioisotope, such as 177Lu, from e.g. a neutron irradiated amount of in the example 176Lu or 176Yb, whereas the present invention enables e.g. a 177mLu-177Lu generator in which at desired intervals, amounts of daughter radioisotope e.g. 177Lu can be removed from a given amount of parent isotope e.g. 177mLu.

    [0032] Specifically the present generator provides in an example no-carrier added isotopes, having high specific activity. Such is required for various applications.

    [0033] Under suited experimental conditions, the present radionuclide generator results in an assured availability of radionuclides of high specific radioactivity for an extended period of time e.g. dependent on the half-life of the parent radionuclide instead of the half-life of the daughter radionuclide.

    [0034] Further, there are no disadvantages of the present process apart from the necessary entrance to a neutron source coupled to a radiochemical infrastructure.

    DETAILED DESCRIPTION OF THE INVENTION



    [0035] The present invention relates in a first aspect to a method for production of a long-lived radioisotope, optionally incorporated into a generator, and capable of yielding no carrier added high specific activity according to claim 1.

    [0036] In an example of the present method activating is performed by one or more of the following methods: neutron reaction, such as by bombarding by neutrons, proton reaction, photonuclear reactions, such as gamma- or X-ray, alpha particle reaction, and ion beam reaction.

    [0037] It is noted that various routes starting from a target may lead to the present invention in that first and second atoms of a single element according to the invention are obtained. Typically activating is performed in well protected environments, thereby reducing a risk of contamination of the environment with radioisotopes, such as in nuclear reactors. In the present invention there is some preference for using smaller particles, such as indicated above, such as neutrons and protons.

    [0038] In an example the bombardment of the target compound with neutrons occurs in a reactor, whereas according to another example the bombardment occurs outside the reactor in a neutron beam or in a proton beam from e.g. a cyclotron.

    [0039] In an example of the present method target atoms, such as naturally occurring or isotopically enriched atoms, and method of production, are selected from the group comprising 176Lu atoms, 58Co atoms, 80Br atoms, 187Re atoms, 232Th atoms, and 198Hg atoms.
    The following are examples of production routes for the first (parent) atoms listed:

    44mSc: 45Sc(2,2n)44mSc and 44Ca(p,n)44mSc

    80mBr: 79Br(n,γ)80mBr, 81Br(n,2n)80mBr and 80Se(p,n)80mBr

    121mSn: 120Sn(n,γ)121mSn, 122Sn(n,2n)121mSn, 121Sb(n,p)121mSn and 235U(n,f)121mSn

    121mTe: 120Te(n,γ)121mTe, 122Te(n,2n)121mTe and 121Sb(p,n)12mTe

    127mTe: 126Te(n,γ)127mTe, 128Te(n,2n)127mTe, 127I(n,p)127mSn and 235U(n,f)127mTe

    129mTe: 128Te(n,γ)129mTe, 130Te(n,2n)129mTe, 132Xe(n,α)129mTe and 235U(n,f)129mTe

    137mCe: 136Ce(n,γ)137mCe, 138Ce(n,2n)137mCe, 138La(p,2n)137mCe and 139La(p,3n)137mCe

    177mLu: 176Lu(n,γ)177mLu and 177Hf(n,p)177mLu

    186mRe: 185Re(n,γ)186mRe, 187Re(n,2n)186mRe, 186W(p,n)186mRe and 186Os(n,p)186mRe

    192mIr: 191Ir(n,γ)192mIr, 193Ir(n,2n)192mIr, 192Os(p,n)192mIr and 192Pt(n, p)192mIr

    198mAu: 197Au(n,γ)198mAu, 198Pt(p,n)198mAu and 198Hg(n,p)198mAu 242mAm: 241Am(n,γ)242Am.



    [0040] It is therefore noted that various routes starting from a target may lead to the present invention in that first and second atoms of a single element according to the invention are obtained.

    [0041] In an example of the present method first atoms are selected from the group comprised of; 44mSc atoms, 80mBr atoms, 121mSn atoms, 121mTe atoms, 127mTe atoms, 129mTe atoms, 137mCe atoms, 177mLu atoms, 186mRe atoms, 192mIr atoms, 198mAu atoms, and 242mAm atoms, preferably 177mLu atoms, 44mSc, 127mTe, 129mTe, 137mCe, and 186mRe. The decay characteristics of these parent/daughter atoms are all experimentally found to be useful (e.g. in a medical / research sense).

    [0042] In an example of the present method second atoms are selected in accordance with first atoms from the group comprised of; 44Sc atoms, 80Br atoms, 121Sn atoms, 121Te atoms, 127Te atoms, 129Te atoms, 137Ce atoms, 177Lu atoms, 186Re atoms, 192Ir atoms, 198Au atoms, and 242Am atoms, such as 177Lu atoms.

    [0043] It is noted that the following improvements in terms of increased life (long lived) are obtained. For 44mSc atoms the half-life is about 15 times longer than for 44Sc atoms. For 80mBr atoms the half-life is about 15 times longer than for 80Br atoms atoms. For 121mSn atoms the half-life is about 17800 times longer than for 121Sn atoms. For 121mTe atoms the half-life is about 9 times longer than for 121Te atoms. For 127mTe atoms the half-life is about 280 times longer than for 127Te atoms. For 129mTe atoms the half-life is about 695 times longer than for 129Te atoms. For 137mCe atoms the half-life is about 4 times longer than for 137Ce atoms. For 177mLu atoms the half-life is about 25 times longer than for 177Lu atoms. For 186mRe atoms the half-life is about 2X107 times longer than for 186Re atoms. For 192mIr atoms the half-life is about 1100 times longer than for 192Ir atoms. For 198mAu atoms the half-life is about 0.8 times longer than for 198Au atoms. For 242mAm atoms the half-life is about 7.7X104 times longer than for 242Am atoms.

    [0044] The present method further comprises a step of separating the first atoms under formation of second atoms, preferably by chemical separation.

    [0045] The separation is obtained according to the invention by taking advantage of the emission of a highly converted gamma-ray in the decay of parent atoms. It is believed that this emission results in an Auger cascade in which the orbital electrons are ejected from their shells. Consequently, a variety of highly positively charged daughter atoms are formed. The Coulomb repulsion between these atomic fragments may, in the case of a chemical compound, result in the rupturing of chemical bonds between compound and daughter atoms, and as a consequence these daughter atoms will be separated from both the target compound and the parent radionuclide. In a further example a similar mechanism may occur when target, parent and daughter atoms are present as a solid, e.g. a solid layer. The present invention results in a specific radioactivity of daughter which is typically at least a factor of 100 higher than if the daughter is not separated from the target.

    [0046] Accordingly the present invention relates to a process for the production of no-carrier added daughter atoms, such as 177Lu atoms, of high specific radioactivity, characterized in that atoms, such as 176Lu atoms, are bombarded with neutrons resulting in formation of radioactive atoms, such as 177mLu (half-life 160 d), and radioactive 177Lu (half-life 6.7 d); the latter formed by direct production from 176Lu as well as a decay product of 177mLu), all incorporated in the target. The radioactive 177Lu atoms separate by bond rupture from the 176Lu and 177mLu atoms contained in the target.

    [0047] In an example, the radionuclide generator comprises the following; the neutron activated 176Lu plus its reaction products, 177mLu and 177Lu to e.g. a solution. The solution is mixed with another solvent to which only the 177Lu is transferred from the mixture of radioisotopes. Similar examples are envisaged for the other examples mentioned.

    [0048] In an example a generator, such as a 177mLu-177Lu generator, is provided loaded with 0.02-500 Ci radio isotope, such as from 0.5-250 Ci, such as from 1-100 Ci, such as 2-50 Ci, such as with 177mLu. Such a generator can in an example provide 7-8 batches of radio isotope, such as 177Lu, with activities varying from 175 - 0.001 Ci during a period of 7-8 months. For a weekly consumption as described above, the EMC would need 2-4 177mLu-177Lu generators (procured sequentially over 2-4 weeks) for having a continuous weekly availability of 177Lu during a period of 7-8 months rather than purchase 80 batches of 177Lu over the same period, which is a clear advantage.

    [0049] The liquid used may be of an oxidizing nature and or have some ionic strength in order to facilitate the collection of the second (daughter) atoms. This liquid may be selected such that it can be used in chemical separation of second (daughter) atoms from any other chemical impurity. In the case of the 177Lu, this could be the removal of 177Hf.

    [0050] This bond rupture continues also after completion of the irradiation, as soon as 177Lu is formed by the decay of 177mLu. The separated 177Lu radioactive atoms are removed from the said chemical compound or matrix by a chemical process with high selectivity for 177Lu compared to the chemically identical 175/176Lu atoms and parent radionuclide 177mLu. After this removal, new 177Lu atoms are formed from the decay of 177mLu, and the procedure of removal of 177Lu can be repeated after sufficient formation time. A 177mLu-177Lu radionuclide generator is thus created, allowing the regular removal of amounts of 177Lu from a single amount of 177mLu.

    [0051] It is noted that isotopes of the same chemical element have the same chemical behavior and therefore can not normally be separated by conventional chemical methods.

    [0052] In an example of the present method the second atoms are separated into a liquid medium, such as a gas, a liquid, and supercritical fluid, or a combination thereof.

    [0053] The liquid medium should be capable of receiving daughter atoms. If used directly in a subsequent application, the liquid medium should be acceptable within that application as well, e.g. non-toxic, resembling body fluid, etc.

    [0054] In an example of the present method, the liquid medium preferably is water and comprises one or more solutes, such as salts, acids, bases, adjuvants, saccharides, and stabilizers.

    [0055] Such liquid medium may be adapted to mimic e.g. a body fluid, e.g. in terms of typical concentrations of solutes therein.

    [0056] The present invention relates in a second aspect to a long-lived, high specific activity and/or carrier-free radioisotope generator according to claim 8.

    [0057] It is noted that dimensions of the generator can be adapted, e.g. increasing or decreasing a size thereof, thereby potentially controlling the amount of radioisotope being released. In this respect also the amount of liquid provided to the generator, surface of the generator, etc., can be adapted.

    [0058] The present invention relates in a third aspect to a product comprising the long-lived, high specific activity and/or carrier-free radioisotope generator according to the invention.

    [0059] In an example of the present product the radioisotope generator:

    is present on a surface, and/or

    is present in a liquid, and/or

    is present in a matrix, and/or

    is present in a chemical compound, and/or

    is present in a complex, and/or combinations thereof.



    [0060] In an example the generator is present having a large surface area and a small volume, e.g. as a layer of 1 atom thick (∼100 pm) -10 µm, such as 1 nm -2 µm. Thereby release of daughter atoms is improved.

    [0061] As such as supporting layer/structure may be provided, such as a chemically inert layer, a zeolite, etc. Even further the generator may be present in a compound, such as a chemical compound capable of forming (chemical) bonds with the daughter and parent atoms, and optionally with the target atoms, or likewise in a complex. The generator may also be present in a liquid, such as water, a gas, such as nitrogen, and the like.

    [0062] In an example of the present product the radioisotope generatoris present on a chemically inert surface, such as an inner surface of a tube like structure, a surface of a particle, is present dissolved in a liquid, is present in a 3D- and/or 2D-matrix, such as a zeolite, is in a chemical compound, such as in an organometallic compound, is in a complex, such as in a complex with one or more organic molecules, in a complex with one or more inorganic molecules, and combinations thereof.

    [0063] In an example of the present product it comprises
    a tube, the tube comprising an inner surface, being formed of a chemically inert material, such as glass, Teflon, a suitable polymer, silicon, a metal such as copper, tantalum, titanium, metal alloy, or a combination thereof,
    an inlet for providing a liquid into the tube,
    an outlet for releasing the liquid from the tube,
    a protection surrounding the tube for preventing radiation from effecting the environment, such as a lead comprising protection, and
    a long-lived, high specific activity or carrier-free radioisotope generator inside the tube.

    [0064] Through the inlet typically a liquid is provided to the generator. The liquid collects the daughter radionuclide.

    [0065] After collecting a sufficient amount of radioisotope the liquid is released through the outlet. The amount released per unit time can be calculated, e.g. in order to determine residence time. Similar, a continuous flow of liquid may be provided, typically at a low flow rate, providing liquid comprising the daughter radionuclide. The flow rate may be from 0.1 ml/h-50 ml/h. Therewith a controllable amount of radio-isotope can be provided.

    [0066] The present invention relates in a fourth aspect to a kit comprising a product according to the invention.

    [0067] In an example the kit comprises the above generator. Further the kit may comprise a liquid, such as 0.1 - 1000 mL per single amount to be obtained. Preferably the liquid comprises further components, such as the above solutes. As such the obtained single amount may be directly used for its intended (final) purpose. The kit may further comprise a syringe, such as a 10-250 ml syringe. Typically also gloves are supplied. The kit may further comprise a storage kit. In an example the kit is substantially free of microorganisms.

    [0068] The present invention relates in a fifth aspect to a product according to the invention for the preparation of a medicament, such as for use in therapy, such as peptide receptor radiation therapy.

    [0069] The invention is further detailed by the accompanying figures, which are exemplary and explanatory of nature and are not limiting the scope of the invention. To the person skilled in the art it may be clear that many variants, being obvious or not, may be conceivable falling within the scope of protection, defined by the present claims.

    FIGURES



    [0070] The invention although described in detailed explanatory context may be best understood in conjunction with the accompanying figures.
    Figure 1-2 show a schematic representation of an example of a generator (such as the product of the claims).

    DETAILED DESCRIPTION OF THE DRAWINGS / FIGURES



    [0071] Figure 1 shows a schematic representation of a generator. Therein a tube (1) is shown, the tube comprising an inner surface, being formed of a chemically inert material, such as glass, Teflon, a suitable polymer, silicon, a metal such as copper, tantalum, titanium, metal alloy, or a combination thereof. Further an inlet (2) is shown for providing a liquid into the tube. A typical inner dimension of the inlet is .01-10 mm, such as 0.3-5 mm. Also the inlet is of a chemically inert material. Possibly it may also comprise a protection layer. Further an outlet (3) is shown for releasing the liquid from the tube. The outlet and inlet typically have similar properties. In order to protect the environment from radiation optionally a protection (6) surrounding the tube is present, such as a lead comprising protection. The product further comprises a long-lived, high specific activity or carrier-free radioisotope generator inside the tube. The generator can be in any suitable form, such as described above.

    [0072] Figure 2 shows details of a generator.

    [0073] In Figure 2a a section of a plated tube is shown comprising element A: a deposited layer of first atoms (monoatomic or multiple layers); the layer may include nonradioactive atoms of the same element); element B: a chemically inert surface (e.g. glass, tantalum, silicon, etc.), and element C: a structural material; this material may include a shielding material (e.g. lead).

    [0074] In figure 2b a further example is given, wherein the deposited layer comprises spherical particles or the like, typically particles having a diameter of 0.2-10 nm.

    [0075] In figure 2c the generator is filled with plated beads, having a similar composition as above.


    Claims

    1. Method for production of a long-lived radioisotope generator capable of yielding high specific, and/or carrier-free, radioactivity, comprising the steps of:

    (a) providing a target,

    (b) activating the target thereby obtaining a radioisotope generator, the radioisotope generator comprising

    (i) radioactive first atoms (parent) of a first element having a first half-life, the first atoms being in a metastable state,

    (ii) second atoms (daughter) of the first element being radioactive having a second half-life, the second atoms being in a second state, such as the ground state, wherein the second atom is a daughter of the first parent atom, which daughter is formed by emission of a highly converted gamma-ray transition, such as by E2, E3, E4, E5, M2, M3, M4, M5, or combination thereto, and separating the first atoms (parent) of the first element under formation of second atoms (daughter) of the first element.


     
    2. Method according to claim 1, comprising the step of
    (c) incorporating the activated target, including first atoms, second atoms, and inactive target atoms, by electrochemical or physical deposition onto an inert surface, and/or wherein the first half-life is at least 2 times longer than the second half-life, preferably at least 5 times longer, even more preferably at least 10 times longer, such as at least 25 times longer, and/or
    wherein activating is performed by one or more of the following methods: neutron reaction, proton reaction, photonuclear reactions, such as gamma- or X-ray, alpha particle reaction, and ion beam reaction.
     
    3. Method according to claims 1 or 2; wherein target atoms, such as naturally occurring or isotopically enriched atoms, and method of production, are selected from the group comprising 176Lu atoms, 59Co atoms, 187Re atoms, 232Th atoms, 45Sc atoms, 44Ca atoms, 79Br atoms, 81Br atoms, 80Se atoms, 120Sn atoms, 122Sn atoms, 120Te atoms, 122Te atoms, 121Sb atoms, 126Te atoms, 128Te atoms, 127I atoms, 235U atoms, 130Te atoms, 132X eatoms, 136Ce atoms, 138Ce atoms, 138La atoms, 139La atoms, 177Hf atoms, 185Re atoms, 186W atoms, 186Os atoms, 191Ir atoms, 193Ir atoms, 192Os atoms, 192Pt atoms, 197Au atoms, 198Pt atoms, 241Am atoms, and 198Hg atoms.
     
    4. Method according to any of the preceding claims, wherein first atoms are selected from the group comprised of; 44mSc atoms, 58mCo atoms, 80mBr atoms, 121mSn atoms, 121mTe atoms, 127Sn atoms, 127mTe atoms, 129mTe atoms, 137mCe atoms, 177mLu atoms, 186mRe atoms, 192mIr atoms, 198mAu atoms, 229Ra atoms, and 242mAm atoms, preferably 177mLu, 44mSc, 127mTe, 129mTe, 137mCe, and 186mRe atoms.
     
    5. Method according to any of the preceding claims, wherein second atoms are selected in accordance with first atoms from the group comprised of; 44Sc atoms, 58Co atoms, 80Br atoms, 121Sn atoms, 121Te atoms, 127Sn atoms, 127Te atoms, 129Te atoms, 137Ce atoms, 177Lu atoms, 186Re atoms, 192Ir atoms, 198Au atoms, 224Ra atoms, 228Ra atoms, and 242Am atoms, preferably 177Lu atoms.
     
    6. Method according to any of the preceding claims, further comprising a step of:

    separating the first atoms under formation of second atoms by chemical separation, preferably

    wherein the second atoms are separated into a liquid medium, such as a gas, a liquid, and supercritical fluid, or a combination thereof.


     
    7. Method according to claim 6, wherein the liquid medium preferably is water and comprises one or more solutes, such as salts, acids, bases, adjuvants, saccharides, and stabilizers.
     
    8. Long-lived, high specific activity and/or carrier-free radioisotope generator, the radioisotope generator comprising
    target atoms, wherein target atoms, are selected from the group comprising 44Ca atoms, 45Sc atoms, 59Co atoms, 58mCo atoms, 79Br atoms, 80Se atoms, 81Br atoms, 120Sn atoms, 120Te atoms, 121Sb atoms, 122Sn atoms, 122Te atoms, 126Te atoms, 127I atoms, 127mSn atoms, 128Te atoms, 130Te atoms, 132Xe atoms, 136Ce atoms, 138Ce atoms, 138La atoms, 139La atoms, 176Lu atoms, 177Hf atoms, 185Re atoms, 186W atoms, 186Os atoms, 187Re atoms, 191Ir atoms, 192Os atoms, 192Pt atoms, 193Ir atoms 197Au atoms, 198Pt atoms, 198Hg atoms, 229Ra atoms, 232Th atoms, 235U atoms, and 241Am atoms, and

    (i) radioactive first atoms (parent) of a first element having a first half-life, the first atoms being in a metastable state,

    (ii) second atoms (daughter) of the first element being radioactive having a second half-life, the second atoms being in a second state, such as the ground state,

    wherein the second atom is a radioactive daughter of the first atom (parent), and the radioactive daughter is formed by emission of a highly converted gamma-ray, such as by E2, E3, E4, E5, M2, M3, M4, M5, or combination thereof, and
    obtained by a method according to any of claims 1-7,
    wherein first atoms are preferably selected from the group comprised of; 44mSc atoms, 80mBr atoms, 121mSn atoms, 121mTe atoms, 127mTe atoms, 129mTe atoms, 137mCe atoms, 177mLu atoms, 186mRe atoms, 192mIr atoms, 198mAu atoms, and 242mAm atoms.
     
    9. Product comprising the long-lived, high specific activity and/or carrier-free, radioisotope generator according to claim 8.
     
    10. Product according to claim 9, wherein the radioisotope generator:

    is present on a surface, and/or

    is present in a liquid, and/or

    is present in a matrix, and/or

    is present in a chemical compound, and/or

    is present in a complex, and/or combinations thereof.


     
    11. Product according to claim 10, wherein the radioisotope generator is present on a chemically inert surface, such as an inner surface of a tube like structure, a surface of a particle, is present dissolved in a liquid, is present in a 3D- and/or 2D-matrix, such as a zeolite, is in a chemical compound, such as in an organometallic compound, is in a complex, such as in a complex with one or more organic molecules, in a complex with one or more inorganic molecules, and combinations thereof.
     
    12. Product according to claim 11, comprising
    a tube (1), the tube comprising an inner surface, being formed of a chemically inert material, such as glass, Teflon, a suitable polymer, silicon, a metal such as copper, tantalum, titanium, metal alloy, or a combination thereof,
    an inlet (2) for providing a liquid into the tube,
    an outlet (3) for releasing the liquid from the tube, optionally a protection (6) surrounding the tube for preventing radiation from effecting the environment, such as a lead comprising protection, and
    a long-lived, high specific activity or carrier-free radioisotope generator inside the tube.
     
    13. Kit comprising a product according to any of claims 10-12.
     
    14. Product according to any of claims 9-12 for the preparation of a medicament, such as for use in radiotherapy or imaging, such as peptide receptor radiation therapy, for the purpose of diagnosis or treatment.
     


    Ansprüche

    1. Verfahren zum Herstellen eines langlebigen Radioisotopengenerators, der in der Lage ist, hochspezifische und/oder trägerfreie Radioaktivität zu liefern, umfassend die folgenden Schritte:

    (a) Bereitstellen eines Ziels,

    (b) Aktivieren des Ziels, wodurch ein Radioisotopengenerator erhalten wird, wobei der Radioisotopengenerator Folgendes umfasst:

    (i) radioaktive erste Atome (Mutteratome) eines ersten Elements, die eine erste Halbwertszeit aufweisen, wobei sich die ersten Atome in einem metastabilen Zustand befinden,

    (ii) zweite Atome (Tochteratome) des ersten Elements, die radioaktiv sind, die eine zweite Halbwertszeit aufweisen, wobei sich die zweiten Atome in einem zweiten Zustand befinden, wie dem Grundzustand, wobei das zweite Atom ein Tochteratom des ersten Mutteratoms ist, wobei das Tochteratom durch die Emission eines hochveredelten Gammastrahlen-Übergangs gebildet wird, wie durch E2, E3, E4, E5, M2, M3, M4, M5, oder eine Kombination daraus, und das Abtrennen der ersten Atome (Mutteratome) von dem ersten Element unter Bildung zweiter Atome (Tochteratome) des ersten Elements.


     
    2. Verfahren nach Anspruch 1, umfassend den Schritt des

    (c) Einbindens des aktivierten Ziels, einschließlich erster Atome, zweiter Atome und inaktiver Zielatome, durch elektrochemische oder physikalische Abscheidung auf einer inerten Oberfläche, und/oder

    wobei die erste Halbwertszeit mindestens 2-mal so lang wie die zweite Halbwertszeit ist, bevorzugt mindestens 5-mal so lang, noch mehr bevorzugt mindestens 10-mal so lang, wie mindestens 25-mal so lang; und/oder
    wobei das Aktivieren durch eines oder mehrere der folgenden Verfahren durchgeführt wird: Neutronenreaktion, Protonenreaktion, photonukleare Reaktionen, wie Gamma- oder Röntgenstrahlung, Alphapartikel-Reaktion und Ionenstrahlreaktion.
     
    3. Verfahren nach den Ansprüchen 1 oder 2, wobei Zielatome, wie natürlich vorkommende oder isotopisch angereicherte Atome, ausgewählt sind aus der Gruppe umfassend 176Lu-Atome, 59Co-Atome, 187Re-Atome, 232Th-Atome, 45Sc-Atome, 44Ca-Atome, 79Br-Atome, 81Br-Atome, 80Se-Atome, 120Sn-Atome, 122Sn-Atome, 120Te-Atome, 122Te-Atome, 121Sb-Atome, 126Te-Atome, 128Te-Atome, 121I-Atome, 235U-Atome, 130Te-Atome, 132Xe-Atome, 136Ce-Atome, 138Ce-Atome, 138La-Atome, 139La-Atome, 177Hf-Atome, 185Re-Atome, 186W-Atome, 186Os-Atome, 191Ir-Atome, 193Ir-Atome, 192Os-Atome, 192Pt-Atome, 197Au-Atome, 198Pt-Atome, 241Am-Atome und 198Hg-Atome.
     
    4. Verfahren nach einem der vorstehenden Ansprüche, wobei erste Atome ausgewählt sind aus der Gruppe umfassend 44mSc-Atome, 58mCo-Atome, 80mBr-Atome, 121mSn-Atome, 121mTe-Atome, 127Sn-Atome, 127mTe-Atome, 129mTe-Atome, 137mCe-Atome, 177mLu-Atome, 186mRe-Atome, 192mIr-Atome, 198mAu-Atome, 229Ra-Atome, und 242mAm-Atome, bevorzugt 177mLu-, 44mSc-, 127mTe-, 129mTe-, 137mCe- und 186mRe-Atome.
     
    5. Verfahren nach einem der vorstehenden Ansprüche, wobei zweite Atome in Übereinstimmung mit ersten Atomen ausgewählt sind aus der Gruppe umfassend 44Sc-Atome, 58Co-Atome, 80Br-Atome, 121Sn-Atome, 121Te-Atome, 127Sn-Atome, 127Te-Atome, 129Te-Atome, 137Ce-Atome, 177Lu-Atome, 186Re-Atome, 192Ir-Atome, 198Au-Atome, 224Ra-Atome, 228Ra-Atome, und 242Am-Atome, bevorzugt 177Lu-Atome.
     
    6. Verfahren nach einem der vorstehenden Ansprüche, ferner umfassend den folgenden Schritt:
    Abscheiden der ersten Atome bei der Bildung der zweiten Atome durch chemische Abscheidung, bevorzugt wobei die zweiten Atome in ein flüssiges Medium abgeschieden werden, wie Gas, eine Flüssigkeit, eine überkritische Flüssigkeit, oder eine Kombination daraus.
     
    7. Verfahren nach Anspruch 6, wobei das flüssige Medium bevorzugt Wasser ist und ein oder mehrere gelöste Stoffe enthält, wie Salze, Säuren, Basen, Hilfsstoffe, Saccharide und Stabilisatoren.
     
    8. Langlebiger, hochspezifische Aktivität aufweisender und/oder trägerfreier Radioisotopengenerator, wobei der Radioisotopengenerator Zielatome umfasst, wobei Zielatome ausgewählt sind aus der Gruppe umfassend 44Ca-Atome, 45Sc-Atome, 59Co-Atome, 58mCo-Atome, 79Br-Atome, 80Se-Atome, 81Br-Atome, 120Sn-Atome, 120Te-Atome, 121Sb-Atome, 122Sn-Atome, 122Te-Atome, 126Te-Atome, 127I-At-ome, 12Sn-Atome, 128Te-Atome, 130Te-Atome, 132Xe-Atome, 136Ce-Atome, 138Ce-Atome, 138La-Atome, 139La-Atome, 176Lu-Atome, 177Hf-Atome, 185Re-Atome, 186W-Atome, 186Os-Atome, 187Re-Atome, 191Ir-Atome, 192Os-Atome, 192Pt-Atome, 193Ir-Atome, 197Au-Atome, 198Pt-Atome, 198Hg-Atome, 229Ra-Atome, 232Th-Atome, 235U-Atome und 241Am-Atome und

    (i) radioaktiven ersten Atomen (Mutteratomen) eines ersten Elements, das eine erste Halbwertszeit aufweist, wobei sich das erste Atom in einem metastabilen Zustand befindet,

    (ii) zweiten Atomen (Tochteratomen) des ersten Elements, die radioaktiv sind, die eine zweite Halbwertszeit aufweisen, wobei sich die zweiten Atome in einem zweiten Zustand befinden, wie dem Grundzustand;

    wobei das zweite Atom ein radioaktives Tochteratom des ersten Atoms (Mutteratom) ist und das radioaktive Tochteratom durch die Emission eines hochveredelten Gammastrahls gebildet wird, wie durch E2, E3, E4, E5, M2, M3, M4, M5, oder eine Kombination daraus, und durch ein Verfahren nach einem der Ansprüche 1-7 erhalten wird, wobei erste Atome bevorzugt ausgewählt sind aus der Gruppe bestehend aus 44mSc-Atomen, 80mBr-Atomen, 121mSn-Atomen, 121mTe-Atomen, 127mTe-Atomen, 129mTe-Atomen, 137mCe-Atomen, 177mLu-Atomen, 186mRe-Atomen, 192mIr-Atomen, 198mAu-Atomen, und 242mAm-Atomen.
     
    9. Produkt, umfassend den langlebigen, hochspezifische Aktivität aufweisenden und/oder trägerfreien Radioisotopengenerator nach Anspruch 8.
     
    10. Produkt nach Anspruch 9, wobei der Radioisotopengenerator:

    auf einer Oberfläche vorhanden ist, und/oder

    in einer Flüssigkeit vorhanden ist, und/oder

    in einer Matrix vorhanden ist, und/oder

    in einer chemischen Verbindung vorhanden ist, und/oder

    in einem Komplex vorhanden ist, und/oder Kombinationen davon.


     
    11. Produkt nach Anspruch 10, wobei der Radioisotopengenerator auf einer chemisch inerten Oberfläche vorhanden ist, wie einer Innenfläche einer rohrähnlichen Struktur, einer Oberfläche eines Partikels, aufgelöst in einer Flüssigkeit vorhanden ist, in einer 3D- und/oder 2D-Matrix vorhanden ist, wie einem Zeolithen, in einer chemischen Verbindung vorhanden ist wie einer metallorganischen Verbindung, in einem Komplex vorhanden ist, wie einem Komplex mit einem oder mehreren organischen Molekülen, in einem Komplex mit einem oder mehreren anorganischen Molekülen vorhanden ist und Kombinationen davon.
     
    12. Produkt nach Anspruch 11, umfassend
    ein Rohr (1), wobei das Rohr eine Innenfläche umfasst, die aus einem chemisch inerten Material gebildet ist, wie Glas, Teflon, einem geeigneten Polymer, Silikon, einem Metall wie Kupfer, Tantal, Titan, einer Metalllegierung oder einer Kombination daraus,
    einen Einlass (2) zum Bereitstellen einer Flüssigkeit in dem Rohr,
    einen Auslass (3) zum Freisetzen der Flüssigkeit aus dem Rohr,
    optional einen Schutz (6), der das Rohr umgibt, um zu verhindern, dass Radioaktivität auf die Umwelt einwirkt, wie einen Blei umfassenden Schutz, und
    einen langlebigen, hochspezifische Aktivität aufweisenden und/oder trägerfreien Radioisotopengenerator innerhalb des Rohrs.
     
    13. Kit, umfassend ein Produkt nach einem der Ansprüche 10-12.
     
    14. Produkt nach einem der Ansprüche 9-12 zur Herstellung eines Medikaments, beispielsweise für die Verwendung in der Strahlentherapie oder für bildgebende Systeme, wie eine Peptidrezeptor-Strahlentherapie, zum Zwecke der Diagnose oder Behandlung.
     


    Revendications

    1. Procédé de production d'un générateur de radio-isotope à longue durée de vie capable de produire une radioactivité hautement spécifique, et/ou sans entraîneur, comprenant les étapes :

    (a) de fourniture d'une cible,

    (b) d'activation de la cible pour obtenir ainsi un générateur de radio-isotope, le générateur de radio-isotope comprenant

    (i) des premiers atomes radioactifs (parents) d'un premier élément ayant une première demi-vie, les premiers atomes étant dans un état métastable,

    (ii) des seconds atomes (filles) du premier élément qui est radioactif et a une seconde demi-vie, les seconds atomes étant dans un second état tel que l'état non excité, dans lequel le second atome est un atome-fille du premier atome parent, lequel atome-fille est formé par émission d'une transition de rayon gamma hautement converti, tel que par E2, E3, E4, E5, M2, M3, M4, M5, ou une combinaison de ceux-ci, et par séparation des premiers atomes (parents) du premier élément en formant des seconds atomes (filles) du premier élément.


     
    2. Procédé selon la revendication 1, comprenant l'étape ;

    (c) d'incorporation de la cible activée, incluant des premiers atomes, des seconds atomes, et des atomes cibles inactifs, par dépôt électrochimique ou physique sur une surface inerte, et/ou

    dans lequel la première demi-vie est au moins 2 fois plus longue que la seconde demi-vie, de préférence au moins 5 fois plus longue, de manière encore même préférée, au moins 10 fois plus longue, telle qu'au moins 25 fois plus longue, et/ou
    dans lequel l'activation est réalisée par un ou plusieurs des procédés suivants : réaction neutronique, réaction protonique, réactions photonucléaires telles qu'à rayons gamma ou rayons X, réaction à particules alpha, et réaction à faisceau ionique.
     
    3. Procédé selon les revendications 1 ou 2, dans lequel des atomes cibles tels que des atomes présents à l'état naturel ou enrichis au niveau isotopique, et un procédé de production, sont sélectionnés dans le groupe comprenant des atomes de 176Lu, des atomes de 59Co, des atomes de 187Re, des atomes de 232Th, des atomes de 45Sc, des atomes de 44Ca, des atomes de 79Br, des atomes de 81Br, des atomes de 80Se, des atomes de 120Sn, des atomes de 122Sn, des atomes de 120Te, des atomes de 122Te, des atomes de 121Sb, des atomes de 126Te, des atomes de 128Te, des atomes de 127I, des atomes de 235U, des atomes de 130Te, des atomes de 132Xe, des atomes de 136Ce, des atomes de 138Ce, des atomes de 138La, des atomes de 139La, des atomes de 177Hf, des atomes de 185Re, des atomes de 186W, des atomes de 186Os, des atomes de 191Ir, des atomes de 193Ir, des atomes de 192Os, des atomes de 192Pt, des atomes de 197Au, des atomes de 198Pt, des atomes de 241Am, et des atomes de 198Hg.
     
    4. Procédé selon l'une quelconque des revendications précédentes, dans lequel des premiers atomes sont sélectionnés dans le groupe constitué : d'atomes de 44mSc, d'atomes de 58mco, d'atomes de 80mBr, d'atomes de 121mSn, d'atomes de 121mTe, d'atomes de 127Sn, d'atomes de 127mTe, d'atomes de 129mTe, d'atomes de 137mCe, d'atomes de 177mLu, d'atomes de 186mRe, d'atomes de 192mIr, d'atomes de 198mAu, d'atomes de 229Ra, et d'atomes de 242mAm, de préférence d'atomes de 177mLu, 44mSc, 127mTe, 129mTe, 137mCe, et 186mRe.
     
    5. Procédé selon l'une quelconque des revendications précédentes, dans lequel des seconds atomes sont sélectionnés conformément aux premiers atomes dans le groupe constitué : d'atomes de 44Sc, d'atomes de 58Co, d'atomes de 80Br, d'atomes de 121Sn, d'atomes de 121Te, d'atomes de 127Sn, d'atomes de 127Te, d'atomes de 129Te, d'atomes de 137Ce, d'atomes de 177Lu, d'atomes de 186Re, d'atomes de 192Ir, d'atomes de 198Au, d'atomes de 224Ra, d'atomes de 228Ra, et d'atomes de 242Am, de préférence d'atomes de 177Lu.
     
    6. Procédé selon l'une quelconque des revendications précédentes, comprenant en outre une étape :

    de séparation des premiers atomes en formant des seconds atomes par séparation chimique, de préférence

    dans lequel les seconds atomes sont séparés dans un milieu liquide, tel qu'un gaz, un liquide et un fluide supercritique, ou une combinaison de ceux-ci.


     
    7. Procédé selon la revendication 6, dans lequel le milieu liquide est de préférence de l'eau et comprend un ou plusieurs solutés, tels que des sels, acides, bases, adjuvants, saccharides, et stabilisants.
     
    8. Générateur de radio-isotope à longue durée de vie, à activité hautement spécifique et/ou sans entraîneur, le générateur de radio-isotope comprenant :

    des atomes cibles, dans lequel les atomes cibles sont sélectionnés dans le groupe comprenant des atomes de 44Ca, des atomes de 45Sc, des atomes de 59Co, des atomes de 58mco, des atomes de 79Br, des atomes de 80Se, des atomes de 81Br, des atomes de 120Sn, des atomes de 120Te, des atomes de 121Sb, des atomes de 122Sn, des atomes de 122Te, des atomes de 126Te, des atomes de 127I, des atomes de 127mSn, des atomes de 128Te, des atomes de 130Te, des atomes de 132Xe, des atomes de 136Ce, des atomes de 138Ce, des atomes de 138La, des atomes de 139La, des atomes de 176Lu, des atomes de 177Hf, des atomes de 185Re, des atomes de 186W, des atomes de 186Os, des atomes de 187Re, des atomes de 191Ir, des atomes de 192Os, des atomes de 192Pt, des atomes de 193Ir, des atomes de 197Au, des atomes de 198Pt, des atomes de 198Hg, des atomes de 229Ra, des atomes de 232Th, des atomes de 235U, et des atomes de 241Am, et

    (i) des premiers atomes radioactifs (parents) d'un premier élément ayant une première demi-vie, les premiers atomes étant dans un état métastable,

    (ii) des seconds atomes (filles) du premier élément qui est radioactif et a une seconde demi-vie, les seconds atomes étant dans un second état tel que l'état non excité,

    dans lequel le second atome est un atome-fille radioactif du premier atome (parent), et l'atome-fille radioactif est formé par émission d'un rayon gamma hautement converti, tel que par E2, E3, E4, E5, M2, M3, M4, M5, ou une combinaison de ceux-ci, et

    obtenu par un procédé selon l'une quelconque des revendications 1 à 7,

    dans lequel des premiers atomes sont sélectionnés de préférence dans le groupe constitué : d'atomes de 44mSc, d'atomes de 80mBr, d'atomes de 121mSn, d'atomes de 121mTe, d'atomes de 127mTe, d'atomes de 129mTe, d'atomes de 137mCe, d'atomes de 177mLu, d'atomes de 186mRe, d'atomes de 192mIr, d'atomes de 198mAu, et d'atomes de 242mAm.


     
    9. Produit comprenant le générateur de radio-isotope à longue durée de vie, à activité hautement spécifique et/ou sans entraîneur selon la revendication 8.
     
    10. Produit selon la revendication 9, dans lequel le générateur de radio-isotope :

    est présent sur une surface, et/ou

    est présent dans un liquide, et/ou

    est présent dans une matrice, et/ou

    est présent dans un composé chimique, et/ou

    est présent dans un complexe, et/ou des combinaisons de ceux-ci.


     
    11. Produit selon la revendication 10, dans lequel le générateur de radio-isotope est présent sur une surface chimiquement inerte, telle qu'une surface intérieure d'une structure de tube tubulaire, une surface d'une particule, est présent dissous dans un liquide, est présent dans une matrice en 3D et/ou en 2D, telle qu'une zéolite, est dans un composé chimique tel que dans un complexe organométallique, est dans un complexe tel que dans un complexe avec une ou plusieurs molécules organiques, dans un complexe avec une ou plusieurs molécules inorganiques, et des combinaisons de ceux-ci.
     
    12. Produit selon la revendication 11, comprenant
    un tube (1), le tube comprenant une surface intérieure, qui est formée d'un matériau chimiquement inerte, tel que du verre, du Téflon, un polymère approprié, du silicium, un métal tel que cuivre, tantale, titane, un alliage métallique ou une combinaison de ceux-ci ;
    une entrée (2) pour fournir un liquide dans le tube,
    une sortie (3) pour libérer le liquide du tube,
    éventuellement une protection (6) entourant le tube pour empêcher un rayonnement d'affecter l'environnement, telle qu'une protection comprenant du plomb, et
    un générateur de radio-isotope à longue durée de vie, à activité hautement spécifique ou sans entraîneur à l'intérieur du tube.
     
    13. Kit comprenant un produit selon l'une quelconque des revendications 10 à 12.
     
    14. Produit selon l'une quelconque des revendications 9 à 12 pour la préparation d'un médicament, tel que pour une utilisation en radiothérapie ou imagerie, telle qu'une radiothérapie à récepteur peptidique, à des fins de diagnostic ou de traitement.
     




    Drawing











    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description