(19)
(11) EP 2 893 964 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
27.11.2019 Bulletin 2019/48

(21) Application number: 13833620.1

(22) Date of filing: 02.09.2013
(51) International Patent Classification (IPC): 
B01J 19/00(2006.01)
B01D 36/00(2006.01)
B01J 19/18(2006.01)
C07D 209/20(2006.01)
B01D 9/00(2006.01)
B01J 19/10(2006.01)
C07D 209/16(2006.01)
(86) International application number:
PCT/KR2013/007885
(87) International publication number:
WO 2014/035211 (06.03.2014 Gazette 2014/10)

(54)

PURIFICATION DEVICE INCLUDING CONTINUOUS REACTOR AND PURIFICATION METHOD USING CONTINUOUS REACTOR

REINIGUNGSVORRICHTUNG MIT KONTINUIERLICHEM REAKTOR UND REINIGUNGSVERFAHREN MIT KONTINUIERLICHEM REAKTOR

DISPOSITIF DE PURIFICATION COMPRENANT UN RÉACTEUR CONTINU ET PROCÉDÉ DE PURIFICATION UTILISANT UN RÉACTEUR CONTINU


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 03.09.2012 KR 20120097027
27.09.2012 KR 20120107996

(43) Date of publication of application:
15.07.2015 Bulletin 2015/29

(73) Proprietor: Laminar Co., Ltd.
Seongnam-si, Gyeonggi-do 462-120 (KR)

(72) Inventors:
  • HONG, Jong Pal
    Seongnam-si Gyeonggi-do 462-120 (KR)
  • LEE, Chil Won
    Seongnam-si Gyeonggi-do 462-120 (KR)
  • LEE, Hee Wan
    Seongnam-si Gyeonggi-do 462-120 (KR)
  • CHOI, Gyeong Rye
    Seongnam-si Gyeonggi-do 462-120 (KR)

(74) Representative: London IP Ltd 
100 High street Milford on Sea
Lymington, Hampshire SO41 0QE
Lymington, Hampshire SO41 0QE (GB)


(56) References cited: : 
JP-A- 2005 504 536
KR-A- 20090 127 656
KR-B1- 930 004 052
KR-A- 20050 067 845
KR-A- 20100 035 403
US-A- 3 892 539
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present invention relates to a purification apparatus including continuous reactors and, more particularly to, a purification apparatus that involves diffusing/agitating a solution stored in a solution storage tank with the ultrasonic wave, transferring the solution to a reactor through an air compressor and then mixing the solution in the reactor with a solvent fed through another passage to produce a reactant, and a purification method using the purification apparatus.

    BACKGROUND ART



    [0002] Generally, many materials need to be purified. Purification is also required to organic materials and essential amino acids used for feedstuff additives, medicines, health foods, etc. For example, organic materials used for organic light-emitting device are obtained by isolating a pure target component from the conventional synthetic substance for the use purpose in thin film deposition. With enhanced purification techniques of the organic materials, the organic light-emitting devices are allowed to improve the light-emitting efficiency and extend the light-emission life span.

    [0003] For the production of organic materials on a large scale, it is essential to use the purification techniques for organic materials with reduced process time and enhanced purification efficiency.

    [0004] Tryptophan is one of essential amino acids. The conventional purification techniques for tryptophan are disclosed in Japanese Patent Publication Nos. 126070/1986, 39857/1984 and 126070/1983.

    [0005] However, the method of using an ultrafiltration membrane according to the technique of Japanese Patent Publication No. 895/1983 cannot eliminate impurities merely at a fixed elimination rate, ending up imposing an overload on the resin and reducing the reuse cycle of the non-polar highly porous resin.

    [0006] Further, the method specified in Japanese Patent Publication No. 39857/1984 is insufficient in eliminating impurities and makes it difficult to obtain crystals with transmission of 95 % or higher.

    [0007] Furthermore, the method disclosed in Japanese Patent Publication No. 126070/1986 forms the structure of tryptophan including unstable indole rings when heating the reaction solution containing lots of impurities and prepared by the fermentation method up to 95 to 100 C in the presence of active carbon, which increases the formation of decomposed and discolored substances.

    [0008] Document US 3,892,539 discloses a purification apparatus and method for production of crystals in fluidized bed crystallizers.

    TECHNICAL PROBLEM



    [0009] For solving the problem with the prior art, it is an object of the present invention to provide an ultrahigh purification apparatus including a continuous reactor that has a construction capable of producing an organic material for organic light-emitting device with ultrahigh purity of 99.9 % or greater, which purification apparatus involves diffusing/agitating a solution with ultrasonic wave, transferring the solution to the reactor through an air compressor and mixing the solution with a solvent added through another passage in the reactor to produce a reactant.

    [0010] It is another object of the present invention to provide a tryptophan purification apparatus that adopts a method of dissolving tryptophan in an acid solution or an alkaline solution and then adding the opposite solution (i.e., an alkaline solution or an acid solution) to neutralize the pH value to cause precipitation and uses a continuous reactor to continuously yield the product, increase the production rate three times as fast as the existing methods, enhance recovery rate and purity and increase the density of particles by using a polymer material as an additive, resulting in the higher strength of the product that makes the product not easily broken.

    SOLUTION TO PROBLEM



    [0011] In accordance with one embodiment of the present invention, the present invention provides a purification apparatus according to claim 1 and a tryptophan purification method according to claim 9.

    ADVANTAGEOUS EFFECTS OF THE INVENTION



    [0012] According to the construction of the present invention, it is possible to produce an organic material used for organic light-emitting device with ultrahigh purity on a large scale. Particularly, the crystallization method according to the present invention can obtain an organic material having an ultrahigh purity of 99.9 % or greater.

    [0013] The organic field-effect light-emitting device made using the organic material can benefit from the use of the organic material of higher purity in terms of reduced dark spot growth, improved electric/optical characteristics of the device and extended lifespan of the device.

    [0014] Further, relative to the conventional methods, the present invention using a continuous reactor can enhance in the recovery rate of tryptophan by about 10 %, enable continuous production with enhanced production rate three times or greater and increase the purity to 99.9 % or higher.

    [0015] Furthermore, the present invention using a polymer material as an additive can enhance the density of particles and thus make the particles not easily broken.

    BRIEF DESCRIPTION OF DRAWINGS



    [0016] 

    FIG. 1 is an illustration showing the construction of an ultrahigh purification apparatus according to the present invention.

    FIG. 2 is a detailed illustration showing the construction of a continuous reactor adopted in the purification apparatus according to the present invention.

    FIG. 3 is an illustration showing the construction of a cylinder of the continuous reactor in the purification apparatus according to the present invention.

    FIG. 4 is an illustration showing the construction of a tryptophan purification apparatus as another embodiment of the purification apparatus according to the present invention.

    FIG. 5 is a flow chart showing a tryptophan purification method according to the present invention.

    FIGS. 6, 7 and 8 show the change of crystals as a function of the addition rate of sulfuric acid in the tryptophan purification method according to the present invention.

    FIG. 9 is a particle size distribution graph in the tryptophan purification method according to the present invention.

    FIGS. 10 to 13 show images of the tryptophan crystal shape as a function of the reaction time (1 hour in FIG. 10, 6 hours in FIG. 11, 26 hours in FIG. 12, and 52 hours in FIG. 13) in the tryptophan purification method according to the present invention.

    FIG. 14 is a graph showing the change of the particle size as a function of the dissolved tryptophan concentration in the tryptophan purification method according to the present invention.

    FIG. 15 is a graph showing the change of the purity as a function of the dissolved tryptophan concentration in the tryptophan purification method according to the present invention.

    FIG. 16 is a graph showing the change of the recovery rate as a function of the dissolved tryptophan concentration in the tryptophan purification method according to the present invention.

    FIGS. 17 and 18 are images showing the change of the particle shape as a function of the agitation rate in the tryptophan purification method according to the present invention.

    FIG. 19 is a graph showing the change of the particle size as a function of the agitation rate in the tryptophan purification method according to the present invention.


    MODES FOR CARRYING OUT THE INVENTION



    [0017] The present invention is a purification apparatus including a reactor that is composed of a solution storage tank, an ultrasonic diffuser, an agitator, a heating jacket, an air compressor, and a reactor, and further optionally includes a filter a separator or a dehydrator, a dryer, etc.

    [Example 1]



    [0018] The purification apparatus shown in FIGS. 1, 2 and 3 is a purification apparatus including a reactor. The apparatus includes a solution storage tank 100, an ultrasonic diffuser 200, an air compressor 300, a filter cartridge 400, a temperature control device 500, a continuous reactor 600, an organic material separator 700, an organic material storage tank 800, and an analyzer and compensator module 900.

    [0019] The solution storage tank 100 serves to store a solution containing an organic material (OLED) dissolved in an organic solvent. The concentration of the solution containing the organic material is preferably 100 g/L or less. When the concentration of the solution containing the organic material is above the concentration range, the crystallization reaction is retarded or the desired purity is hard to achieve. In this regard, the organic material refers to any kind of material disposed between positive and negative electrodes of an organic light-emitting device. For example, the organic material or the organic metal material used for organic field-effect light-emitting device may include light-emitting host materials, dopant materials, hole injection-transfer materials, electron injection-transfer materials, hole/electron suppressing layer materials, etc.

    [0020] The solution storage tank 100 may have a heating jacket 110 provided outside and filled with a thermal fluid so that the heating jacket 110 can heat the solution of the solution storage tank 100 up to 350 ºC at maximum to dissolve the organic material in the organic solvent.

    [0021] Besides, the solution storage tank 100 may further include an agitator 120 for uniformly mixing the organic solvent and the organic material together.

    [0022] The ultrasonic diffuser 200 is a device provided in the solution storage tank 100 to apply ultrasonic wave to the organic material and grind/reduce the organic material into nanoparticles. The organic material is not easily dissolved just by heating and required to be forcedly ground to enhance the dissolution efficiency.

    [0023] For reference, the ultrasonic diffuser has an oscillator, also called "generator", that changes the voltage having a frequency of 50 to 60 Hz into a high-frequency electric energy, and the high-frequency electric energy is converted into mechanical vibrations by piezoelectric ceramics in the converter, which is called "inverse piezoelectric effect". The vertical vibrations caused by the inverse piezoelectric effect are transferred to the liquid sample. The liquid sample is susceptible to expansion (negative pressure) and contraction (positive pressure) due to at least 20,000 vibrations per second and the constant amplitude of the probe (or tip) at which the ultrasonic vertical vibrations arrive in the liquid sample. Minute bubbles formed during this process break while the positive pressure is amplified. This phenomenon is called "cavitation", during which high-temperature and high-pressure instantaneous impulses having the pressure of about 1,000 bar and the instantaneous temperature of about 5,000 K generate and function as a source of very high energy to grind the organic material into particles.

    [0024] The air compressor 300 serves to suction the solution in the solution storage tank 100 and transfer it to the next position, filter cartridge 400. During the transfer of the hot solution, the temperature of the solution lowers to precipitate the solution into crystals. In order to prevent this happening, it is necessary to transfer the solution under reduced pressure. For this purpose, an air compressor is used.

    [0025] The filter cartridge 400 consists of a filter case 410 and a filler 420 filled in the filter case 410. The filler may include at least one selected from the group consisting of metal oxide, active alumina, silica, titanium oxide, and natural stone, such as active carbon, bentonite, acid clay, and diatomite, which are used alone or in combination of at least two.

    [0026] The temperature control device 500 is to raise the temperature of the filter cartridge 400 and prevent precipitation of crystals from the solution. The temperature control device 500 includes a casing 510 in which the filter cartridge 400 is mounted, a thermal fluid 520 filled in the casing 510, and a heater 530 for heating the thermal fluid 520.

    [0027] The continuous reactor 600 receives the solution passing through the filter cartridge 400 and an anti-solvent stored in an anti-solvent storage tank 10 by a pump p and agitates the solution and the anti-solvent to produce a reactant having uniform particles. The continuous reactor 600 includes a cylinder 610, a thermal fluid chamber 620, a partition panel 630, a temperature control member 640, an agitating body 650, an agitating motor 660, a belt pulley 670, and a belt 671.

    [0028] The cylinder 610 of the continuous reactor 600 has a reaction chamber 611 provided inside to receive the filtered solution and the anti-solvent. An anti-solvent inlet port 611a is provided on the one top side of the cylinder 610 to feed the anti-solvent into the reaction chamber 611, and a solution inlet port 611b is provided on the one bottom side of the cylinder 610 to feed the solution of the organic material. Reference number 611c (unexplained) denotes an outlet port through which the reactant after completion of the reaction is discharged.

    [0029] The thermal fluid chamber 620 is provided in the shape of a ring on the outer side of the reaction chamber 611 and filled with a thermal fluid for regulating the temperature of the solution and the anti-solvent in the reaction chamber.

    [0030] In this regard, the thermal fluid chamber 620 is divided into a plurality of thermal fluid chambers by the partition panel 630, which consists of an insulating material to prevent a heat exchange of the thermal fluids filled in the plural thermal fluid chambers 620.

    [0031] Accordingly, heating the thermal fluid in each of the plural thermal fluid chambers 620 partitioned by the partition panel 630 at a different temperature creates a temperature gradient to the solution passing through the reaction chamber 611. The temperature gradient may vary depending on the temperature range of the thermal fluid.

    [0032] Further, each thermal fluid chamber 620 may further include a temperature sensor 621 for sensing the temperature of the thermal fluid in each thermal fluid chamber and sending temperature data to the analyzer and compensator module 900.

    [0033] The temperature control member 640 serves to control the temperature of the thermal fluid. For example, a circulator or a heater may be used as the temperature control member 640.

    [0034] The agitating body 650 is of a rod shape and provided to be rotatable in the cylinder 610. The agitating body 650 serves to agitate the solution and the anti-solvent in the cylinder 610. As the agitating body 650 rotates, the mixing of fluids in the direction of the agitating body 650 decreases and the radial mixing of fluids increases. When the flow of fluids in the direction of the agitating body 650 exists, mixing of fluids in the cells occurs, and the fluids close to the agitating body 650 is fixed by the centrifugal force and tends to move in the direction of the inner wall of the cylinder 100. An unsteady flow form a pair of rings rotating in the opposite direction to each other along the direction of the agitating body 650, that is, Taylor vortex flows, which change the rotational speed of the agitating body 650 to readily cause turbulent flows and use the fluid stability.

    [0035] The agitating motor 660 is arranged in the bottom portion of the cylinder 610 to provide a rotation power for the agitating body 650. The agitating motor 660 uses a speed-variable agitating motor capable of regulating the rotational speed in the range of 10 to 2,000 rpm by way of a DC voltage regulator (not shown). In this manner, the rotational speed of the agitating body 650 can be changed in the above-defined range (10 to 2,000 rpm), which leads to creation of turbulence in the solution.

    [0036] The agitating motor 660 and the agitating body 650 are indirectly connected to each other via the belt pulley 670 and the belt 671. As the high internal temperature of the cylinder 610 is transferred to the agitating body 650, the agitating body 650 is maintained at high temperature. A direct transfer of the high heat to the agitating motor 660 can shorten the lifespan of the agitating motor 660. It is therefore possible to prevent a heat transfer by providing an indirect connection between the agitating body 650 and the agitating motor 660 via the belt 671 as described above. Although the connection via the belt 671 is given as an example in the above description, it is not intended to limit the present invention and, of course, a connection via a chain or a gear is also available.

    [0037] On the other hand, the walls of the reaction chamber 611 and the thermal fluid chamber 620 may be coated with Teflon or made of hastelloy-C in order to provide corrosion resistance. Hastelloy-C, which is a HCl-resistant alloy with high corrosion resistance, may solve the problem in regards to corrosion resistance when used for such a portion as the cylinder 610 of the present invention that frequently gets in contact with the chemical solutions.

    [0038] The organic material separator 700 is connected to the outlet port 611c of the continuous reactor 600 to divide the slurry-like reactant discharged from the continuous reactor 600 into a solid organic material and a filtrate.

    [0039] The organic material storage tank 800 serves to store the solid organic material isolated by the organic material separator 700.

    [0040] The analyzer and compensator module 900 collects a liquid isolated by the organic material separator 700, analyzes the liquid to determine whether it is in the normal state or not, and performs compensation to an optimal condition according to the analyzed data. The compensation function may be controlled by a computer.

    [Example 2]



    [0041] Hereinafter, a description will be given as to an apparatus that includes a dehydrator and a dryer for purification of tryptophan in addition to the above-specified components, such as the continuous reactor, the storage tank, the agitator, the diffuser, and the heating jacket.

    [0042] The purification apparatus for purifying tryptophan includes, as shown in FIG. 4, a solid filter 10, a storage tank 20, a heating jacket 30, an air compressor 40, a continuous reactor 50, a dehydrator 60, and a dryer 70.

    [0043] The solid filter 10 filters out the solid matter from a tryptophan solution and allows the solution to pass through. In this regard, the solid filter 10 has a mesh (or pore) size of 0.1 µm or greater, preferably 0.1 to 0.5 µm so as to filter out all the solids 0.5 µm or larger in size from the tryptophan solution and allow only the minute solids having a size of less than 0.5 µm to pass through. Consequently, the first purification step is performed. The storage tank 20 has a function of storing the tryptophan solution passed through the solid filter 10. At this, the storage tank 20 includes a temperature sensor 21 for sensing the temperature of the tryptophan solution stored in the storage tank 20 in real time.

    [0044] The heating jacket 30 is provided outside the storage tank 20 to control the internal temperature of the storage tank 20. The heating jacket 30, which is filled with a thermal fluid, is disposed to immerse a part of the storage tank 20 and heat the thermal fluid by a heat source so that the tryptophan solution in the storage tank 20 can be controlled to have an appropriate temperature.

    [0045] The air compressor 40 has a function of suctioning the tryptophan solution in the storage tank 20 and transferring it to the next position.

    [0046] The continuous reactor 50 receives the tryptophan solution transferred by the air compressor 40 and sulfuric acid transferred through a separate passage and agitates the solutions to continuously produce a reactant.

    [0047] The continuous reactor is as defined above and its construction will not be separately described any more.

    [0048] The dehydrator 60 is connected to the outlet port of the continuous reactor 50 to separate a filtrate from the slurry-like reactant discharged from the continuous reactor 50. A centrifugal separator may be used for the dehydrator 60.

    [Example 3]



    [0049] The tryptophan purification method disclosed in the present invention has the following procedures (Refer to FIG. 5).

    [0050] First step: Solid removal step S10.

    [0051] The solid removal step is passing the tryptophan solution through the solid filter before storing it in the storage tank to eliminate solids of a predetermined size or greater. In this regard, the filter used in the solid removal step preferably has a mesh (or pore) size of 0.1 to 0.5 µm. Thus, the dissolved solids 0.5 µm or larger in size are filtered out from the tryptophan solution, so the tryptophan solution contains minute solids having a size of less than 0.5 µm.

    [0052] Second step: pH adjusting step S20.

    [0053] The pH adjusting step S20 is adding NaOH (caustic soda) into the storage tank to adjust the pH value of the tryptophan solution. In this regard, the pH value of the tryptophan solution is preferably in the range of 11 to 3.

    [0054] Third step: Temperature control step S30.

    [0055] The temperature control step S30 is providing the heating jacket outside the storage tank to maintain the tryptophan solution in the solution storage tank at a constant temperature.

    [0056] Fourth step: Density enhancing step S40.

    [0057] The density enhancing step S40 is adding a polymer material to the tryptophan solution in the storage tank to enhance the particle density of the tryptophan solution. This step involves using the continuous reactor.

    [0058] In this regard, the polymer material may be any one selected from polyvinyl alcohol (PVA), Carrageenan, alginic acid, HPC, or gelatin. As can be seen from FIG. 4, for example, large crystals are observed in the tryptophan solution with an elapse of time in either case of using PVA or gelatin. The tryptophan crystals using the polymer material have the higher growth rate than those not using the polymer material. The tryptophan crystals grow larger with an increase in the content of the acid solution (especially, sulfuric acid), which will be described in the sixth step.

    [0059] Due to the addition of the polymer material, the particles of the tryptophan solution grow to a size of about 300 µm or greater. In this case, the use of sonication leads to the reduced strength of the particles to make the particles fragile. But, the strength of the particles can be enhanced when the polymer material is controlled to have a lower molecular weight.

    [0060] Fifth step: Feeding step S50.

    [0061] The feeding step S50 is feeding the tryptophan solution of the storage tank into the continuous reactor. The feeding process may be carried out automatically by way of an air compressor or the like. The construction of the continuous reactor will be described later.

    [0062] Sixth step: Crystal precipitation step S60.

    [0063] The crystal precipitation step S60 is the process of adding an acid solution (especially, sulfuric acid) to the tryptophan solution fed into the continuous reactor to neutralize the pH value of the tryptophan solution and precipitate particulate crystals.

    [0064] In other words, the tryptophan solution is an amphoteric substance very soluble in an acid solution or an alkaline solution. After dissolving the tryptophan solution in the acid solution or the alkaline solution, the opposite solution (i.e., an alkaline solution or an acid solution) is added (for example, an acid solution is added after the tryptophan solution is dissolved in a NaOH solution), to neutralize the pH value of the tryptophan solution and precipitate crystals.

    [0065] Seventh step: Solid-liquid separation step S70.

    [0066] The solid-liquid separation step S70 is a process of dehydrating the precipitated particulate crystals of the continuous reactor with the dehydrator to perform a solid-liquid separation.

    [0067] In other words, the solid-liquid separation step S70 is adding the tryptophan crystals obtained with high water content into a centrifugal dehydrator to lower the water content to 60 % or less. In order to calculate the proper dehydration time, dehydration is performed for a predetermined time, and the dehydrated sludge-like tryptophan crystals are collected and measured in regards to the water content with a water content measurer. According to the measurement results, there is a need for a process to increase or decrease the dehydration time.

    [0068] In the preferred embodiment as achieved in the above procedures, the rotational speed of the dehydrator is 5,000 to 12,000 rpm and the dehydration time is 50 to 60 minutes. If the dehydrator is rotated at a low speed less than 500 rpm, the dehydration time becomes too long. If the rotational speed of the dehydrator is higher than 12,000 rpm, there is no significant difference in the dehydration rate from the case of rotating the dehydrator at the lower rotational speed, thus ending up with deteriorated dehydration efficiency.

    [0069] Eighth step: Drying step S80.

    [0070] In the drying step S80, the tryptophan sludge cake, which still has a high water content even after the completion of dehydration, needs to be dried with hot air into powder having a reduced water content of 10 % or less. In this regard, it is possible to add a process of washing the sludge cake and eliminating the washing water using a centrifugal separator, before drying the sludge cake with hot air. Such a pulverizing process leads to a yield of tryptophan with high purity.

    [Experiment 1]


    Change of H2SO4 feeding rate


    (Experiment conditions)



    [0071] 
    • Tryptophan concentration: 200 g/L
    • NaOH concentration: 5 mol/L
    • Initial pH: 14
    • H2SO4 concentration: 30 %
    • Agitation rate: 300 rpm
    • Reaction temperature: 25 °C
    • H2SO4 feeding rate: 0.5 mL/min, 2 mL/min, all at once.

    (Experimental results)



    [0072] It can be seen that the particle size of crystals decreases with an increase in the H2SO4 feeding rate. It is necessary to shorten the reaction time, because the particle size decreases with an increase in the reaction time.
    [Table 1]
      Particle size Cloud point Final pH
    PSA (µm) Microscopy (µm) Time pH
    1 48.64 40 - 45 Immediate - 7.6
    2 31 20 - 30 37 min 9.26 7.7
    3 12.49 10 - 20 110 min 10.3 7.6


    [0073] For reference, FIGS. 6, 7 and 8 are microscopic images of the cases 1, 2 and 3 of Table 1, respectively.

    [Experiment 2]


    Determination of reaction time


    (Experiment conditions)



    [0074] 
    • Tryptophan concentration: 100 g/L
    • NaOH concentration: 5 mol/L
    • Initial pH: 14
    • H2SO4 concentration: 30 %
    • Agitation rate: 300 rpm
    • Reaction temperature: 25 °C
    • H2SO4 feeding amount and rate: 100 mL & 16.7 mL/min
    • Other conditions: neutralize until pH 7 and then agitate for long time

    (Experimental results)



    [0075] Although this experiment shows that tryptophan crystals with large particle size can be produced only when the reaction time is short, a short agitation time leads to production of small crystals having weak bonds and thus being easily broken. As shown in FIGS. 9 and 10 to 13, it is a tendency that the longer reaction time results in the lower yield of medium-sized crystals but the higher yield of large-sized crystals. However, the particle size distribution is uniform when the reaction time is about 18 times or less.

    [0076] The recovery rate is about 95 % or greater without a significant change depending on the reaction time, which shows that the tryptophan is precipitated in a short time.

    [Experiment 3]


    Change of tryptophan concentration


    (Experiment conditions)



    [0077] 
    • NaOH concentration: 5 mol/L
    • Tryptophan concentration: 10, 100, 200 g/L
    • H2SO4 concentration: 30 %
    • Agitation rate: 100, 300 rpm
    • Reaction temperature: 25 °C
    • pH: 7
    • Reaction time: 6 hrs

    (Experimental results)



    [0078] As shown in FIG. 14, the particle size increases with a decrease in the tryptophan concentration. As shown in FIG. 15, the purity is about 99 % or greater in all conditions. As shown in FIG. 16, the recovery rate is about 75 % in all conditions. Reducing the dissolved tryptophan concentration is one of the methods to inhibit nucleation, and this method proves to be appropriate. It is considered that as the nucleation occurs less, tryptophan sticks to the nuclei to grow into crystals.

    [Experiment 4]


    Change of agitation rate


    (Experiment conditions)



    [0079] 
    • NaOH concentration: 5 mol/L
    • Tryptophan concentration: 10 g/L
    • H2SO4 concentration: 30 %
    • Agitation rate: 100, 300 rpm
    • Reaction temperature: 25 °C
    • pH: 7
    • Reaction time: 6 hrs

    (Experimental results)



    [0080] As shown in FIGS. 17, 18 and 19, the particle size increases with the reduced agitation rate. This material is a plate-shaped substance with the weak bonding strength of particles. The analytic results show that the crystals form to be easily broken as the plate is only 1 µm or less in height.


    Claims

    1. A purification apparatus comprising a continuous reactor, the purification apparatus comprising:

    - a solution storage tank (100) for storing a solution;

    - an sonicator (200) for dispersing the particles contained in the solution of the solution storage tank (100) with ultrasonic wave;

    - an agitator (120) for agitating the solution stored in the solution storage tank;

    - a heating jacket provided outside the solution storage tank to control the internal temperature of the solution storage tank;

    - an air compressor (300); and

    - a reactor comprising a reaction chamber (611) comprising an inlet (611b) through which the solution from the tank is fed in, and an inlet (611a) through which an antisolvent is fed in, thus mixing the solution and the antisolvent, and an outlet (611c), and comprising an agitator body (650) for stirring the mixture at high speed to continuously produce a reactant having uniform particles;

    characterized in that the solution is transferred from the tank to the inlet of the reaction chamber under reduced pressure using the air compressor (300).
     
    2. The apparatus according to claim 1, further comprising:

    - a filter cartridge for filtering out minute impurities contained in the solution before feeding it under reduced pressure into the reaction chamber;

    - a temperature control device comprising a casing receiving the filter cartridge, a thermal fluid filled in the casing, and a heater for heating the thermal fluid;

    - an organic material separator connected to the outlet of the reaction chamber to divide the slurry-like reactant discharged from the continuous reactor into an organic material and a filtrate;

    - an organic material storage tank for storing the organic material in the solid state isolated by the organic material separator; and

    - an analyzer and compensator module for collecting a liquid isolated by the organic material separator, analyzing the liquid to determine whether the liquid is in the normal state or not, and performing compensation to an optimal condition according to the analyzed data.


     
    3. The apparatus according to claim 2, wherein the filter cartridge comprises a filter case and a filler filled in the filter case, the filler comprising at least one selected from the group consisting of metal oxide, active alumina, silica, titanium oxide, active carbon, bentonite, acid clay, and diatomite.
     
    4. The apparatus accoding to claim 2, wherein the organic material separator is a centrifugal separator or a dehydrator.
     
    5. The apparatus accoding to claim 1, wherein the continuous reactor comprises:

    - a cylinder encasing the reaction chamber, the anti-solvent inlet port being provided on the top side thereof, and the solution inlet being provided on the bottom side thereof to feed the solution of the organic material;

    - a thermal fluid chamber provided in the shape of a ring on the outer side of the reaction chamber and filled with a thermal fluid for regulating the temperature of the solution and the anti-solvent in the reaction chamber;

    - a partition panel provided to divide the space of the thermal fluid chamber into a plurality of thermal fluid chambers and formed of an insulating material to prevent a heat exchange of the thermal fluids filled in the plural thermal fluid chambers;

    - a temperature control member for controlling the temperature of the thermal fluid filled in each thermal fluid chamber isolated by the partition panel;

    - an agitating body provided to be rotatable in the cylinder and agitate the solution and the anti-solvent in the cylinder;

    - an agitating motor arranged in the bottom portion of the cylinder; and

    - a belt pulley and a belt connecting the axis of the agitating motor to the one end of the agitating body to transfer the driving force of the agitating motor to the agitating body.


     
    6. The apparatus according to cliam 5, wherein the continuous reactor further comprises a temperature sensor for sensing the temperature of the thermal fluid in each thermal fluid chamber and sending temperature data to the analyzer and compensator module.
     
    7. The apparatus according to claim 5, wherein the reaction chamber and the thermal fluid chamber have walls coated with Teflon or formed of hastelloy-C to provide corrosion resistance.
     
    8. The apparatus according to claim1, further comprising:

    - a solid filter for filtering out solid matter from the solution and separating the solution, stored in the solution storage tank after having passed through the solid filter;

    -- a dehydrator connected to the outlet of the reaction chamber, to separate a filtrate from the slurry-like reactant discharged from the continuous reactor; and

    - a dryer for drying a solid component separated from the dehydrator.


     
    9. A tryptophan purification method using the purification apparatus according to claim 8, the tryptophan purification method comprising:

    - a solid removal step (S10) of passing the tryptophan solution through the solid filter before storing in the solution storage tank to eliminate solid matter of a predetermined size or greater;

    - a pH adjusting step (S20) of adding NaOH into the solution storage tank to adjust the pH value of the tryptophan solution;

    - a temperature control step (S30) of providing the heating jacket outside the solution storage tank to maintain the temperature of the tryptophan solution in the solution storage tank at a constant level;

    - a density enhancing step (S40) of adding a polymer material to the tryptophan solution in the solution storage tank to enhance the particle density of the tryptophan solution;

    - a feeding step (S50) of feeding the tryptophan solution of the solution storage tank into the reaction chamber of the continuous reactor;

    - a crystal precipitation step (S60) of adding an acid solution to the tryptophan solution fed into the continuous reactor to neutralize the pH value of the tryptophan solution and precipitate particulate crystals;

    - a solid-liquid separation step (S70) of dehydrating the precipitated particulate crystals with the dehydrator to perform a solid-liquid separation; and

    - a drying step (S80) of hot-air drying the solid component;

    characterized in that the feeding step is performed under reduced pressure using an air compressor.
     


    Ansprüche

    1. Ein Reinigungsapparat umfassend einen kontinuierlichen Reaktor, der Reinigungsapparat umfassend:

    Einen Lösungsspeicherbehälter (100) für das Speichern einer Lösung;

    ein Ultraschallgerät (200) für die Verteilung der Partikel in der Lösung des Lösungsspeicherbehälters (100) mit Ultraschallwellen;

    einen Rührer (120) zum Rühren der in dem Lösungsspeicherbehälter gespeicherten Lösung;

    einen Heizmantel außerhalb des Lösungsspeicherbehälters, um die Innentemperatur des Lösungsspeicherbehälters zu kontrollieren;

    einen Luftkompressor (300); und

    einen Reaktor umfassend eine Reaktionskammer (611) mit einem Einlass (611b), durch den die Lösung aus dem Behälter eingeleitet wird,

    und einen Einlass (611a), durch den ein Antilösungsmittel eingeleitet wird, um damit die Lösung und Antilösung zu mischen, und einen Auslass (611c), und umfassend ein Rührwerk (650) zum Rühren des Gemischs bei hoher Drehzahl, um kontinuierlich ein Reaktionsmittel mit gleichmäßig verteilten Partikeln herzustellen;

    gekennzeichnet dadurch, dass die Lösung aus dem Behälter zu dem Einlass der Reaktionskammer, unter reduziertem Druck und unter Verwendung des Luftkompressors (300), geleitet wird.


     
    2. Der Apparat nach Anspruch 1, ferner umfassend:

    eine Filterkartusche zum Herausfiltern winziger Unreinheiten, die in der Lösung enthalten sind, bevor sie unter reduziertem Druck in die Reaktionskammer geleitet werden;

    ein Temperaturkontrollgerät umfassend ein Gehäuse, in dem die Filterkartusche untergebracht ist, ein in das Gehäuse gefülltes Umlaufwasser, und ein Heizgerät zum Aufheizen des Umlaufwassers;

    einen organischen Materialabscheider, der mit dem Auslass der Reaktionskammer verbunden ist, um das schlammartige Reaktionsmittel zu teilen, das aus dem kontinuierlichen Reaktor in ein organisches Material und ein Filtrat geleitet wird;

    einen organischen Materialspeicherbehälter für das Speichern des organischen Materials in dem festen Zustand, in dem es durch den organischen Materialabscheider isoliert wird; und

    ein Analysator- und Kompensatormodul für das Sammeln einer durch den organischen Materialabscheider isolierten Flüssigkeit, Analysieren der Flüssigkeit, um zu bestimmen, ob sich die Flüssigkeit in normalem Zustand befindet oder nicht, und Ausführen der Kompensation in einen optimalen Zustand gemäß der Analysedaten.


     
    3. Der Apparat nach Anspruch 2, wobei die Filterkartusche ein Filtergehäuse und ein Füllmittel umfasst, das in das Filtergehäuse gefüllt wird, das Füllmittel umfasst mindestens ein Element ausgewählt aus der Gruppe bestehend aus Metalloxid, aktiviertem Aluminiumoxid, Siliciumdioxid, Titanoxid, Aktivkohle, Bentonit, saurem Ton und Diatomit.
     
    4. Der Apparat nach Anspruch 2, wobei der organische Materialabscheider ein Zentrifugalabscheider oder ein Entwässerer ist.
     
    5. Der Apparat nach Anspruch 1, wobei der kontinuierliche Reaktor Folgendes umfasst:

    einen Zylinder, der die Reaktionskammer einschließt, der Antilösungsmittel-Einlassanschluss ist an dessen Oberseite angebracht, und der Lösungseinlass ist an dessen Unterseite angebracht, um die Lösung des organischen Materials einzuleiten;

    eine Umlaufwasser-Kammer in der Form eines Rings an der Außenseite der Reaktionskammer und gefüllt mit einem Umlaufwasser für die Regulierung der Temperatur der Lösung und des Antilösungsmittels in der Reaktionskammer;

    eine Zwischenwand, die eingerichtet ist, um den Raum der Umlaufwasser-Kammer in eine Vielzahl von Umlaufwasser-Kammern zu teilen und geformt aus einem Isoliermaterial, um einen Wärmeaustausch des Umlaufwassers zu verhindern, das in die Vielzahl der Umlaufwasser-Kammern gefüllt ist;

    ein Temperaturkontrollelement für die Kontrolle der Temperatur des Umlaufwassers, das in jede durch die Zwischenwand isolierte Umlaufwasser-Kammer gefüllt ist;

    ein Rührwerk, das drehbar in dem Zylinder untergebracht ist und die Lösung und die Antilösung in dem Zylinder rührt;

    einen Rührmotor, der im unteren Teil des Zylinders angebracht ist; und

    eine Riemenscheibe und einen Riemen, der die Achse des Rührmotors mit dem einen Ende des Rührwerks verbindet, um die Antriebskraft des Rührmotors auf das Rührwerk zu übertragen.


     
    6. Der Apparat nach Anspruch 5, wobei der kontinuierliche Reaktor ferner einen Temperatursensor umfasst für das Erfassen der Temperatur des Umlaufwassers in jeder Umlaufwasser-Kammer und Senden der Temperaturdaten an das Analysator- und Kompensatormodul.
     
    7. Der Apparat nach Anspruch 5, wobei die Reaktionskammer und die Umlaufwasser-Kammer Wände aufweisen, die mit Teflon beschichtet oder aus Hastelloy-C gebildet sind, um eine Korrosionsbeständigkeit bereitzustellen.
     
    8. Der Apparat nach Anspruch 1, ferner umfassend:

    einen Feststofffilter für das Herausfiltern von Feststoffen aus der Lösung und Abscheiden der Lösung, die im Lösungsspeicherbehälter gespeichert wird, nachdem sie durch den Feststofffilter geleitet wurde;

    einen Entwässerer, der mit dem Auslass der Reaktionskammer verbunden ist, um ein Filtrat aus dem schlammähnlichen Reaktionsmittel abzuscheiden, das aus dem kontinuierlichen Reaktor abgeleitet wird; und

    einen Trockner für das Trocknen eines Feststoffs, der aus dem Entwässerer abgeschieden wurde.


     
    9. Ein Tryptophan-Reinigungsverfahren unter Verwendung des Reinigungsapparats nach Anspruch 8, das Tryptophan-Reinigungsverfahren umfassend:

    Einen Feststoffentnahmeschritt (S10) mit dem Hindurchleiten der Tryptophanlösung durch den Feststofffilter vor dem Speichern in dem Lösungsspeicherbehälter, um den Feststoff einer vorher festgelegten Größe oder darüber zu beseitigen;

    einen pH-Wert-Einstellungsschritt (S20) mit dem Hinzufügen von NaOH in den Lösungsspeicherbehälter, um den pH-Wert der Tryptophanlösung einzustellen;

    einen Temperaturkontrollschritt (S30) mit dem Bereitstellen des Heizmantels außerhalb des Lösungsspeicherbehälters, um die Temperatur der Tryptophanlösung in dem Lösungsspeicherbehälter auf einem konstanten Niveau zu halten;

    einen Dichteverstärkungsschritt (S40) mit dem Hinzufügen eines Polymermaterials zu der Tryptophanlösung in dem Lösungsspeicherbehälter, um die Partikeldichte der Tryptophanlösung zu verstärken;

    einen Zuführungsschritt (S50) mit der Zuführung der Tryptophanlösung des Lösungsspeicherbehälters in die Reaktionskammer des kontinuierlichen Reaktors;

    einen Kristallabscheidungsschritt (S60) mit dem Hinzufügen einer säurehaltigen Lösung in die Tryptophanlösung, die in den kontinuierlichen Reaktor geführt wird, um den pH-Wert der Tryptophanlösung zu neutralisieren und die Feststoffkristalle abzuscheiden;

    einen Fest-Flüssig-Abscheidungsschritt (S70) mit dem Dehydrieren der abgeschiedenen Feststoffkristalle mit dem Entwässerer, um eine Fest-Flüssig-Abscheidung durchzuführen; und

    einen Trocknungsschritt (S80) mit Heißlufttrocknung der festen Komponente;

    gekennzeichnet dadurch, dass der Zuführungsschritt unter reduziertem Druck unter Verwendung eines Luftkompressors ausgeführt wird.


     


    Revendications

    1. Appareil de purification comprenant un réacteur continu, l'appareil de purification comprenant :

    un réservoir de stockage de solution (100) destiné au stockage d'une solution ;

    un sonicateur (200) destiné à la dispersion des particules contenues dans la solution du réservoir de stockage de solution (100) avec l'onde ultrasonore.

    un agitateur (120) destiné à agiter la solution stockée dans le réservoir de stockage de solution ;

    une chemise chauffante fournie à l'extérieur du réservoir de stockage de solution pour réguler la température interne du réservoir de stockage de solution ; un compresseur d'air (300) ; et

    un réacteur comprenant une chambre de réaction (611) comprenant une entrée (611b) à travers laquelle la solution du réservoir est introduite,

    et une entrée (611a) à travers lequel un antisolvant est introduit, mélangeant ainsi la solution et l'antisolvant et une sortie (611c) et comprenant un corps d'agitateur (650) destiné à agiter le mélange à grande vitesse pour produire en continu un réactif présentant des particules uniformes ;

    caractérisé en ce que la solution est transférée à partir du réservoir vers l'entrée de la chambre de réaction sous pression réduite à l'aide du compresseur d'air (300).


     
    2. Appareil selon la revendication 1, comprenant en outre :

    une cartouche de filtre destinée à filtrer les petites impuretés contenues dans la solution avant de l'introduire sous pression réduite dans la chambre de réaction ;

    un dispositif de régulation de la température comprenant un logement recevant la cartouche de filtre, un fluide thermique rempli dans le logement et un élément chauffant destiné au chauffage du fluide thermique ;

    un séparateur de matière organique raccordé à la sortie de la chambre de réaction pour diviser le réactif de type boue déchargé à partir du réacteur continu dans une matière organique et un filtrat ;

    un réservoir de stockage de matière organique destiné au stockage de la matière organique à l'état solide, isolée par le séparateur de matière organique ; et

    un analyseur et un module de compensateur destiné à collecter un liquide isolé par le séparateur de matière organique, en analysant les liquides pour déterminer si le liquide est dans l'état normal ou non et en réalisant une compensation à une condition optimale selon les données analysées.


     
    3. Appareil selon la revendication 2, dans lequel la cartouche de filtre comprend un logement de filtre et une charge remplie dans le logement de filtre, la charge comprenant au moins un élément sélectionné parmi le groupe constitué d'oxyde métallique, d'oxyde d'aluminium actif, de silice, d'oxyde de titane, de carbone actif, de bentonite, d'argile acide et de diatomite.
     
    4. Appareil selon la revendication 2, dans lequel le séparateur de matière organique est un séparateur centrifuge ou un déshydrateur.
     
    5. Appareil selon la revendication 1, dans lequel le réacteur continu comprend :

    un cylindre destiné à enfermer la chambre de réaction, l'orifice d'entrée d'antisolvant étant fourni sur le côté supérieur de celle-ci et l'entrée de la solution étant fournie sur le côté inférieur de celle-ci pour introduire la solution de la matière organique ;

    une chambre de fluide thermique fournie sous la forme d'un anneau sur le côté extérieur de la chambre de réaction et rempli avec un fluide thermique destiné à réguler la température de la solution et de l'antisolvant dans la chambre de réaction ;

    un panneau de séparation fourni pour diviser l'espace de la chambre de fluide thermique en une pluralité de chambres de fluide thermique et constitué d'une matière isolante pour empêcher un échange de chaleur des fluides thermiques remplis dans la pluralité de chambres de fluide thermique ;

    un élément de régulation de la température destiné à réguler la température du fluide thermique rempli dans chaque chambre du fluide thermique isolée par le panneau de séparation ;

    un corps d'agitation fourni pour être rotatif dans le cylindre et agiter la solution et l'antisolvant dans le cylindre ;

    un moteur d'agitation agencé dans la partie inférieure du cylindre ; et

    une poulie de courroie et une courroie reliant l'axe du moteur d'agitation à l'une des extrémités du corps d'agitation pour transférer la force motrice du moteur d'agitation au corps d'agitation.


     
    6. Appareil selon la revendication 5, dans lequel le réacteur continu comprend en outre un capteur de température destiné à mesurer la température du fluide thermique dans chaque chambre du fluide thermique et envoyer les données de température à l'analyseur et au module de compensateur.
     
    7. Appareil selon la revendication 5, dans lequel la chambre de réaction et la chambre de fluide thermique présentent des parois recouvertes de téflon ou constituées d'hastelloy C pour fournir une résistance à la corrosion.
     
    8. Appareil selon la revendication 1, comprenant en outre :

    un filtre pour matières solides destiné à filtrer les matières solides provenant de la solution et séparer la solution stockée dans le réservoir de stockage de solution après avoir être passée à travers le filtre pour matières solides ;

    un déshydrateur raccordé à la sortie de la chambre de réaction, pour séparer un filtrat provenant du réactif de type boue déchargé à partir du réacteur continu ; et

    un sécheur destiné à sécher un constituant solide séparé du déshydrateur.


     
    9. Procédé de purification de tryptophane à l'aide de l'appareil de purification selon la revendication 8, le procédé de purification de tryptophane comprenant :

    une étape d'enlèvement des matières solides (S10) de passage de la solution de tryptophane à travers le filtre pour matières solides avant le stockage dans le réservoir de stockage de solution pour éliminer les matières solides d'une taille prédéterminée ou supérieure ;

    une étape d'ajustement de pH (S20) d'ajout de NaOH dans le réservoir de stockage de solution pour ajuster la valeur de pH de la solution de tryptophane ;

    une étape de régulation de la température (S30) de fourniture de la chemise chauffante à l'extérieur du réservoir de stockage de solution pour maintenir la température de la solution de tryptophane dans le réservoir de stockage de solution à un niveau constant ;

    une étape d'amélioration de la densité (S40) d'ajout d'un matériau polymère à la solution de tryptophane dans le réservoir de stockage de solution pour améliorer la densité de particules de la solution de tryptophane ;

    une étape d'introduction (S50) d'introduction de la solution de tryptophane du réservoir de stockage de solution dans la chambre de réaction du réacteur continu ;

    une étape de précipitation de cristaux (S60) d'ajout d'une solution acide à la solution de tryptophane introduite dans le réacteur continu pour neutraliser la valeur de pH de la solution de tryptophane et précipiter des cristaux de particules ;

    une étape de séparation (S70) de déshydratation des cristaux de particules précipités avec le déshydrateur pour effectuer une séparation solide-liquide ; et

    une étape de séchage (S80) de séchage à l'air chaud du constituant solide ;

    caractérisée en ce que l'étape d'introduction s'effectue sous pression réduite à l'aide d'un compresseur d'air.


     




    Drawing









































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description