(19)
(11) EP 2 947 063 B1

(12) EUROPÄISCHE PATENTSCHRIFT

(45) Hinweis auf die Patenterteilung:
27.11.2019  Patentblatt  2019/48

(21) Anmeldenummer: 15001307.6

(22) Anmeldetag:  02.05.2015
(51) Internationale Patentklassifikation (IPC): 
C06B 33/08(2006.01)
C06B 45/10(2006.01)

(54)

VERFAHREN ZUR DRUCKSTEIGERUNG EINER KOMPOSIT-LADUNG

METHOD FOR INCREASING PRESSURE OF A COMPOSITE CHARGE

PROCÉDÉ D'AUGMENTATION DE PRESSION D'UN CHARGEMENT COMPOSITE


(84) Benannte Vertragsstaaten:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priorität: 21.05.2014 DE 102014007455

(43) Veröffentlichungstag der Anmeldung:
25.11.2015  Patentblatt  2015/48

(73) Patentinhaber: TDW Gesellschaft für verteidigungstechnische Wirksysteme mbH
86529 Schrobenhausen (DE)

(72) Erfinder:
  • Arnold, Werner
    D-85051 Ingolstadt (DE)

(74) Vertreter: Isarpatent 
Patent- und Rechtsanwälte Behnisch Barth Charles Hassa Peckmann & Partner mbB Friedrichstrasse 31
80801 München
80801 München (DE)


(56) Entgegenhaltungen: : 
EP-A2- 1 584 610
DE-A1-102005 011 535
US-B1- 7 727 347
US-B2- 7 393 423
WO-A1-2005/108329
DE-C1- 10 058 705
US-B1- 8 168 016
   
  • GILEV S D ET AL: "Interaction of aluminum with detonation products", COMBUSTION, EXPLOSION AND SHOCK WAVES JANUARY 2006 SPRINGER SCIENCE AND BUSINESS MEDIA DEUTSCHLAND GMBH US, Bd. 42, Nr. 1, Januar 2006 (2006-01), Seiten 107-115, XP002747348, DOI: 10.1007/S10573-006-0013-Y
  • KUMAR A S ET AL: "Evaluation of plastic bonded explosive (PBX) formulations based on RDX, aluminum, and HTPB for underwater applications", PROPELLANTS, EXPLOSIVES, PYROTECHNICS JULY 2010 WILEY-VCH VERLAG DEU, Bd. 35, Nr. 4, Juli 2010 (2010-07), Seiten 359-364, XP002747349, DOI: 10.1002/PREP.200800048
  • ZHOU Z Q ET AL: "Effects of the aluminum content on the shock wave pressure and the acceleration ability of RDX-based aluminized explosives", JOURNAL OF APPLIED PHYSICS 20141014 AMERICAN INSTITUTE OF PHYSICS INC. USA, Bd. 116, Nr. 14, 14. Oktober 2014 (2014-10-14), XP002747350, DOI: 10.1063/1.4897658
   
Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europäischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäischen Patent Einspruch einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Einspruchsgebühr entrichtet worden ist. (Art. 99(1) Europäisches Patentübereinkommen).


Beschreibung


[0001] Die Erfindung betrifft ein Verfahren zur Drucksteigerung einer Komposit-Ladung enthaltend wenigstens einen Sprengstoff, einen inerten oder energetischen Binder und ein reaktives Metallpulver.

[0002] Moderne konventionelle und unempfindliche Sprengladungen enthalten überwiegend Sprengstoffe wie RDX (Hexogen) oder HMX (Oktogen), vermischt mit Kunststoffbindern wie HTPB (Hydroxyl-Terminiertes Polybutadien). RDX ist unempfindlicher als HMX und wird beispielsweise gerne für druck-gesteigerte Sprengladungen verwendet, falls eine hohe Stoßwellenunempfindlichkeit gefordert ist. HMX hingegen ist etwas leistungsstärker hinsichtlich der Beschleunigung von Metall-Belegungen oder -Hüllen und wird eher dann eingesetzt, wenn der Schwerpunkt auf Splitterleistung und weniger auf Empfindlichkeit liegt.

[0003] In jüngerer Zeit gewinnen weitere neue Sprengstoffe wie CL20, Fox 7, ... Fox 12 etc. an Bedeutung. Zudem werden anstelle inerter Kunststoffbinder (wie das erwähnte HTPB) auch energetische Binder (beispielsweise GAP) eingesetzt.

[0004] Eine Erhöhung der Druckwirkung, geläufiger als "Blast-Steigerung" bekannt, kann durch Zumischung von reaktiven Metallpulvern (z.B. Aluminium , Bor, Silizium, Magnesium usw.) erzielt werden. Form und Größe der Metallpartikel spielen für die Blast-Steigerung eine wichtige Rolle. Derartige Ladungen werden dann als "Komposit-Ladung" bezeichnet. Weitere Bestandteile wie Weichmacher, Haftvermittler etc. werden bei Bedarf zugemischt. Eine derartige Kombination wird dann als Formulierung der Ladung bezeichnet.

[0005] Bisher ist die Vorgehensweise bei der oben erwähnten Optimierung der Blast-Leistung dergestalt, dass Formulierungen hergestellt werden (z.B. RDX / AI / HTPB), indem die Menge der Zutaten in verschiedenen Mengenverhältnissen variiert wird und dann diese Ladungen in zumeist großen Versuchsserien auf ihre Leistungsfähigkeit hin getestet werden. Dieses Vorgehen ist zeit- und kostenintensiv.

[0006] Die DE 40 02 157 A1 beschreibt verschiedene Beispiele Polymergebundener Sprengstoffe, wobei eine Optimierung der mechanischen Eigenschaf-ten angestrebt werden soll.

[0007] In "Performance of High Explosives in Underwater Applikations. Part 2: Aluminized Explosives", E. Strømsøe and S. W. Eriksen, Propellants, Explosives, Pyrotechnics 15, 52-53 (1990) sind verschiedene RDX / AI - Mischungen beschrieben und werden im Hinblick auf Eignung für Unterwasserladungen miteinander verglichen.

[0008] Aus der DE 10 2005 011 535 A1 ist ein Sprengstoff bekannt geworden, der über und unter Wasser ein verbessertes Blastverhalten aufgrund der Mischung mit wasserstoffterminiertem Silizium-Einkristallpulver besitzt, welches mindestens einen Korngrößenbereich aufweist.

[0009] Dass ein Kompositsprengstoff in einem nahezu stöchiometrischen Verhältnis zusammengestellt werden kann, ist aus der US 2004/0256038 A1 bekannt geworden, wobei offen bleibt, auf welche Reaktionsgleichung sich diese Angabe bezieht.

[0010] DIE US 8168016 offenbart Komposit-Ladungen umfassend 50-90 Gew.% RDX, 2-25 Gew.% Bindemittel und 5-40 Gew.% Aluminium, wobei das Aluminium in einem frühen Stadium der Detonation vollständig abreagiert.

[0011] Zur Vermeidung des oben genannten Nachteils liegt dieser Erfindung die Aufgabe zugrunde, ein Verfahren zur Maximierung der Blast-Leistung einer Ladung insbesondere zur Bunkerbekämpfung anzugeben, welches in kurzer Zeit die Formulierung einer Sprengladung mit optimierter Blast-Leistung zum Ergebnis hat.

[0012] Diese Aufgabe wird durch ein Verfahren gemäß Anspruch 1 gelöst.

[0013] Weitere kennzeichnende Merkmale des Verfahrens sind den nachgeordneten Ansprüchen zu entnehmen.

[0014] Zum Verständnis des Verfahrens ist ein gewisses Maß an Detailwissen über den Ablauf einer Detonation einer Sprengladung hilfreich. Dieses Wissen, das auch den Kernpunkt des Maximierungsverfahrens einschließt, ist neuartig und wurde in umfangreichen Testserien erarbeitet.

[0015] Eine Detonation läuft in drei Phasen ab:
  • Phase I:
    detonative Phase: Durchdetonation der Ladung (Zeitrahmen: 10 - 20 µsec);
  • Phase II:
    anaerobe Phase: Expansion der Detonationsschwaden ohne Zugabe / Vermischung mit Luftsauerstoff (Zeitrahmen: einige msec);
  • Phase III:
    aerobe Phase: Nachverbrennung unter Zusatz von Luftsauerstoff, durch Verwirbelung der Schwaden mit Luft (Zeitrahmen: 50-100 msec)


[0016] In Phase I und II kann also die Oxidation und damit die Energiegewinnung nur durch den mitgeführten Sauerstoff bewerkstelligt werden. Erst in der dritten Phase III kommt es zur Vermischung mit Luftsauerstoff und damit zu Nachverbrennungen. Fast alle militärischen Sprengladungen weisen eine Sauerstoff-Unterbilanz auf, sprich zur vollständigen Umsetzung (Nachverbrennung) benötigen sie Sauerstoff aus der Luft. Dies ist insbesondere dann der Fall, wenn man zusätzlich Brennstoffe wie reaktive Metallpulver hinzufügt. Das ist genau die Methode, den Reaktionsgrad und damit die Blast-Leistung zu erhöhen.

[0017] Beispielsweise werden in RDX- und HMX-haltigen Sprengladungen (so genannte CHNO-Sprengladungen) die C- und H-Atome zu CO2 und H2O oxidiert. Die N-Atome verhalten sich zumeist "neutral" und vereinigen sich zu N2. Durch Zugabe von zusätzlichem Metallpulver (etwa AI) kommt es zu weiteren Oxidationen, wie beispielsweise Al2O3.

[0018] Aufgrund der angeführten Sauerstoff-Unterbilanz kommt es während der Detonation (in Phase I und II) zu einem "Wettbewerb" zwischen den einzelnen Brennstoffen (z.B. C, H, AI) um den Sauerstoff und es können nicht alle Atome / Moleküle mit Sauerstoff abgesättigt werden. Das Metall-Pulver (z.B. AI) liefert bei der Oxidation aber die meiste Verbrennungsenergie, außerdem ist es in der Regel sehr affin gegenüber Sauerstoff, d.h. es oxidiert sehr leicht und schnell (abhängig von Korngröße und -form). Allerdings ist hierzu eine gewisse Mindesttemperatur notwendig (für Al2O3 in der Größenordnung von 2000 K), die nicht unterschritten werden darf. In der anaeroben Phase ist die Temperatur innerhalb des Gasballes ausreichend hoch und es bleibt genügend Zeit, alles Metallpulver zu oxidieren.

[0019] Das erfindungsgemäße Verfahren zur Maximierung der Blast-Leistung läuft nun wie folgt ab. Bei einer bestimmten Sprengladungs-Formulierung fügt man stöchiometrisch genau so viel Brennstoff-Pulver hinzu, dass alle Metall-Ionen mit dem mitgeführten Sauerstoff der Ladung (ohne Luftsauerstoff) oxidiert werden können. Die C- Atome, H-Atome etc. werden später durch den Luftsauerstoff weiter oxidiert. Auf diese Weise erreicht man eine Maximierung der Blast-Leistung.

[0020] Ziel ist es, die Blast-Leistung einer beliebigen Sprengladungs-Formulierung oben genannter Zusammensetzungen durch dieses Vorgehen zu optimieren, d.h. das lokale Maximum in einem mehrdimensionalen Parameterraum zu finden ohne auf ein rein statistisches, zeit-/kostenaufwändiges Verfahren zurückgreifen zu müssen und gleichzeitig auf umfangreiche Versuchsserien verzichten zu können.

[0021] Der erste Schritt des Verfahrens umfasst das Zusammenstellen der notwendigen Sprengladungs-Komponenten. Hierbei wird der Schwerpunkt auf die Eignung der optimierten Ladung für eine spezielle Anwendung gelegt. Beispielsweise betrifft dies die Stoßwellenunempfindlichkeit bei einer geplanten Bunkerbekämpfung. Hierbei bietet sich RDX als Sprengstoff an. Für die weiteren Komponenten gilt zumeist ähnliches.

[0022] Im zweiten Schritt wird die Optimierung der Blast-Leistung angestrebt. Hierzu fügt man weiteren Brennstoff zumeist in Form von reaktiven Metallpulvern hinzu, wie etwa Aluminium-Pulver. Hierbei kommt nun der Kernpunkt des erfindungsgemäßen Maximierungsverfahrens zum Tragen. Es muss für eine beliebige Mischung der Komponenten immer die intrinsische Sauerstoffbilanz beachtet werden. Der Sauerstoffanteil muss stöchiometrisch exakt so bemessen sein, dass jedes Metallpartikel während der Detonation mit Sauerstoff abgesättigt, also vollkommen oxidiert werden kann.

[0023] Im dritten Schritt findet die Auswahl von Art und Zustand der Metallpartikeln statt. Damit dieser Punkt erfüllt werden kann, müssen vom Fachmann bestimmte Voraussetzungen beachtet werden. Insbesondere sind Größe und Form der Partikeln ausschlaggebend. Eine schnelle Oxidation aller Pulverpartikeln während der anaeroben Phase muss möglich sein, sonst wird das Maximum nicht erreicht. Sind die Partikeln zu groß, können während der Detonationsphase nicht die gesamten Partikeln verbrennen. Sind sie zu klein, ist der relative Anteil der zumeist vorhandenen Oberflächen-Oxidschicht zu groß, und man verliert erneut Energie. Die minimale Größe ergibt sich also aus der zur Verfügung stehenden Zeit (in der Detonationsphase), innerhalb der die Metallpartikel komplett oxidiert werden muss. Außerdem wären zu kleine Partikeln wegen zunehmender Viskosität schlecht zu verarbeiten aufgrund der mit abnehmendem Radius rasant ansteigenden kumulierten Oberflächen, die alle vom Binder benetzt werden müssen.

[0024] Die mögliche Trägheit der Oxidations-Reaktion ist ein weiterer Parameter, der beachtet werden muss: Bor etwa ist relativ reaktionsträge und bedarf eines Reaktionskatalysators, was beispielsweise durch Zumischen von Al-Pulver bewerkstelligt werden kann.

[0025] Die Größe der Metallpartikeln kann nicht beliebig gewählt werden. Bekannte Ladungen enthalten Aluminiumpartikeln mit einer Korngröße von durchschnittlich 35 µm. Dies wurde im Rahmen der Vorarbeiten zu dieser Erfindung auf eirien Mittelwert von 4 µm reduziert, der sich als besonders vorteilhaft erwiesen hat. Eine weitere Reduzierung der Größe der Partikeln bringt keine weitere Steigerung, da die Verbrennung der µm-Partikeln schon schnell genug ist, um in der oben genannten Phase II abgeschlossen zu werden. Eine Reduzierung in den Nanometer-Bereich ruft vielmehr zahlreiche Nachteile hervor.

[0026] Eine weitere Möglichkeit zur Verbesserung der Verbrennungsreaktion wäre das so genannte "Coating" (also die Beschichtung) von kleinen Metall-Partikeln mit beispielsweise RDX oder HMX oder dergleichen, bzw. durch passivierende Maßnahmen. Dies ist derzeit technisch möglich, muss allerdings unter Kostenaspekten von Fall zu Fall entschieden werden. Dadurch könnte die störende Oxidierung der Partikeloberfläche vermieden werden.

[0027] Eine auf die beschriebene Weise für Außenraum-Detonationen optimierte Ladung, bei der insbesondere die komplette Oxidation des zugefügten Brennstoffes / Metallpulvers berücksichtigt und realisierbar gemacht wurde, erzielt eine maximale Stoßwelle, dies allein aufgrund der Vorgehensweise und ohne lange Versuchsreihen durchführen zu müssen.

[0028] Die Stoßwelle löst sich in der detonativen Phase (I und II) vom Feuerball, jegliche aerobe Nachreaktionen kommen zu spät für eine Energieerhöhung der Stoßwelle. Wenn alles Metallpulver während dieser Phase oxidiert wird, erreicht man eine maximale Energiefreisetzung, den maximalen Blast-Effekt. Hätte man weniger Metallpulver in der Formulierung, würde man Sauerstoff an die C- und H-Atome "verschenken" und damit Energie verlieren, da die Oxidation dieser Atome weniger Verbrennungsenergie liefert. Hätte man zu viel Metallpulver dazu gegeben, würden diese "überstöchiometrischen" Metall-Ionen nicht oxidiert werden, man hätte ebenfalls nicht den optimalen Punkt erreicht. Es gibt also eine stöchiometrisch optimale Mischung, bei der alle Metall-Ionen ihren Sauerstoffanteil bekommen, dann ist auch die Blast-Leistung maximal.

[0029] Die Optimierung der Ladung für Innenraum-Detonationen unterscheidet sich von der Ladung für Außenraum-Detonationen. Üblicherweise haben derartige Sprengladungen Metallhüllen (z.B. Stahlhüllen) zur Strukturfestigkeit, zur Integration in einen Flugkörper und dergleichen mehr. Bei Innenraum-Detonationen trifft dies insbesondere deshalb zu, da die Sprengladung vor der Detonation in den Innenraum verbracht werden muss, d.h. die Ladung muss an Bord eines Penetrators auch Mauern perforieren.

[0030] Neben der oben angesprochenen Oxidation allen Brennstoffes/ Metallpulvers muss nun gewährleistet sein, dass auch alle anderen Verbrennungsprodukte (wie beispielsweise C, CO, OH ...), die noch nicht mit Sauerstoff gesättigt sind, nun vollständig nachoxidiert werden (Nachverbrennungs-Reaktionen). Der hierzu benötigte Sauerstoff muss der Luft entnommen werden, wozu eine gute Durchmischung der Verbrennungsprodukte mit der Luft notwendig ist.

[0031] Vorhandene Metallhüllen der Ladung können dabei eher hinderlich sein, da sie erst radial expandieren müssen und je nach Duktilität und weiterer Beschaffenheit der Metallhülle mehr oder weniger spät aufreißen und erst dann die Detonations-Produkte freigeben und mit der Luft in Berührung bringen. Während dieser Expansionsphase kühlen sich die Gase allerdings ab. Unterschreitet man eine kritische Temperatur (für Aluminium beispielsweise ca. 2000 K), so werden die chemischen Reaktionen unterbunden und die Nachverbrennung bricht ab, bzw. setzt gar nicht erst ein.

[0032] Um dies zu verhindern, müssen Vorkehrungen getroffen werden. Dies kann durch vielfältige Weise geschehen. Genannt werden sollen etwa beispielhaft: Materialeigenschaften wie Duktilität bzw. Sprödigkeit, Auslegung / Geometrie der Ladung wie Wandstärken und schließlich Sollbruchstellen.

[0033] Diese Maßnahmen oder Kombination von Maßnahmen müssen sicherstellen, dass alle Verbrennungsprodukte vollständig oxidiert werden und es zu keinem Abbruch der Reaktionen kommt. Auf diese Weise ist wiederum das Maximum der Blast-Leistung gegeben.

[0034] Bei einer reellen Innenraumdetonation wird die Wirkung mittels quasistationären Druckes (Impuls) umgesetzt. Hierbei können zwar alle Moleküle nachreagieren, die nicht mit Sauerstoff gesättigt sind. In der Praxis gelingt dies nicht immer, was auf die notwendige hohe Reaktionstemperatur zurückzuführen ist.

[0035] Im Folgenden soll die erfindungsgemäße Vorgehensweise zur Maximierung der Blast-Leistung exemplarisch auf eine Ladung mit Aluminium-Pulver angewandt werden. Bei dieser Ladung wurde das erzielte Maximum durch eine konventionelle statistische Vorgehensweise validiert, bei der lange und umfangreiche Versuchsreihen durchgeführt wurden, die das prognostizierte Maximum sowohl für Freifeldals auch Innenraum-Detonationen bestätigten.

[0036] Eine bereits bestehende Sprengladung mit Al-Pulver ist als KS22 bekannt, mit der Formulierung:
  • RDX / AI / HTPB mit den Massenprozenten 67/18/15.


[0037] Diese Sprengladung ist hinsichtlich des Blast-Effektes nicht optimiert. Fügt man weiteres Aluminium-Pulver hinzu, bis man den (entsprechend des MaximierungsVerfahrens) stöchiometrischen Sättigungspunkt erreicht, so erhält man folgende Formulierung:
  • RDX / AI / HTPB mit den Massenprozenten 58/27/15
die in Analogie zu KS22 als KS23 bezeichnet werden soll.

[0038] Umfangreiche Versuche sowohl im Freifeld wie in Bunkersystemen (abgeschlossener Raum und offene Räume mit Fenster und Türen) bestätigten die Maximierung der Blast-Leistung. Die Formulierung ist chemisch unterschiedlich zu KS22, vom verfahrenstechnischen Gesichtspunkt jedoch ziemlich ähnlich, so dass auch ähnliche Herstellprozesse angewendet und so die Reproduzierbarkeit etc. gewährleistet werden kann.


Ansprüche

1. Verfahren zur Drucksteigerung einer Komposit-Ladung enthaltend wenigstens einen Sprengstoff, einen inerten oder energetischen Binder und ein reaktives Metallpulver,
dadurch gekennzeichnet, dass

- als Sprengstoff RDX mit einem Gewichtsanteil von 58 % verwendet wird,

- der Gewichtsanteil des als Brennstoff verwendeten Metallpulvers nach der Maßgabe bestimmt wird, dass jedes einzelne Metallpartikel mit dem mitgeführten Sauerstoff vollständig oxidiert wird,

- dass die Korngröße der Partikeln des Metallpulvers in Abhängigkeit von der Partikelform und in Abhängigkeit von der minimalen Zeit, innerhalb der jeder Metallpartikel oxidiert wird, im Bereich von 1µm bis 10 µm gewählt wird,

wobei der Sauerstoffanteil der Komposit-Ladung stöchiometrisch exakt so bemessen ist, dass jedes Metallpartikel während der Detonation vollständig oxidiert wird.
 
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Korngröße der Partikel des Metallpulvers in einer durchschnittlichen Größe von 4 µm gewählt wird.
 
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Metallpulver Aluminium, Bor, Silizium oder Magnesium ist.
 


Claims

1. Method of increasing the pressure of a composite charge containing at least one explosive, an inert or energetic binder and a reactive metal powder, characterised in that

- RDX at 58% by weight is used as the explosive,

- the proportion by weight of the metal powder used as the fuel is determined according to the principle that each individual metal particle is fully oxidised with the carried oxygen,

- the grain size of the particles of metal powder is selected from within the range of 1 µm to 10 µm depending on the particle shape and the minimum time within which each metal particle is oxidised,

wherein the oxygen content of the composite charge is exactly measured stoichiometrically such that each metal particle is fully oxidised during detonation.
 
2. Method according to claim 1, characterised in that the grain size of the particles of metal powder is selected in an average size of 4 µm.
 
3. Method according to claim 1 or 2, characterised in that the metal powder is aluminium, boron, silicon or magnesium.
 


Revendications

1. Procédé destiné à l'élévation de pression d'une charge composite contenant au moins un explosif, un liant inerte ou énergétique et une poudre métallique réactive,
caractérisé en ce que

- le RDX est utilisé comme explosif avec une fraction massique de 58 %

- la fraction massique de la poudre utilisée comme combustible est déterminée d'après la condition que chaque particule métallique individuelle est entièrement oxydée par l'oxygène embarqué,

- en ce que la granulométrie des particules de poudre métallique est sélectionnée dans un intervalle de 1 µm à 10 µm en fonction de la forme des particules et en fonction du temps minimal à l'intérieur duquel chaque particule métallique est oxydée,

dans lequel la fraction d'oxygène de la charge composite est mesurée de façon stœchiométriquement exacte de sorte que chaque particule métallique est oxydée entièrement pendant la détonation.
 
2. Procédé d'après la revendication 1, caractérisé en ce que la granulométrie des particules de poudre métallique est sélectionnée dans une taille moyenne de 4 µm.
 
3. Procédé d'après la revendication 1 ou 2, caractérisé en ce que la poudre métallique est de l'aluminium, du bore, du silicium ou du magnésium.
 






Angeführte Verweise

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE



Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente




In der Beschreibung aufgeführte Nicht-Patentliteratur