(19)
(11) EP 3 286 108 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
04.12.2019 Bulletin 2019/49

(21) Application number: 16728606.1

(22) Date of filing: 22.04.2016
(51) International Patent Classification (IPC): 
B65D 88/70(2006.01)
(86) International application number:
PCT/CZ2016/000050
(87) International publication number:
WO 2016/169535 (27.10.2016 Gazette 2016/43)

(54)

ABRASION RESISTANT PULSE NOZZLES AND A SYSTEM FOR FLOW OF BULK MATERIALS

ABRIEBFESTE GEPULSTE DÜSEN UND SYSTEM ZUM FLIESSEN VON SCHÜTTGUTMATERIALIEN

BUSES D'IMPULSION RÉSISTANT À L'ABRASION ET SYSTÈME D'ÉCOULEMENT DE MATÉRIAUX EN VRAC


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 24.04.2015 CZ 201531005 U

(43) Date of publication of application:
28.02.2018 Bulletin 2018/09

(73) Proprietor: MOSA Solution s.r.o.
41112 Cízkovice (CZ)

(72) Inventor:
  • MOSA, Jan
    CZ-41112 Cizkovice (CZ)

(74) Representative: Kendereski, Dusan 
Turanka 115a
627 00 Brno
627 00 Brno (CZ)


(56) References cited: : 
EP-A2- 0 160 281
US-A1- 2007 000 544
DE-A1- 1 909 219
US-B1- 6 237 893
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Field of the invention



    [0001] The present invention relates to the release of non-flowing loose materials in storage devices, storage silos, downcomers, and pipeline systems via compressed air energy in pulse nozzles.

    Background of the invention



    [0002] In operation, the pulse nozzles reduce the external friction angle, e.g. between the stored loose material and the internal contact surface of the storage vessel wall that results in releasing stuck or deposited loose materials. The released loose material then falls to the bottom discharge part of the storage vessel then drops out of the storage vessel through the discharge hole and hence, the flow of loose material across the storage vessel cross-section is provided without any physical impact by the operator.

    [0003] The pulse nozzle systems are commonly used for traditional steel, concrete, or plastic storage vessels. These can also be applied to hoppers, weighing storage vessels, and various intermediate storage vessels. The systems are applicable both for loose materials with high granulation (e.g. raw coal) and loose materials that produce "dead zones" or arcing during storage, as well as for compacted loose materials including moist materials.

    [0004] The pulse nozzle systems comprise an assembly consisting of a pulse nozzle and a solenoid valve. The assembly in the mounting housing is provided in the wall of the discharging part of the storage vessel or the downcomer under the discharging part of the storage vessel; a flexible rubber hose is used for connection to the compressed air source, and an electric cable is used for connection with a control system or a control unit.

    [0005] For example, the pulse nozzle from utility model 2009-21476 comprises the basic body of the pulse nozzle, which houses a piston head body with direction surfaces of air pulses generated by the pulse valve, and the said pulses cross the inner space of the nozzle to its exterior.

    [0006] In European patent application EP 0160281 A2 is described a diffuser valve which is adapted to be fixed in the wall of storage hopper containing particulate materials and operable to dispense an air blast into the interiors of the hopper to loosen material in the region of the valve. The valve has a tubular body accommodating a valve member which opens to dispense the air blast in a radial direction along the walls of the hopper to which is fixed.

    [0007] Document DE 1909219 A1 describes a solution of a silo for particular materials, where is used a system for an aeration of the particular materials for better emptying the silo. The system consists of a compressed air and valves placed on the bottom of the silo.

    [0008] In document US 2007/000544 A1 a valve assembly for a positive displacement fluid pump is described. In the application is mentioned a wear-resistant coating or layer that are suitable for reducing friction and wear of the inner surface. The inner surface can be coated with a thin layer of tungsten carbide or other ultra-hard material. As written above the wear-resistant coating or layer is used for reducing friction between the individual parts of the pump.

    [0009] US 6237893 discloses an example of a discharge valve. The discharge valve consists of a discharge valve body in metal housing, wherein the housing is embedded in a storage vessel wall. A movable metal piston is placed in the discharge valve with the head end on one side and the barrier against the excessive return of the piston valve on the other side, which allows configuration of the distance for the piston head body lift.

    [0010] Disadvantages of these systems include abrasion on technology walls (storage devices, storage vessel, silo, downcomer, or pipeline) around the nozzle piston head body. This is caused by deflated compressed air on the storage vessel sides around the nozzle head body where compressed air deteriorates the storage vessel wall material, and high abrasion occurs.

    [0011] Storage vessel walls must then be repaired e.g. by welding. The piston head body front is also abraded by loose material moving around the impulse nozzle, and the piston needs to be replaced over time. In addition to said disadvantages, the systems in the art fail to avoid sinking of the pulse nozzle piston or any part thereof to technology that may occur when that part of the pulse nozzle body cracks.

    [0012] For some heavily loaded technologies, such as storage vessel downcomers, higher flows of abrasive loose material occur, and wear and tear happens only after a few months of operation. The worn component must then be replaced on the pulse nozzle. The systems in the art neglect these problems and technologies frequently need repairs and the replacement of pulse nozzle components.

    [0013] The object of the present invention is an embodiment of the pulse nozzle so that the technology, as well as the components of the nozzle, is protected and the life cycle improved.

    Summary of the invention



    [0014] The present invention discloses the assembly of the pulse nozzle that prevents the problems of pulse nozzles known from the art.

    [0015] The object of the present invention is met by an abrasion resistant pulse nozzle according to claim 1 comprising the pulse nozzle body, a piston with piston head body moveably located inside the pulse nozzle body, an elastic member between the first holder attached to the piston and the second holder attached to the pulse nozzle body characterized in that the piston head body front is provided with an abrasion resistant layer.

    [0016] The abrasion resistant layer advantageously consists of tungsten carbide of up to 1 mm thickness that achieves higher abrasion resistance.

    [0017] Advantageously, the abrasion resistant pulse nozzle consists of the abrasion resistant plate attached to the pulse nozzle body near the piston head body to cover up the inner technology surface, wherein the abrasion resistance plate consists of a metal sheet up to 7mm thick and a tungsten carbide layer up to 1mm. Also advantageously, the piston is provided with a bearing surface and the pulse nozzle body is provided with a securing member.

    [0018] Also substantial is the system for flow of bulk materials in vessels according to claim 6 for releasing non-flowing loose materials in storage devices or silos comprising at least one abrasion resistant pulse nozzle described above connected to the compressed air source, and at least one solenoid valve connected to the control unit with an electric cable, or multiple pulse nozzles to the central control system including the designing of various activities algorithm variations.

    [0019] Finally, the assembly of the pulse nozzle is advantageously as large as possible, so that the piston head body diameter is arranged for application of a G 2 ½ size solenoid valve. In this way, a larger volume of compressed air is increased, which breaks down and removes the higher layer of deposited loose material from the inner wall of the storage device, silo, downcomer, or pipeline.

    Description of figures in the drawings



    [0020] An example of the embodiment of the device is schematically illustrated in Figures 1, 2, and 3.

    Fig. 1 - Schematic illustration of pulse nozzle

    Fig. 2 - Schematic illustration of piston head body detail of the pulse nozzle mounted on the storage vessel wall

    Fig. 3 - Schematic illustration of pulse nozzle system


    Detailed description of example embodiment



    [0021] Fig. 1 shows the abrasion resistant pulse nozzle consisting of the pulse nozzle body 1 that houses the piston 2 with the piston head body 3 and the elastic member 6, the said piston 2 is provided in the piston guide 5 opening. The piston guide 5 opening may be provided as a securing ring moulded in pulse nozzle body 1. When the solenoid valve flow is initiated, the overpressure moves the piston 2 into the technology, e.g. the storage vessel, and a gap around the piston head body 3 is created. Pressure ranges from 0.40MPa to 1.0MPa. The compressing elastic member 6 is slid onto piston 2. On one side, the elastic member 6 is attached to the first holder, being for example, the said distance ring 7 attached to the piston 2, and to the second holder on the other side, being for example, the piston guide 5 attached to the pulse nozzle body 1, wherein the attachment on one side is fixed, and the other side attachment is moveable. The elastic member 6 is arranged so that it acts on the distance ring 7 on one side, and on the piston guide 5 on the other side, whereby the piston 2 is returned to the default position. In this embodiment, the elastic member 6 is the compressing spring. The distance ring 7 is used to define the distance needed to lift the piston head body 3. The distance ring 7 is slid onto the piston 2. Screwing on and tightening the two self-locking nuts 8 define the required piston head body 3 lift. Securing the member 9 and the bearing surface 4 are used to prevent the piston 2 parts entering the technology due to material fatigue failure. In this embodiment, the securing member 9 is a screw that is screwed into the pulse nozzle body 1. The piston head body 3 incorporates the bearing surface 4 made, for example, by mounting.

    [0022] Fig. 2 shows the pulse nozzle piston head body 3 mounted on the storage vessel 12 wall. Also included in the abrasion resistant pulse nozzle is an abrasion resistant plate attached perpendicularly to the pulse nozzle axis, i.e. in parallel with the storage vessel 12 wall that covers the storage vessel 12 wall close to the pulse nozzle piston head body 3. In this example, the abrasion resistance of this embodiment comprises a metal sheet 11 of 6mm thickness on which a tungsten carbide 10 layer of 0.8mm thickness is made.

    [0023] For example, laser layering may be applied. The total thickness of the abrasion resistant plate is 6.8mm. The disclosed construction of the abrasion resistant plate does not result in the excessive deposition and accumulation of loose materials on the upper edge of the abrasion resistant plate, and a faster flow of loose material to the discharge part of the storage vessel is possible. The tungsten carbide layer 10 on the abrasion resistant plate is used for storage vessel 12 wall protection against abrasion that prevents the creation of holes on the storage vessel 12 walls when blowing off compressed air for releasing deposits on the walls. Furthermore, the tungsten carbide 10 layer is also applied to the piston head body 3 front for an improved lifecycle. This embodiment does not require as frequent replacement of the piston 2 as in the art, and no welding is further required on the storage vessel 12 walls around the pulse nozzles due to the holes present and produced by blowing off compressed air.

    [0024] Fig. 3 shows the system of abrasion resistant pulse nozzles. The basis of the pulse nozzle system is an assembly consisting of the abrasion resistant pulse nozzle described above and a solenoid valve 13. Assembly in the assembly housing 14 is the built-in wall 12 of the discharge part of the storage vessel or the downcomer under the storage vessel discharge part 15, the elastic rubber hose 16 is used for connection to the compressed air distribution 17, and the electric cable (not shown in the Fig.) is used for connection with the control system or the control unit 18. The type of assembly housing 14 depends on the specific application of the pulse nozzle system, which differs depending on the construction and embodiment of the storage vessel and the type of stored loose material. The compressed air distribution 17 is provided from a ring-shaped tube around the perimeter of the storage vessel 12 discharge part attached with brackets 19 to the branches made from the cross section depending on the type of pulse nozzle. The branches must be provided from the top part of the tube so that contamination from the compressed air distribution 17 in the solenoid valve 13 is prevented. The compressed air distribution 17 must have a gradient around the perimeter of the discharge part 12 and a tube with ball valve 20 must be provided at the lowest point to remove sludge from distribution. The supply line 21 is connected to the existing compressed air source 22.

    List of reference marks



    [0025] 
    1 -
    Pulse nozzle body
    2 -
    Piston
    3 -
    Piston head body
    4 -
    Bearing surface
    5 -
    Piston guide
    6 -
    Elastic member
    7 -
    Distance ring
    8 -
    Self-locking nut
    9 -
    Securing member
    10 -
    Abrasion resistant layer
    11 -
    Metal sheet
    12 -
    Storage vessel wall
    13 -
    Solenoid valve
    14 -
    Assembly housing
    15 -
    Downcomer under the storage vessel discharge part
    16 -
    Flexible rubber hose
    17 -
    Compressed air distribution around the storage vessel
    18 -
    Programmable control unit
    19 -
    Bracket
    20 -
    Ball valve
    21 -
    Supply line
    22 -
    Compressed air source



    Claims

    1. An abrasion resistant pulse nozzle comprising a pulse nozzle body (1), a piston (2) with a piston head body (3) movably provided inside the pulse nozzle body (1), an elastic member (6) provided between a first holder attached to the piston (2) and a second holder attached to the pulse nozzle body (1) characterized in that the piston head body (3) is provided with an abrasion resistant layer (10) on its front.
     
    2. An abrasion resistant pulse nozzle according to claim 1 characterized in that the abrasion resistant layer (10) consists of a tungsten carbide layer of thickness up to 1mm.
     
    3. An abrasion resistant pulse nozzle according to claim 1 or 2 characterized in that it is provided with an abrasion resistant plate attached to the pulse nozzle body (1) near the piston head body (3) to cover the inner surface of the technology.
     
    4. An abrasion resistant pulse nozzle according to claim 3 characterized in that the abrasion resistant plate consists of a metal sheet (11) of 7mm thickness and a tungsten carbide layer (10) with a thickness up to 1mm.
     
    5. An abrasion resistant pulse nozzle according to any one of the previous claims characterized in that the piston (2) is provided with a bearing surface (4) and the pulse nozzle body (1) is provided with a securing member (9).
     
    6. A system for flow of bulk materials in vessels comprising at least one abrasion resistant pulse nozzle according to any of previous claims characterized in that the abrasion resistant pulse nozzle is attached to a compressed air distribution (17) and comprises at least one solenoid valve (13) connected to a control unit (18) with an electric cable.
     
    7. A system for flow of bulk materials according to claim 6 characterized in that the compressed air distribution (17) comprises a ring- shaped tube to embrace the discharge part of the storage vessel (12).
     
    8. A system for flow of bulk materials according to claim 7 characterized in that the connection of the abrasion resistant pulse nozzle is provided to the upper side of the ring-shaped tube.
     
    9. A system for flow of bulk materials according to claim 7 or 8 characterized in that the ring-shaped tube is arranged so that a tube for sludge removal is provided at its lowest point.
     


    Ansprüche

    1. Eine abriebfeste Impulsdüse umfassend einen Impulsdüsenkörper (1), einen Kolben (2) mit einem innerhalb des Impulsdüsenkörpers (1) beweglich vorgesehenen Kolbenkopfkörper (3), und ein elastisches Glied (6), das zwischen einem an dem Kolben (2) angebrachten ersten Halter und einem an dem Impulsdüsenkörper (1) angebrachten zweiten Halter vorgesehen ist, dadurch gekennzeichnet, dass der Kolbenkopfkörper (3) an seiner Vorderseite mit einer abriebfesten Schicht (10) vorgesehen ist.
     
    2. Die abriebfeste Impulsdüse nach Anspruch 1, dadurch gekennzeichnet, dass die abriebfeste Schicht (10) aus einer Wolframkarbidschicht mit einer Dicke bis zu 1 mm besteht.
     
    3. Die abriebfeste Impulsdüse nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass sie mit einer an dem Impulsdüsenkörper (1) angebrachten abriebfesten Platte in der Nähe des Kolbenkopfkörpers (3) vorgesehen ist, um die Innenfläche der Technologie abzudecken.
     
    4. Die abriebfeste Impulsdüse nach Anspruch 3, dadurch gekennzeichnet, dass die abriebfeste Platte aus einem Blech (11) mit einer Dicke von 7 mm und einer Wolframkarbidschicht (10) mit einer Dicke bis zu 1 mm besteht.
     
    5. Die abriebfeste Impulsdüse nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Kolben (2) mit einer Lagerfläche (4) vorgesehen ist und der Impulsdüsenkörper (1) mit einem Sicherungsglied (9) vorgesehen ist.
     
    6. Ein System zur Strömung von Schüttgütern in Gefäßen umfassend mindestens eine abriebfeste Impulsdüse nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die abriebfeste Impulsdüse an einer Druckluftverteilung (17) verbunden ist und mindestens ein Magnetventil (13) umfasst, das mit einer Steuereinheit (18) mit einem elektrischen Kabel verbunden ist.
     
    7. Das System zur Strömung von Schüttgütern nach Anspruch 6, dadurch gekennzeichnet, dass die Druckluftverteilung (17) ein ringförmiges Rohr zum Umgreifen des Auslassteils des Vorratsbehälters (12) umfasst.
     
    8. Das System zur Strömung von Schüttgütern nach Anspruch 7, dadurch gekennzeichnet, dass die Verbindung der abriebfesten Impulsdüse an der Oberseite des ringförmigen Rohres vorgesehen ist.
     
    9. Das System zur Strömung von Schüttgütern nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass das ringförmige Rohr so angeordnet ist, dass an seiner tiefsten Stelle ein Rohr zur Schlammentfernung vorgesehen ist.
     


    Revendications

    1. Une buse d'impulsion résistante à l'abrasion comprenant un corps de buse d'impulsion (1), un piston (2) avec un corps de tête de piston (3) disposé de façon mobile à l'intérieur du corps de buse d'impulsion (1), un élément élastique (6) disposé entre un premier support fixé au piston (2) et un second support fixé au corps de buse d'impulsion (1), caractérisée en ce que le corps de tête de piston (3) est pourvu d'une couche résistante à l'abrasion (10) sur son avant.
     
    2. La buse d'impulsion résistante à l'abrasion selon la revendication 1, caractérisée en ce que la couche résistante à l'abrasion (10) est constituée d'une couche de carbure de tungstène d'une épaisseur allant jusqu'à 1 mm.
     
    3. La buse d'impulsion résistante à l'abrasion selon la revendication 1 ou 2, caractérisée en ce qu'elle est pourvue d'une plaque résistante à l'abrasion fixée au corps de buse d'impulsion (1) à proximité du corps de tête de piston (3) pour recouvrir la surface interne de la technologie.
     
    4. La buse d'impulsion résistante à l'abrasion selon la revendication 3, caractérisée en ce que la plaque résistante à l'abrasion est constituée d'une tôle métallique (11) d'une épaisseur de 7 mm et d'une couche de carbure de tungstène (10) d'une épaisseur allant jusqu'à 1 mm.
     
    5. La buse d'impulsion résistante à l'abrasion selon l'une quelconque des revendications précédentes, caractérisée en ce que le piston (2) est pourvu d'une surface d'appui (4) et le corps de buse d'impulsion (1) est pourvu d'un élément de fixation (9).
     
    6. Un système d'écoulement de matériaux en vrac dans des récipients comprenant au moins une buse d'impulsion résistante à l'abrasion selon l'une quelconque des revendications précédentes, caractérisé en ce que la buse d'impulsion résistante à l'abrasion est fixée à une distribution d'air comprimé (17) et comprend au moins une électrovanne (13) reliée à une unité de commande (18) avec un câble électrique.
     
    7. Le système d'écoulement de matériaux en vrac selon la revendication 6, caractérisé en ce que la distribution d'air comprimé (17) comprend un tube en forme d'anneau pour entourer la partie d'évacuation d'un récipient de stockage (12).
     
    8. Le système d'écoulement de matériaux en vrac selon la revendication 7, caractérisé en ce que la liaison de la buse d'impulsion résistante à l'abrasion est disposée sur le côté supérieur du tube en forme d'anneau.
     
    9. Le système d'écoulement de matériaux en vrac selon la revendication 7 ou 8, caractérisé en ce que le tube en forme d'anneau est disposé de telle sorte qu'un tube pour l'évacuation des boues est prévu au niveau de son point le plus bas.
     




    Drawing











    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description