(19)
(11) EP 3 321 383 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
04.09.2019 Bulletin 2019/36

(21) Application number: 16198352.3

(22) Date of filing: 11.11.2016
(51) International Patent Classification (IPC): 
C22C 1/04(2006.01)
C22C 47/14(2006.01)
C22C 21/00(2006.01)
C22C 47/20(2006.01)

(54)

PROCESS FOR PRODUCING ALUMINUM-BASED METAL COMPOSITE, ALUMINUM-BASED COMPOSITE OBTAINED BY USING THE SAME, AND ALUMINUM-BASED STRUCTURE HAVING THE ALUMINUM-BASED COMPOSITE

VERFAHREN ZUR HERSTELLUNG VON METALLVERBUNDWERKSTOFF AUF ALUMINIUMBASIS, VERBUNDWERKSTOFF AUF ALUMINIUMBASIS, DER DAMIT ERHALTEN WIRD UND STRUKTUR AUF ALUMINIUMBASIS, DIE DEN VERBUNDWERKSTOFF AUF ALUMINIUMBASIS AUFWEIST

PROCÉDÉ DE PRODUCTION DE COMPOSITE MÉTALLIQUE À BASE D'ALUMINIUM, COMPOSITE À BASE D'ALUMINIUM OBTENU À L'AIDE DE CELUI-CI ET STRUCTURE À BASE D'ALUMINIUM CONTENANT CE COMPOSITE À BASE D'ALUMINIUM


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43) Date of publication of application:
16.05.2018 Bulletin 2018/20

(73) Proprietors:
  • Chang, Yung-Ching
    300 Hsinchu City (TW)
  • Chang, Chia-Hung
    300 Hsinchu City (TW)

(72) Inventors:
  • Chang, Yung-Ching
    300 Hsinchu City (TW)
  • Chang, Chia-Hung
    300 Hsinchu City (TW)

(74) Representative: Patentship Patentanwaltsgesellschaft mbH 
Elsenheimerstraße 65
80687 München
80687 München (DE)


(56) References cited: : 
CN-A- 1 733 958
CN-A- 101 597 739
   
  • S.V. PRASAD, R. ASTHANA: "Aluminum metal-matrix composites for automotive applications: tribological considerations", TRIBOLOGY LETTERS, vol. 17, no. 3, 30 October 2004 (2004-10-30), pages 445-453, XP002770249, Springer Science
  • KARL ULRICH KAINER: "Basics of Metal Matrix Composites", METAL MATRIX COMPOSITES. CUSTOM-MADE MATERIALS FOR AUTOMOTIVE AND AEROSPACE ENGINEERING, 30 December 2006 (2006-12-30), XP002770250, Wiley-VCH Verlag GmbH&Co, KGaA, Weinheim ISBN: 3-527-31360-5
  • ARIF BASTUG, ALI GÜROL, ORHAN ICELLI, YUSUF SAHIN: "Effective atomic numbers of some composite mixtures including borax", ANNALS OF NUCLEAR ENERGY, vol. 37, no. 7, July 2010 (2010-07), pages 927-933, XP027058055, ISSN: 0306-4549, DOI: 10.1016/j.anucene.2010.03.013
   
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

BACKGROUND OF THE INVENTION


1. Field of the Invention



[0001] The present invention generally relates to a process for producing aluminum-based metal composite, an aluminum-based composite obtained by using the same, and an aluminum-based structure having the said aluminum-based composite.

2. Description of the Prior Art



[0002] Metal matrix composite (MMC) is a novel composite obtained by using special process to distribute different kinds and types of ceramic and non-metallic strengthened phase uniformly in a continuous metallic substrate. It has the advantages of metallic substrate and strengthened phase, e.g. high specific strength and specific stiffness, heat-resisting, wear-resisting, good lateral property and interlaminar shear strength, high temperature and volume stability, and good design ability of material. Therefore, it was first used in aerospace industry. S.V. PRASAD, R. ASTHANA: "Aluminum metal-matrix composites for automotive applications: tribological considerations",TRIBOLOGY LETTERS, vol. 17, no. 3, 30 October 2004 (2004-10-30), pages 445-453,Springer Science describes an aluminum metal-matrix composites for automotive applications wherein reinforcement of aluminum alloys with solid lubricants, hard ceramic particles, short fibers and whiskers results in advanced metal-matrix composites (MMC) with precise balances of mechanical, physical and tribological characteristics.

[0003] There are still some issues to be solved for the mass production and the commercialization of metal matrix composite. 1. High temperature is necessary to ensure efficient liquidity of the metallic substrate for it to adequately penetrate into the gap in the strengthened phase to form a composite, wherein adverse interface reaction sometimes takes place between the strengthened phase and the metallic substrate. 2. The compatibility between the strengthened phase and the metallic substrate is poor. 3. The strengthened phase is required to be uniformly distributed in the metallic substrate in accordance with the content and direction specified by the design.

SUMMARY OF THE INVENTION



[0004] An object of the present invention is to provide a process for producing aluminum-based composite in order to improve the mechanical strength of an aluminum-based metal.

[0005] Another object of the present invention is to provide an aluminum-based composite having better mechanical strength.

[0006] Another object of the present invention is to provide an aluminum-based structure having better mechanical strength.

[0007] The process for producing aluminum-based composite applies borax on the surface of an aluminum-based metal and heats such metal to a temperature over the melting point of borax.

[0008] In one embodiment of the present invention, the aluminum-based metal is aluminum metal.

[0009] In one embodiment of the present invention, the aluminum-based metal is aluminum alloy.

[0010] In one embodiment of the present invention, borax is mixed with a ceramic material before being applied on the surface of the aluminum-based metal and heated over 743°C, wherein the ratio of the ceramic material with respect to borax is in the range between 0.01 to 90 wt%.

[0011] In one embodiment of the present invention, the hardness of the ceramic material is greater than the hardness of aluminum.

[0012] In one embodiment of the present invention, the ceramic material is selected from a group consisting of silicon carbide, tungsten carbide, boron carbide, zirconium carbide, titanium carbide, beryllium carbide, zirconium boride, titanium diboride, rhenium diboride, aluminum boride, aluminum oxide, boron nitride, diamond, and the combination thereof.

[0013] The aluminum-based composites of the present invention includes 7 to 9 atomic% of aluminum, 11 to 13 atomic% of sodium, and 79 to 81 atomic% of oxygen.

[0014] In one embodiment of the present invention, the aluminum-based composites includes 8 atomic% of aluminum, 12 atomic% of sodium, and 80 atomic% of oxygen.

[0015] In one embodiment of the present invention, the aluminum-based composites further includes ceramic materials, wherein the content of aluminum is in the range between 2 to 3 wt%, the content of sodium is in the range between 3.5 to 5 wt%, the content of oxygen is in the range between 26 to 27 wt%, and the content of the ceramic material is in the range between 65 to 68 wt.%.

[0016] In one embodiment of the present invention, the hardness of the ceramic material is greater than the hardness of aluminum.

[0017] In one embodiment of the present invention, the ceramic material is selected from a group consisting of silicon carbide, tungsten carbide, boron carbide, zirconium carbide, titanium carbide, beryllium carbide, zirconium boride, titanium diboride, rhenium diboride, aluminum boride, aluminum oxide, boron nitride, diamond, and the combination thereof.

[0018] The aluminum-based structure includes an-aluminum based substrate formed by an aluminum-based metal and an aluminum-based composite disposed in the aluminum-based substrate. The aluminum-based composite includes 7 to 9 atomic% of aluminum, 11 to 13 atomic% of sodium, and 79 to 81 atomic % of oxygen.

[0019] In one embodiment of the present invention, the aluminum-based composite includes 8 atomic% of aluminum, 12 atomic% of sodium, and 80 atomic % of oxygen.

[0020] In one embodiment of the present invention, the aluminum-based composite further includes a ceramic material, wherein the content of aluminum is in the range between 2 to 3 wt%, the content of sodium is in the range between 3.5 to 5 wt%, the content of oxygen is in the range between 26 to 27 wt%, and the content of the ceramic material is in the range between 65 to 68 wt.%.

[0021] In one embodiment of the present invention, the hardness of the ceramic material is larger than the hardness of aluminum.

[0022] In one embodiment of the present invention, the ceramic material is selected from a group consisting of silicon carbide, tungsten carbide, boron carbide, zirconium carbide, titanium carbide, beryllium carbide, zirconium boride, titanium diboride, rhenium diboride, aluminum boride, aluminum oxide, titanium oxide, boron nitride, diamond, and the combination thereof.

BRIEF DESCRIPTION OF THE DRAWINGS



[0023] 

FIG. 1 is an optical microscope photo of one embodiment of the present invention;

FIG. 2 is an optical microscope photo of the cross section of a piece of aluminum treated by the present invention;

FIG. 3 is a scanning electron microscope photo of one embodiment of the present invention;

FIG. 4A illustrates the aluminum element analysis result of one embodiment of the present invention;

FIG. 4B illustrates the sodium element analysis result of one embodiment of the present invention;

FIG. 4C illustrates the oxygen element analysis result of one embodiment of the present invention;

FIG. 4D is a scanning electron microscope photo of one embodiment of the present invention;

FIG. 4E illustrates the sodium element analysis result of one embodiment of the present invention;

FIG. 4F illustrates the magnesium element analysis result of one embodiment of the present invention;

FIG. 4G illustrates the aluminum element analysis result of one embodiment of the present invention;

FIG. 4H illustrates the oxygen element analysis result of one embodiment of the present invention;

FIG. 5A is an optical microscope photo of one embodiment of the present invention;

FIGs. 5B-5F are optical microscope photos of different embodiments of the present invention;

FIG. 6 is a photo of an aluminum-based structure having a single aluminum-based composite layer in one embodiment of the present invention;

FIG. 7 illustrates the flexural strength testing result of aluminum metal, an aluminum-based structure of the present invention having a single aluminum-based composite layer, and an aluminum-based structure of the present invention having four aluminum-based composite layers.


DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT



[0024] The present invention of the process for producing aluminum-based composite applies borax on the surface of an aluminum-based metal and heats such metal to a temperature over the melting point of borax. More particularly, the melting point of borax is 743°C . The aluminum-based metal may be aluminum metal or aluminum alloy.

[0025] More particularly, borax is tiled on the aluminum-based metal consisting of aluminum metal, aluminum alloy, or the combination thereof, and such metal and borax are heated over 743°C in a high temperature environment such as a high temperature furnace to make the aluminum react with borax to form a strengthened phase. During the process, the reaction takes place whether inert gas (e.g. Ar) exists or not. In other words, the aluminum-based metal treating method of the present invention may be conducted in an aerobic environment.

[0026] As shown in the optical microscope photo (VHX-5000, Keyence Inc., USA) of FIG. 1, the brighter area represents the aluminum not treated by the aluminum-based metal treating method of the present invention, i.e. the aluminum matrix, wherein the darker area represents the aluminum treated by the aluminum-based metal treating method of the present invention, i.e. the aluminum-based composite. Berkovich hardness and Young's modulus tests are carried out by a nanoindenter (Nanoindenter XP, MTS Inc., USA) at the location indicated by the numbers 1, 2, 3, 4 in the brighter area and at the location indicated by the numbers 5, 6, 7, 8 in the darker area. The results are listed in Table 1.
Table 1
No. Berkovich hardness (GPa) Young's modulus (GPa)
1 0.534 71.42
2 0.677 79.19
3 0.655 73.35
4 0.534 76.84
5 4.13 124.4
6 4.33 122.2
7 5.01 132.8
8 4.89 128.5


[0027] As shown in Table 1, the mechanical strength of the aluminum treated by the method of the present invention is superior to that of the aluminum not treated by the aluminum based metal treating method of the present invention. More particularly, regarding the aluminum treated by the method of the the present invention, at the locations indicated by the numbers 5, 6, 7, 8, the average Berkovich hardness and Young's modulus are respectively 4.59Gpa ((4.13+4.33+5.01+4.89) / 4 = 4.59) and 126.98Gpa ((124.4+122.2+132.8+128.5) / 4 = 126.98). Comparatively, regarding the aluminum not treated by the method of the present invention, at the locations indicated by the numbers 1, 2, 3, 4, the average Berkovich hardness and Young's modulus are respectively 0.6Gpa ((0.534+0.677+0.655+0.534) / 4 = 0.6) and 75.2Gpa ((71.42+79.19+73.35+76.84) / 4 = 75.5). In other words, the average Berkovich hardness and Young's modulus of aluminum are raised respectively to 7.65 and 1.68 times the original ones.

[0028] The above Berkovich hardness and Young's modulus tests are also carried out on a 5083 aluminum alloy, wherein the results are listed in Table 2.
Table 2
No. Berkovich hardness (GPa) Young's modulus (GPa)
1 1.081 72.33
2 1.121 71.88
3 0.983 73.54
4 1.122 70.09
5 4.87 125.8
6 5.22 131.4
7 4.98 121.5
8 5.01 126.1


[0029] As shown in Table 2, the mechanical strength of the 5083 aluminum alloy treated by the method of the present invention is superior to that of the 5083 aluminum alloy not treated by the aluminum based metal treating method of the present invention. More particularly, regarding the 5083 aluminum alloy treated by the method of the the present invention, at the locations indicated by the numbers 5, 6, 7, 8, the average Berkovich hardness and Young's modulus are respectively 5.02Gpa ((4.87+5.22+4.98+5.01) / 4 = 5.02) and 126.2Gpa ((125.8+131.4+121.5+126.1) / 4 = 126.2). Comparatively, regarding the aluminum not treated by the method of the present invention, at the locations indicated by the numbers 1, 2, 3, 4, the average Berkovich hardness and Young's modulus are respectively 1.08Gpa ((1.081+1.121+0.983+1.122) / 4 = 1.08) and 71.96Gpa ((72.33+71.88+73.54+70.09) / 4 = 71.95). In other words, the average Berkovich hardness and Young's modulus of 5083 aluminum alloy are raised respectively to 4.65 and 1.37 times the original ones.

[0030] Accordingly, the method of the present invention is able to improve the mechanical strength of an aluminum-based metal.

[0031] On the other hand, there exists good compatibility between the aluminum-based metal treated by the aluminum-based metal treating method of the present invention and the aluminum-based metal not treated by the aluminum-based metal treating method of the present invention. FIG. 2 illustrates an optical microscope photo of the cross section of a piece of aluminum treated by the aluminum-based metal treating method of the present invention. As shown in FIG. 2, the aluminum-based metal treated by the method of the present invention bounds well with the aluminum matrix, and there isn't any obvious gap between the two. Accordingly, there exists good compatibility between the two, wherein the binding on the interface is well.

[0032] As shown in the scanning electron microscope photo (Nova 230 Variable Pressure SEM (VP-SEM) (at 10 kV accelerating voltage), FEI Inc., USA) of FIG. 3, the darker area represents the aluminum not treated by the aluminum-based metal treating method of the present invention, wherein the brighter area represents the aluminum treated by the method of the present invention. Results shown in FIGs. 4A-4C can be obtained by carrying out element analysis of the brighter area. It can be known respectively from FIG.4A, FIG. 4B, and FIG. 4C that the brighter area includes about 8 atomic% of aluminum, about 12 atomic% of sodium, and about 80 atomic% of oxygen. Specifically, the aluminum-based metal treated by the method of the present invention is an aluminum-based composite having better mechanical strength. The aluminum-based composite includes 7 to 9 atomic% of aluminum, 11 to 13 atomic% of sodium, and 79 to 81 atomic % of oxygen. Preferably, the aluminum-based composite includes 8 atomic% of aluminum, 12 atomic% of sodium, and 80 atomic% of oxygen.

[0033] As a different embodiment shown in the scanning electron microscope photo (Nova 230 Variable Pressure SEM (VP-SEM) (at 10 kV accelerating voltage), FEI Inc., USA) of FIG. 4D, the darker area represents the 5083 aluminum alloy not treated by the method of the present invention, wherein the brighter area represents the aluminum treated by the method of the present invention. Results shown in FIGs. 4E-4H can be obtained by carrying out element analysis of the brighter area. It can be known respectively from FIG.4E, FIG. 4F, FIG. 4G, and FIG. 4H that the brighter area includes about 12 atomic% of sodium, about 8 atomic% of magnesium, about 7 atomic% of aluminum, and about 73 atomic% of oxygen.

[0034] In a different embodiment, borax is mixed with a ceramic material first and then applied on the surface of the aluminum-based metal and heated over 743°C. More particularly, ceramic material having greater strength is added into borax to increase further the mechanical strength such as Berkovich hardness and Young's modulus. The ceramic material is selected from a group consisting of silicon carbide, tungsten carbide, boron carbide, zirconium carbide, titanium carbide, beryllium carbide, zirconium boride, titanium diboride, rhenium diboride, aluminum boride, aluminum oxide, boron nitride, diamond, and the combination thereof. The ratio of the ceramic material with respect to borax is in the range between 0.01 to 90 wt%, and is preferably 66 wt% ceramics material with respect to 33 wt% borax.

[0035] In one embodiment, borax is mixed with silicon carbide first, wherein the ratio is 66 wt% silicon carbide with respect to 33 wt% borax. Such mixture is applied on the surface of a piece of aluminum alloys and heated over 743°C. As shown in the optical microscope photo (VHX-5000, Keyence Inc., USA) of FIG. 5A, the brighter area represents silicon carbide, wherein the darker area represents a strengthened phase formed by the reaction between borax and aluminum. It is known that by carrying out tests to the entirety, the Berkovich hardness and Young's modulus tests of the heated metal are respectively 9.7Gpa and 140Gpa. Accordingly, with the aluminum-based metal treating method of the present invention, high-strength ceramic material such as silicon carbide can seep into the aluminum phase to strengthen the aluminum-based metal. In different embodiments, silicon carbide in 5083 aluminum composite, tungsten carbide in aluminum composite, titanium carbide in 5083 aluminum composite, titanium oxide in aluminum composite, and titanium oxide in 5083 aluminum composite are respectively shown in FIGs. 5B-5F.

[0036] In other words, by premixing borax with a ceramic material and applying such mixture on the surface of the aluminum-based metal and heating the said metal over 743°C, an aluminum-based composite having better mechanical strength containing ceramic material can be obtained. The ceramic material is selected from a group consisting of silicon carbide, tungsten carbide, boron carbide, zirconium carbide, titanium carbide, beryllium carbide, zirconium boride, titanium diboride, rhenium diboride, aluminum boride, aluminum oxide, titanium oxide, boron nitride, diamond, and the combination thereof. The ratio of the ceramic material with respect to borax is in the range between 0.01 to 90 wt%, and is preferably 66 wt% ceramics material with respect to 33 wt% borax .

[0037] The above-described aluminum-based composite can be inserted into a aluminum-based substrate to form an aluminum-based structure. More particularly, the aluminum-based structure includes an aluminum-based substrate formed by an aluminum-based metal and an aluminum-based composite disposed in the aluminum-based substrate. In other words, the aluminum-based substrate formed by an aluminum-based metal sandwiches multi-layer reinforcements. As an embodiment shown in FIG. 6, the aluminum-based structure has a single aluminum-based composite layer. In different embodiments, however, the aluminum-based structure is not limited to having a single aluminum-based composite layer, and the aluminum-based composite layer is not limited to being disposed between two aluminum metal layers.

[0038] Three-point flexural strength test is carried out respectively to a piece of aluminum metal (no layer), an aluminum-based structure having a single aluminum-based composite layer (1 layer), and an aluminum-based structure having four aluminum-based composite layers (4 layers) to evaluate their flexural strength. The flexural strength test is carried out by a flexural strength testing system (Instron 5900, Instron Inc., USA) under the condition of 3×10 4 in/s pressing speed and 6mm distance between adjacent points. As shown by the results in FIG. 7, the flexural strength of the aluminum-based structure having four aluminum-based composite layers is obviously greater than that of the aluminum metal, wherein the flexural strength of the aluminum-based structure having a single aluminum-based composite layer is also greater than that of the aluminum metal. Accordingly, the mechanical strength of the aluminum-based structure of the present invention is better than that of the aluminum metal.

[0039] Although the preferred embodiments of the present invention have been described herein, the above description is merely illustrative. Further modification of the invention herein disclosed will occur to those skilled in the respective arts and all such modifications are deemed to be within the scope of the invention as defined by the appended claims.


Claims

1. An process for producing aluminum-based composite, wherein the aluminum-based metal treating method applies borax on the surface of an aluminum-based metal and heats the aluminum-based metal to a temperature over the melting point of borax, wherein borax is tiled on the aluminum-based metal.
 
2. The aluminum-based metal treating method of claim 1, wherein the aluminum-based metal is aluminum metal.
 
3. The aluminum-based metal treating method of claim 1, wherein the aluminum-based metal is aluminum alloy.
 
4. The aluminum-based metal treating method of claim 1, wherein borax is mixed with a ceramic material before being applied on the surface of the aluminum-based metal and the aluminum-based metal is heated over the melting point of borax, wherein the ratio of the ceramic material with respect to borax is in the range between 0.01 to 90 wt%.
 
5. The aluminum-based metal treating method of claim 1, wherein the hardness of the ceramic material is larger than the hardness of aluminum.
 
6. The aluminum-based metal treating method of claim 1, wherein the ceramic material is selected from a group consisting of silicon carbide, tungsten carbide, boron carbide, zirconium carbide, titanium carbide, beryllium carbide, zirconium boride, titanium diboride, rhenium diboride, aluminum boride, aluminum oxide, boron nitride, diamond, and the combination thereof.
 
7. An aluminum-based composite, comprising:

7 to 9 atomic% of aluminum;

11 to 13 atomic% of sodium; and

79 to 81 atomic% of oxygen.


 
8. The aluminum-based composite of claim 7 comprises 8 atomic% of aluminum, 12 atomic% of sodium, and 80 atomic% of oxygen.
 
9. The aluminum-based composite of claim 7 further comprises a ceramic material, wherein:

the content of aluminum is in the range between 2 to 3 wt%;

the content of sodium is in the range between 3.5 to 5 wt%;

the content of oxygen is in the range between 26 to 27 wt%; and

the content of the ceramic material is in the range between 65 to 68 wt%.


 
10. The aluminum-based composite of claim 7, wherein the hardness of the ceramic material is larger than the hardness of aluminum.
 
11. The aluminum-based composite of claim 7, wherein the ceramic material is selected from a group consisting of silicon carbide, tungsten carbide, boron carbide, zirconium carbide, titanium carbide, beryllium carbide, zirconium boride, titanium diboride, rhenium diboride, aluminum boride, aluminum oxide, titanium oxide, boron nitride, diamond, and the combination thereof.
 
12. An aluminum-based structure, comprising:

an aluminum-based substrate formed by an aluminum-based metal;

an aluminum-based composite disposed in the aluminum-based substrate, wherein the aluminum-based composite includes:

7 to 9 atomic% of aluminum;

11 to 13 atomic% of sodium; and

79 to 81 atomic% of oxygen.


 
13. The aluminum-based structure of claim 12, wherein the aluminum-based composite includes 8 atomic% of aluminum, 12 atomic% of sodium, and 80 atomic% of oxygen.
 
14. The aluminum-based structure of claim 12, wherein the aluminum-based composite further includes a ceramic material, wherein:

the content of aluminum is in the range between 2 to 3 wt%;

the content of sodium is in the range between 3.5 to 5 wt%;

the content of oxygen is in the range between 26 to 27 wt%; and

the content of the ceramic material is in the range between 65 to 68 wt.%.


 
15. The aluminum-based structure of claim 14, wherein the hardness of the ceramic material is larger than the hardness of aluminum.
 
16. The aluminum-based structure of claim 14, wherein the ceramic material is selected from a group consisting of silicon carbide, tungsten carbide, boron carbide, zirconium carbide, titanium carbide, beryllium carbide, zirconium boride, titanium diboride, rhenium diboride, aluminum boride, aluminum oxide, boron nitride, diamond, and the combination thereof.
 


Ansprüche

1. Verfahren zur Herstellung von Verbundstoff auf Aluminiumbasis, wobei bei dem Behandlungsverfahren für Metall auf Aluminiumbasis Borax auf die Oberfläche eines Metalls auf Aluminiumbasis aufgebracht und das Metall auf Aluminiumbasis auf eine Temperatur über dem Schmelzpunkt von Borax erhitzt wird, wobei das Metall auf Aluminiumbasis mit Borax belegt wird.
 
2. Behandlungsverfahren für Metall auf Aluminiumbasis gemäß Anspruch 1, wobei das Metall auf Aluminiumbasis Aluminiummetall ist.
 
3. Behandlungsverfahren für Metall auf Aluminiumbasis gemäß Anspruch 1, wobei das Metall auf Aluminiumbasis Aluminiumlegierung ist.
 
4. Behandlungsverfahren für Metall auf Aluminiumbasis gemäß Anspruch 1, wobei Borax mit einem Keramikmaterial gemischt wird, bevor es auf die Oberfläche des Metalls auf Aluminiumbasis aufgebracht wird und das Metall auf Aluminiumbasis auf über den Schmelzpunkt von Borax erhitzt wird, wobei das Verhältnis des Keramikmaterials zu dem Borax in dem Bereich zwischen 0,01 und 90 Gew.-% liegt.
 
5. Behandlungsverfahren für Metall auf Aluminiumbasis gemäß Anspruch 1, wobei die Härte des Keramikmaterials größer als die Härte von Aluminium ist.
 
6. Behandlungsverfahren für Metall auf Aluminiumbasis gemäß Anspruch 1, wobei das Keramikmaterial ausgewählt ist aus einer Gruppe bestehend aus Siliciumcarbid, Wolframcarbid, Borcarbid, Zirkoniumcarbid, Titancarbid, Berylliumcarbid, Zirkoniumborid, Titandiborid, Rheniumdiborid, Aluminiumborid, Aluminiumoxid, Bornitrid, Diamant und der Kombination davon.
 
7. Verbundstoff auf Aluminiumbasis, umfassend:

7 bis 9 Atom-% Aluminium;

11 bis 13 Atom-% Natrium; und

79 bis 91 Atom-% Sauerstoff.


 
8. Verbundstoff auf Aluminiumbasis gemäß Anspruch 7, umfassend 8 Atom-% Aluminium, 12 Atom-% Natrium und 80 Atom-% Sauerstoff.
 
9. Verbundstoff auf Aluminiumbasis gemäß Anspruch 7, ferner umfassend ein Keramikmaterial, wobei:

der Gehalt an Aluminium in dem Bereich zwischen 2 und 3 Gew.-% liegt;

der Gehalt an Natrium in dem Bereich zwischen 3,5 und 5 Gew.-% liegt;

der Gehalt an Sauerstoff in dem Bereich zwischen 26 und 27 Gew.-% liegt; und

der Gehalt an dem Keramikmaterial in dem Bereich zwischen 65 und 68 Gew.-% liegt.


 
10. Verbundstoff auf Aluminiumbasis gemäß Anspruch 7, wobei die Härte des Keramikmaterials größer als die Härte von Aluminium ist.
 
11. Verbundstoff auf Aluminiumbasis gemäß Anspruch 7, wobei das Keramikmaterial ausgewählt ist aus einer Gruppe bestehend aus Siliciumcarbid, Wolframcarbid, Borcarbid, Zirkoniumcarbid, Titancarbid, Berylliumcarbid, Zirkoniumborid, Titandiborid, Rheniumdiborid, Aluminiumborid, Aluminiumoxid, Titanoxid, Bornitrid, Diamant und der Kombination davon.
 
12. Struktur auf Aluminiumbasis, umfassend:

ein Substrat auf Aluminiumbasis, das aus einem Metall aus Aluminiumbasis besteht;

einen Verbundstoff auf Aluminiumbasis, der in dem Substrat auf Aluminiumbasis angeordnet ist, wobei der Verbundstoff auf Aluminiumbasis umfasst:

7 bis 9 Atom-% Aluminium;

11 bis 13 Atom-% Natrium; und

79 bis 81 Atom-% Sauerstoff.


 
13. Struktur auf Aluminiumbasis gemäß Anspruch 12, wobei der Verbundstoff auf Aluminiumbasis 8 Atom-% Aluminium, 12 Atom-% Natrium und 80 Atom-% Sauerstoff umfasst.
 
14. Struktur auf Aluminiumbasis gemäß Anspruch 12, wobei der Verbundstoff auf Aluminiumbasis ferner ein Keramikmaterial umfasst, wobei:

der Gehalt an Aluminium in dem Bereich zwischen 2 und 3 Gew.-% liegt;

der Gehalt an Natrium in dem Bereich zwischen 3,5 und 5 Gew.-% liegt;

der Gehalt an Sauerstoff in dem Bereich zwischen 26 und 27 Gew.-% liegt; und

der Gehalt an dem Keramikmaterial in dem Bereich zwischen 65 und 68 Gew.-% liegt.


 
15. Struktur auf Aluminiumbasis gemäß Anspruch 14, wobei die Härte des Keramikmaterials größer als die Härte von Aluminium ist.
 
16. Struktur auf Aluminiumbasis gemäß Anspruch 14, wobei das Keramikmaterial ausgewählt ist aus einer Gruppe bestehend aus Siliciumcarbid, Wolframcarbid, Borcarbid, Zirkoniumcarbid, Titancarbid, Berylliumcarbid, Zirkoniumborid, Titandiborid, Rheniumdiborid, Aluminiumborid, Aluminiumoxid, Bornitrid, Diamant und der Kombination davon.
 


Revendications

1. Procédé de production d'un composite à base d'aluminium, où le procédé de traitement du métal à base d'aluminium consiste à appliquer du borax à la surface d'un métal à base d'aluminium et à chauffer le métal à base d'aluminium à une température dépassant le point de fusion du borax, où le borax est appliqué en carreaux sur le métal à base d'aluminium.
 
2. Procédé de traitement d'un métal à base d'aluminium selon la revendication 1, où le métal à base d'aluminium est l'aluminium métallique.
 
3. Procédé de traitement d'un métal à base d'aluminium selon la revendication 1, où le métal à base d'aluminium est un alliage d'aluminium.
 
4. Procédé de traitement d'un métal à base d'aluminium selon la revendication 1, où le borax est mélangé à un matériau céramique avant d'être appliqué à la surface du métal à base d'aluminium et le métal à base d'aluminium est chauffé au-dessus du point de fusion du borax, où le rapport du matériau céramique par rapport au borax est compris dans l'intervalle allant de 0,01 à 90 % en masse.
 
5. Procédé de traitement d'un métal à base d'aluminium selon la revendication 1, où la dureté du matériau céramique est supérieure à la dureté de l'aluminium.
 
6. Procédé de traitement d'un métal à base d'aluminium selon la revendication 1, où le matériau céramique est choisi dans un groupe constitué par les suivants : carbure de silicium, carbure de tungstène, carbure de bore, carbure de zirconium, carbure de titane, carbure de béryllium, borure de zirconium, diborure de titane, diborure de rhénium, borure d'aluminium, oxyde d'aluminium, nitrure de bore, diamant, et l'une de leurs combinaisons.
 
7. Composite à base d'aluminium, comprenant : 7 à 9 % atomiques d'aluminium ; 11 à 13 % atomiques de sodium ; et 79 à 81 % atomiques d'oxygène.
 
8. Composite à base d'aluminium selon la revendication 7 comprenant 8 % atomiques d'aluminium, 12 % atomiques de sodium et 80 % atomiques d'oxygène.
 
9. Composite à base d'aluminium selon la revendication 7 comprenant en outre un matériau céramique, où :

la teneur en aluminium est comprise dans l'intervalle allant de 2 à 3 % en masse ;

la teneur en sodium est comprise dans l'intervalle allant de 3,5 à 5 % en masse ;

la teneur en oxygène est comprise dans l'intervalle allant de 26 à 27 % en masse ; et

la teneur en matériau céramique est comprise dans l'intervalle allant de 65 à 68 % en masse.


 
10. Composite à base d'aluminium selon la revendication 7, où la dureté du matériau céramique est supérieure à la dureté de l'aluminium.
 
11. Composite à base d'aluminium selon la revendication 7, où le matériau céramique est choisi dans un groupe constitué par les suivants : carbure de silicium, carbure de tungstène, carbure de bore, carbure de zirconium, carbure de titane, carbure de béryllium, borure de zirconium, diborure de titane, diborure de rhénium, borure d'aluminium, oxyde d'aluminium, oxyde de titane, nitrure de bore, diamant, et l'une de leurs combinaisons.
 
12. Structure à base d'aluminium, comprenant :

un substrat à base d'aluminium formé par un métal à base d'aluminium ;

un composite à base d'aluminium disposé dans le substrat à base d'aluminium, où le composite à base d'aluminium inclut :

7 à 9 % atomiques d'aluminium ;

11 à 13 % atomiques de sodium ; et

79 à 81 % atomiques d'oxygène.


 
13. Structure à base d'aluminium selon la revendication 12, où le composite à base d'aluminium inclut 8 % atomiques d'aluminium, 12 % atomiques de sodium et 80 % atomiques d'oxygène.
 
14. Structure à base d'aluminium selon la revendication 12, où le composite à base d'aluminium inclut en outre un matériau céramique, où :

la teneur en aluminium est comprise dans l'intervalle allant de 2 à 3 % en masse ;

la teneur en sodium est comprise dans l'intervalle allant de 3,5 à 5 % en masse ;

la teneur en oxygène est comprise dans l'intervalle allant de 26 à 27 % en masse ; et

la teneur en matériau céramique est comprise dans l'intervalle allant de 65 à 68 % en masse.


 
15. Structure à base d'aluminium selon la revendication 14, où la dureté du matériau céramique est supérieure à la dureté de l'aluminium.
 
16. Structure à base d'aluminium selon la revendication 14, où le matériau céramique est choisi dans un groupe constitué par les suivants : carbure de silicium, carbure de tungstène, carbure de bore, carbure de zirconium, carbure de titane, carbure de béryllium, borure de zirconium, diborure de titane, diborure de rhénium, borure d'aluminium, oxyde d'aluminium, nitrure de bore, diamant, et l'une de leurs combinaisons.
 




Drawing



























































Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Non-patent literature cited in the description