(19)
(11) EP 2 825 727 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
25.03.2020 Bulletin 2020/13

(21) Application number: 12871543.0

(22) Date of filing: 12.12.2012
(51) International Patent Classification (IPC): 
E21B 34/08(2006.01)
E21B 43/12(2006.01)
F16K 1/00(2006.01)
F16K 17/26(2006.01)
(86) International application number:
PCT/US2012/069186
(87) International publication number:
WO 2013/137954 (19.09.2013 Gazette 2013/38)

(54)

FLUID FLOW MANAGER

FLÜSSIGKEITSSTRÖMUNGSMANAGER

SYSTÈME DE GESTION D'ÉCOULEMENT DE FLUIDE


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 15.03.2012 US 201261611543 P
13.04.2012 US 201213446195

(43) Date of publication of application:
21.01.2015 Bulletin 2015/04

(60) Divisional application:
20157490.2

(73) Proprietor: Osborne, Lawrence
Acton, CA 93510 (US)

(72) Inventor:
  • Osborne, Lawrence
    Acton, CA 93510 (US)

(74) Representative: Haseltine Lake Kempner LLP 
Redcliff Quay 120 Redcliff Street
Bristol BS1 6HU
Bristol BS1 6HU (GB)


(56) References cited: : 
RU-C1- 2 150 575
US-A- 3 409 078
US-A1- 2002 174 988
US-A1- 2011 088 915
RU-U1- 34 623
US-A- 6 109 354
US-A1- 2006 011 354
US-A1- 2011 259 428
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF THE INVENTION


    Field of the Invention



    [0001] The present invention relates to a fluid flow manager including fluid flow components and systems using those components. In particular, the present invention relates to an improved valve with shuttle for use in fluid flow systems.

    Discussion of the Related Art



    [0002] Fluid flow managers typically include one or more of pumps and valves. To the extent these devices are located in hard to reach places, they present maintenance and maintenance downtime issues. Where pumps and valves are used to produce a natural resource such as a hydrocarbon, downtime can result in costly lost production and increased workman and material expenses.

    [0003] In particular, downhole production strings including pumps and valves for lifting fluids such as particulate laden liquids and slurries present a maintenance problem. Here, both pumps and valves can lose capacity and in cases be rendered inoperative when conditions including fluid conditions and fluid velocities are outside an intended operating range. Such unintended operating conditions can foul, plug, and damage the equipment.

    [0004] US2011/0259428 describes a valve use in a flow management system which is capable of bypassing a backflow. The valve has a valve outlet and a spill port and a shuttle moveable within the valve body depending on the forces acting on the shuttle. When a pump is lifting fluid through the valve the shuttle moves the seal the spill port, but if the fluid lifting stops, the shuttle moves and unblocks the spill ports while blocking the flow path through the shuttle.

    [0005] Despite the industry's resistance to change, there remains a need

    SUMMARY OF THE INVENTION



    [0006] The present invention provides a fluid flow manager according to independent claim 1 and dependent claims 2 to 14.

    [0007] The invention also provides a method of managing fluid flow for a hydrocarbon well according to claim 15.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0008] The present invention is described with reference to the accompanying figures. The figures listed below, incorporated herein and forming part of the specification, illustrate the invention and, together with the description, further serve to explain its principles enabling a person skilled in the relevant art to make and use the invention.

    FIG. 1 is a schematic diagram of a valve in a flow management system in accordance with the present invention.

    FIG. 2A is a diagram including the flow management system of FIG. 1.

    FIG. 2B is a cross-sectional view A-A of the flow management system of FIG. 2A.

    FIGS. 3A-C are views of a first bypass valve of the flow management system of FIG. 1.

    FIG. 4A-F are views of a second bypass of the flow management system of FIG. 1.

    FIG. 5 is an exploded view of a shuttle for use in valves of FIG. 1.

    FIG. 6 is an assembled view of the shuttle of FIG. 5.

    FIG. 7 is a schematic diagram of a pump-off controller implemented in a production string.

    FIG. 8 is a schematic diagram of a valve of FIG. 1 used to implement a pump-off controller.

    FIG. 9 is a flow chart showing a mode of operation of a valve of FIG. 1.


    DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS



    [0009] The disclosure provided in the following pages describes examples of some embodiments of the invention. The designs, figures, and description are non-limiting examples of certain embodiments of the invention. For example, other embodiments of the disclosed device may or may not include the features described herein. Moreover, disclosed advantages and benefits may apply to only certain embodiments of the invention and should not be used to limit the disclosed invention.

    [0010] To the extent parts, components and functions of the described invention exchange fluids, the associated interconnections and couplings may be direct or indirect unless explicitly described as being limited to one or the other. Notably, indirectly connected parts, components and functions may have interposed devices and/or functions known to persons of ordinary skill in the art.

    [0011] FIG. 1 shows an embodiment of the invention 100 in the form of a schematic diagram. A spill or bypass valve 108 is interconnected with a pump 104 via a pump outlet 106. The pump includes a pump inlet 102 and the valve includes a valve outlet 110 and a valve spill port 112. In various embodiments, the inlets, outlets and ports are one or more of a fitting, flange, pipe, or similar fluid conveyance.

    [0012] FIG. 2A shows a section of a typical downhole production string 200A. The production string includes the bypass valve 108 interposed between the pump 104 and an upper tubing string 204. In some embodiments, a casing 208 surrounds one or more of the tubing string, valve, and pump. Here, an annulus 206 is formed between the tubing string and the casing. A production flow is indicated by an arrow 102 while a backflow is indicated by an arrow 202. In various embodiments, the bypass valve incorporates a spill port and in various embodiments the valve is operable to isolate backflows from one or more of the valve, portions of the valve, and the pump.

    [0013] Some embodiments of the production string include an extended tubular element 203 coupled with the upper tubing string 204. For example, the extended tubular element may be a part of the valve or may be separate from the valve. In an embodiment, the extended tubular element is a valve body portion. And, some embodiments of the production string may use an electric submersible pump or they may use a rod driven pump as provided for by an optional rod 250 passing through the tubing string and interconnecting with the pump (pump interconnection is not shown).

    [0014] FIG. 2B shows a cross-section A-A through the production string of FIG. 2A. Clearance(s) 260 between the rod 250 and the extended tubular element 203 and clearance(s) 262 between the extended tubular element and the casing 208 are shown. In particular, clearance(s) between the rod and the extended tubular element may be chosen to guide the rod and as such may be less than similar clearance(s) associated with the upper tubing string. In some embodiments, guards or ribs mounted within the extended tubular element or to the rod provide stand-offs to guide the rod.

    [0015] FIG. 3A shows a bypass valve in a shuttle up and forward flow configuration 300A. FIG. 3B shows an enlarged middle portion of the valve with shuttle 300B. A valve body 302 includes an upper body 304, a middle body 305, and a lower body 306. In various embodiments, the shuttle is of a substantially constant diameter, variations being due to seal projections and the like.

    [0016] The upper body includes a first through hole 369. In some embodiments, the first through hole passes through an outlet chamber 365 of an upper adapter 303. And, in some embodiments, an inner surface of the adapter 367 is threaded. As used herein, the phrase through hole indicates a passage. And, as persons of ordinary skill in the art will recognize, embodiments may have a through hole with a constant cross-section or a through hole of varying shape and/or cross-section as shown here.

    [0017] The middle body includes a second through hole 371. In various embodiments, the second through hole provides or adjoins a shuttle chamber 361 and fluidly couples a valve outlet chamber 365 with a valve inlet chamber 364. The lower body includes a third through hole 373. In various embodiments, the third through hole passes through the inlet chamber 364. As used herein, the term couple refers to a connection that is either of a direct connection or an indirect connection that may further include interposed components.

    [0018] Within the lower body 306, a spring shoulder such as an annular spring shoulder 344 for supporting a charge spring 308 projects inwardly from a first inner bore of the lower body 372. In some embodiments, the shoulder extends between the first inner bore of the lower body and a cylindrical spring guide 342.

    [0019] And, in some embodiments, the shoulder 344 and the spring guide 342 are portions of a lower adapter 307 forming at least part of the lower body 306. In various embodiments, an upper end of the adapter 374 has a reduced outer diameter 376 such that the spring shoulder is formed where the diameter is reduced and the spring guide is formed along the length of the reduced diameter portion of the adapter. As shown, portions of the charge spring 308 are located in an annular pocket 363 between the first inner bore of the lower body 372 and the spring guide. The adapter and lower body may be integral or fitted together as by a threaded connection 346 or another suitable connection known to a skilled artisan.

    [0020] In some embodiments, a spring guide port 356 provides a means for flushing the annular spring pocket 363. As seen, the port extends between the lower chamber 364 and the annular pocket 363. Action of the charge spring 308 and/or pressure differentials between the pocket and the lower chamber provide a flushing action operative to remove solids such as sand that might otherwise tend to accumulate in the annular pocket.

    [0021] Within the middle body 305, a middle body bore 338 is for receiving a valve shuttle 310. The charge spring 308 is for urging the shuttle toward the valve outlet end 399. This shuttle urging may be via direct or indirect charge spring contact. For example, embodiments utilize direct contact between a shuttle lower end 321 and an upper end of the charge spring 378. Other embodiments utilize indirect contact such as via an annular transition ring 323 having an upper face 393 contacting the shuttle lower end and a lower face 325 contacting a charge spring upper end (as shown).

    [0022] Near a lower end of the upper body 375, an inwardly projecting nose 330 includes a stationery seat 332 for engaging a closure 314 encircling a shuttle carrier upper end 313. In various embodiments, the shuttle has a tapered upper end 317 and the closure is part of or extends from this taper. In various embodiments the seat and closure are configured to meet along a line forming an angle θ < 90 degrees with respect to a valve centerline y-y. Absent greater opposing forces, the charge spring 308 moves the shuttle 310 until the shuttle closure 314 is stopped against the stationery seat 332.

    [0023] FIG. 3C shows the shuttle in a compressed spring position 300C. Unlike FIGS. 3A and 3B which show a normal forward flow through the valve 388 with the shuttle stationery seal 332 and closure 314 mated, FIG. 3C shows the shuttle 310 separated from the closure 314 during a reverse flow 389, the charge spring 308 being compressed by movement of the shuttle toward the valve inlet end 398. Notably, various embodiments provide one or more sliding seals about the shuttle such as a sliding seal 335 between the shuttle 310 and a middle body bore mated with the shuttle such as the middle body bore 338.

    [0024] When there is sufficient forward flow 388 through the valve 300B, forward flow through a shuttle bore 352 causes a plug 354 to rise relative to the shuttle 310 (see FIGS. 3A, B). Movement of the plug is within the shuttle and in various embodiments plug movement is guided by a plug cage 327. Sufficient forward flow brings the plug to rest against an upper stop 351. In this position, flow passes freely through the shuttle bore and into the valve outlet chamber 365. The rising shuttle is stopped when the shuttle closure 314 mates with the stationery seat 332 forming an upper seal 331.

    [0025] Forces acting on the plug include drag forces due to flow through the shuttle bore 352 and gravitational forces. In various embodiments, when drag forces are overcome by gravitational forces due to insufficient forward flow, the plug 354 falls relative to the shuttle 310 and comes to rest against a shuttle lower seat 326 forming a lower seal 333.

    [0026] Plug 354 designs include features for mating with the shuttle lower seat 326 such as integral features and non-integral features; for example, a plug of a single material such as a metal or a polymer material. In an embodiment, the plug is spherical (as shown), made of metal, and includes an outer surface 355 for mating with the shuttle lower seat. Other embodiments provide a plug of multiple materials such as a metallic central portion within a polymeric outer covering. Materials include ferrous and non-ferrous metals, and plastics such as PEEK and HDPE.

    [0027] Notably, during an inadequate flow event, the plug 354 falls relative to the shuttle 310, mates with the shuttle lower seat 326, and blocks flow through the shuttle mouth 360. Pressure forces due to the pressure at the valve outlet P2 may act on the blocked shuttle and move it toward the valve inlet 398, a process that compresses the charge spring 308. When the plug 354 and shuttle lower seat 326 are mated, forward flow is substantially limited. In various embodiments, forward flow is stopped but for unintended leakage.

    [0028] As seen, to the extent that the fluid head at the valve outlet P2 results in a fluid head force on the shuttle sufficient to overcome resisting forces including compressing the charge spring 308, the shuttle 310 moves toward the inlet end of the valve 398. In various embodiments, a shuttle diameter 337, approximated in some embodiments as a middle body bore diameter 339, provides an estimate of the area acted on by the fluid head and thus the fluid head force. Skilled artisans will adjust valve performance including operation of the spill port 338 by determining valve variables such as a spring constant "k" (F = kx) of the charge spring to adapt the valve for particular applications.

    [0029] Considering the spill port 328, it is seen that forward flow 388 and the upper seal 331 associated with forward flow enable blocking of the spill port 328. For example, the spill port may be blocked by covering the port and/or by forming an isolation chamber (as shown). When the spill port is blocked, flow entering the valve inlet 398 passes through the shuttle through a shuttle bore 352, out a shuttle mouth 361, into the valve outlet chamber 365, and out of the valve outlet 399.

    [0030] Referring to FIG. 3C, it is seen that reverse flow 389 and the lower seal 333 associated with reverse flow enable opening of the spill port 328 as the shuttle 310 moves toward the inlet end of the valve 398 and the upper seal 331 is opened. When the lower seal is closed, flow through the shuttle is blocked and the third seal blocks flow between the shuttle and the middle body bore 338. However, the upper seal is now open and reverse flow entering the valve can pass 379 between the shuttle and the nose 330 and leave the valve 316 via the spill port 328.

    [0031] In some embodiments, reverse flow 389 and/or an adverse pressure gradient (outlet pressure P2 > inlet pressure P1) move the shuttle 310 toward the valve inlet end 398 by a distance within dimension S1. This shuttle stroke unblocks the spill port 328 allowing flow entering the outlet chamber 389 to move through a spill pocket 384 with boundaries including the middle body bore 338 and the shuttle 310 before exiting the valve body 302 via one or more spill ports 328. And, in some embodiments, the illustrated spill port is one of six spill ports arranged around a valve body periphery 386.

    [0032] FIGS. 4A-C show a rod driven bypass valve in a bobbin up configuration 400A-C. FIG. 4A shows the valve in the bobbin up configuration. FIG. 4B shows an enlarged middle portion of the rod driven bypass valve in the bobbin up configuration. FIG. 4C shows the enlarged middle portion of the rod driven valve when the bobbin is down 400C. As seen in the figures, a valve body 402 includes an upper body or stand-off 404, a middle body 405, and a lower body 406.

    [0033] The upper body includes a first through hole 469. In some embodiments, the first through hole passes through an outlet chamber 465 of an upper adapter 403. And, in some embodiments, an inner surface of the adapter 467 is threaded. As used herein, the phrase through hole indicates a passage. And, as persons of ordinary skill in the art will recognize, embodiments may have a through hole with a constant cross-section or a through hole of varying shape and/or cross-section as shown here. Embodiments of the adapter block a bobbin 411 from leaving the upper body 404.

    [0034] The middle body includes a second through hole 471. In various embodiments, the second through hole provides or adjoins a shuttle chamber 461 and fluidly couples the valve outlet chamber 465 with a valve inlet chamber 464. The lower body includes a third through hole 473. In various embodiments, the third through hole passes through the inlet chamber 464. As used herein, the term couple refers to a connection that is either of a direct connection or an indirect connection that may further include interposed components.

    [0035] Within the lower body 406, a spring shoulder such as an annular spring shoulder 444 for supporting a charge spring 408 projects inwardly from a first inner bore of the lower body 472. In some embodiments, the shoulder extends between the first inner bore of the lower body and a cylindrical spring guide 442.

    [0036] And, in some embodiments, the shoulder 444 and the spring guide 442 are portions of a lower adapter 407 forming at least part of the lower body 406. In various embodiments, an upper end of the adapter 474 has a reduced outer diameter 476 such that the spring shoulder is formed where the diameter is reduced and the spring guide is formed along the length of the reduced diameter portion of the adapter. As shown, portions of the charge spring 408 are located in an annular pocket 463 between the first inner bore of the lower body 472 and the spring guide. The adapter and lower body may be integral or fitted together as by a threaded connection 446 or another connection known to a skilled artisan.

    [0037] In some embodiments, a spring guide port 456 provides a means for flushing the annular spring pocket 463. As seen, the port extends between the lower chamber 464 and the annular pocket 463. Action of the charge spring 408 and/or pressure differentials between the pocket and the lower chamber provide a flushing action operative to remove solids such as sand that may otherwise tend to accumulate in the annular pocket.

    [0038] Within the middle body 405, a middle body bore 438 is for receiving a valve shuttle 410. The charge spring 408 is for urging the shuttle toward the valve outlet end 499. This shuttle urging may be via direct or indirect charge spring contact. For example, embodiments utilize direct contact between a shuttle lower end 421 and an upper end of the charge spring 478. Other embodiments utilize indirect contact such as via an annular transition ring 423 having an upper face 493 contacting the shuttle carrier lower end and a lower face 425 contacting a charge spring upper end (as shown).

    [0039] Near a lower end of the upper body 475, an inwardly projecting nose 430 includes a stationery seat 432 for engaging a closure 414 encircling a shuttle upper end 413. In various embodiments, the shuttle has a tapered upper end 417 and the closure is part of or extends from this taper. In various embodiments the seat and closure are configured to meet along a line forming an angle θ < 90 degrees with respect to a valve centerline y-y. Absent greater opposing forces, the charge spring 408 moves the shuttle 410 until the shuttle closure 414 is stopped against the stationery seat 432 to form a first seal 431.

    [0040] The rod driven valve includes a central, rotatable, pump driving rod. The rod section shown is a lower rod section 409 with a central axis about centered on the valve centerline y-y. Not shown is this or another rod section's interface with a pump or an upper rod portion that is coupled to a rotating drive means.

    [0041] The lower pump driving rod 409 passes through the valve body 402. In particular the rod passes through the first through hole 469, through the shuttle bore 452, and through the third through hole 469. Like the valve of Figure 3A, the valve of FIG. 4A has a part dragged by fluid flow, the bobbin 411. The bobbin is slidably mounted on the rod above the shuttle as shown in FIG. 4A. The bobbin has a mounting hole for receiving the rod. Bobbin shapes include fluid-dynamic shapes suitable for utilizing drag forces operable to lift the bobbin when there is sufficient forward flow 488. For example, the bobbin may be shaped with substantially conical ends (as shown).

    [0042] In an embodiment, the bobbin 411 includes a bobbin body 420 with a through hole 418 and a peripheral groove 412 defining a plane about perpendicular to the valve y-y axis. The groove is for receiving a bobbing ring 413 and the bobbin ring is for sealing a shuttle mouth 461. In various embodiments, the bobbin body is made from polymers such as plastics and from metals such as stainless steel. And, in various embodiments, the bobbin ring is made from polymers such as plastics and from metals such as stainless steel.

    [0043] In some embodiments, the bobbin body 420 and ring 413 are integral and in some embodiments the bobbin has a bobbin hole insert (not shown) that is made from a material that differs from that of the bobbin body, for example, a metallic insert fitted into an outer plastic body. And, in an embodiment, the bobbin body is injection molded and a metallic bobbin ring is included in the mold during the injection molding process.

    [0044] As further explained below, the bobbin 411 moves along the rod 409 in response to flow through the valve, rising above the shuttle 410 when there is sufficient forward flow 488, and falling to mate with the shuttle when there is insufficient forward flow and when there is reverse flow 489.

    [0045] FIGS. 4D-E show the shuttle in a compressed spring position 400D-E. Unlike FIGS. 4A and 4B showing a normal forward flow through the valve 488 with the shuttle stationery seat 432 and closure 414 mated, FIGS. 4D-E show the shuttle 410 separated from the closure 414 during a reverse flow 489, the charge spring 408 being compressed by movement of the shuttle toward the valve inlet end 498. Notably, one or more sliding seals about the shuttle provide a sliding seal 435 between the shuttle 410 and a middle body bore mated with the shuttle such as the middle body bore 438.

    [0046] When there is sufficient forward flow 488 through the valve 400B, flow through the shuttle bore 452 lifts the bobbin 411 above the shuttle 410 and the charge spring 408 holds the shuttle against the valve body protruding nose 430. With the bobbin lifted above the shuttle, flow passes freely through the shuttle bore and into the valve outlet chamber 465.

    [0047] Figure 4F shows a valve embodiment similar to the valve of Figure 4A with an upper body 404 having a length ℓ1. Here, an upper adapter 403 is configured, as by guards, spokes, annular obstructions or the like, to stop the bobbin from rising beyond the upper adapter. In various applications, a suitable length ℓ1 may depend upon factors such as fluid viscosity, bobbin geometry, fluid flow rate ranges, and spacing between the bobbin and surrounding structures. In some embodiments, length ℓ1 for 4 inch (101.6 mm) and 6 inch (152.4 mm) valve sizes is in the range of about 2 feet (609.6 mm) to 10 feet (3.048 m). And, in some embodiments, length ℓ1 is in the range of about 4 to 20 times the valve size. Skilled artisans may utilize knowledge of the application and its constraints to select suitable geometric variables including length ℓ1.

    [0048] Referring to FIG. 4C, the rising shuttle is stopped when the shuttle closure 414 mates with the stationery seat 432 forming the body-shuttle seal 431. Forces acting on the bobbin 411 include drag forces due to flow through the shuttle bore 452 and gravitational forces. In various embodiments, when drag forces are overcome by gravitational forces due to insufficient forward flow, the bobbin falls relative to the shuttle 410.

    [0049] Notably, during an inadequate flow event, the bobbin 411 falls relative to the shuttle 410 (see FIG. 4E). On shuttle contact, the bobbin ring closure 480 comes to rest against a shuttle mouth seat 481 forming a shuttle-bobbin seal 482 and blocking flow through the shuttle. Pressure forces at the valve outlet P22 act on the blocked shuttle and move it toward the valve inlet 498, a process that compresses the charge spring 408. When the bobbin ring closure and shuttle mouth seat are mated, forward flow is substantially limited. In some embodiments, flow is stopped but for leakage such as unintended leakage.

    [0050] As seen, to the extent that the fluid head at the valve outlet P22 results in a fluid head force on the shuttle sufficient to overcome resisting forces including compressing the charge spring 408, the shuttle 410 moves toward the inlet end of the valve 498. In various embodiments, a shuttle diameter 437, approximated in some embodiments as a middle body bore diameter 439, provides an estimate of the area acted on by the fluid head and thus the fluid head force. Skilled artisans will adjust valve performance by determining valve variables including a spring constant "k" (F = kx) of the charge spring to adapt the valve for particular applications.

    [0051] Turning now to the spill port 428, it is seen that forward flow 488 and the body-shuttle seal 431 associated with forward flow enable blocking of the spill port 428. For example, the spill port may be blocked by forming an isolation chamber and/or by isolating or sealing the port 493. When the spill port is blocked, flow entering the valve inlet 498 passes through the shuttle through bore 452, out a shuttle mouth 461, into the valve outlet chamber 465, and out of the valve outlet 499.

    [0052] Referring to FIG. 4D, it is seen that reverse flow 489 and the shuttle-bobbin seal 482 associated with reverse flow enable opening of the spill port 428 as the shuttle 410 moves toward the inlet end of the valve 498 and the upper seal 431 is opened. When the shuttle-bobbin seal is closed, flow through the shuttle is blocked and a sliding shuttle-bore seal 435 blocks flow between the shuttle and the middle body bore 438. However, the shuttle-body seal 431 is now open and reverse flow entering the valve can pass around the nose 479 and leave the valve 416 via the spill port 428.

    [0053] In some embodiments, reverse flow 489 and/or an adverse pressure gradient (outlet pressure P22 > inlet pressure P11) move the shuttle 410 toward the valve inlet end 498 by a distance within dimension S11. This shuttle stroke unblocks the spill port 428 allowing flow entering the outlet chamber 489 to move through a spill pocket 484 with boundaries including the middle body bore 438 and the shuttle 410 before exiting the valve body 416 via one or more spill ports 428. And, in some embodiments, the illustrated spill port is one of a plurality of spill ports arranged around a valve body periphery 486.

    [0054] The shuttle 410 of the rod driven valve 400A has a periphery 437 that seals, at least in part, against an internal bore of the valve such as the middle body bore 438. While some embodiments provide a shuttle with a substantially continuous sealing surface (as shown) for providing a sliding seal 435, various other embodiments provide a discontinuous sealing surface. For example, seals in the form of raised surface portions, rings in groves, snap rings, O-rings, and other suitable sealing parts and assemblies known to skilled artisans may be used.

    [0055] FIGS. 5-6 show shuttle sealing assemblies for use with the valves of FIGS. 3-4 above. Skilled artisans will appreciate the use of the valve sealing means shown on various valves including rod driven and non-rod driven valves. FIG. 5 shows an exploded view of a shuttle assembly having one or more removable seals 500. FIG. 6 shows an assembled view of the shuttle assembly of FIG. 5A 600. Here, a shuttle body 514 receives an upper sealing ring or seal 520, a cartridge or seal cartridge 522, a lower sealing ring or seal 530, and a lower retainer ring 532. Embodiments of a generally cylindrical outer surface of the shuttle body 518 include features such as threads for engaging mating parts such as threads of upper and lower seals 521, 531 and threads of the retaining ring 534.

    [0056] Among other things, the shuttle assembly provides removable upper and lower seals 520 and 530 carried by respective seal recesses 525, 527 at opposed ends of the generally cylindrical seal cartridge 522. Internal threads of the seal cartridge 523 are for engaging external threads on the body 518 such that the upper seal can be fixed between a body rim such as an upper lip of the body 516 and a seal cartridge rim such as a shoulder 524 of the seal cartridge. The upper seal is located as the seal cartridge is advanced, as by threaded parts, onto the shuttle body.

    [0057] The lower seal 530 is for locating between the seal cartridge 522 and a lower retaining ring or lower retainer 532 such that the lower seal can be fixed between a body rim such as a seal cartridge rim, for example a lower shoulder 526 of the seal cartridge and the lower retaining ring. In particular, an externally threaded end portion of the shuttle body 529 protrudes from the seal carrier 522 after assembly of the first seal 520. When the lower seal 530 is in place and carried by the lower seal recess 527 of the seal cartridge, fitting the lower retaining ring to the seal cartridge as by threads provides a means to locate the lower seal.

    [0058] Embodiments include a shuttle body 514 with a raised face (not shown) that separates the upper and lower seals 520, 530. Here, the upper seal is bounded at the upper end by a rim of the shuttle body 516 while the lower seal is bounded at the lower end by the lower retaining ring 532.

    [0059] Further, the shuttle body 514 and the seal cartridge 522 are engaged via mating threads including threads on the inside of the seal cartridge 523 and on an exterior of the lid carrier 518 such that the upper seal 520 is captured at the upper seal recess 525. In similar fashion, the retainer ring 532 and the seal cartridge are engaged via mating threads 542 on the inside of the retainer ring 534 and on an exterior of the lid carrier 518 such that the lower seal 530 is captured at the lower seal recess 527.

    [0060] As skilled artisans will recognize, seal 520, 530 dimensions are chosen to provide for a desired engagement with a mating surface and in particular for engagement with a mating sealing surface such as that of the spill port(s) 428. Some seal peripheries may have respective crowns 450, 452 providing a seal movable with the shuttle body 514.

    [0061] And, as skilled artisans will appreciate, embodiments of this disclosure provide securely located seals during extended periods of valve operation such as years and enable replacement of seals should the shuttle be refurbished. In addition, readily removable seals allows for fitting a shuttle with seals for different operating conditions such as different valves and different types of service. The shuttle of FIG. 5A may be adapted for use in rod driven valves and non-rod driven valves.

    [0062] In various embodiments the valve parts of FIGS. 3-6 are made from metals or alloys of metals including one or more of ferrous or non-ferrous metals, polymers, steel, iron, brass, aluminum, stainless steel, and other materials skilled artisans know to be suitable. And, in various embodiments, one or more parts of the valve are made from non-metals. For example, valve seal parts such as closures and seats may be made from specialty seal polymers such as PTFE (polytetrafluoroethylene), POM (Polyoxymethylene) and PEEK (PolyEtherEtherKetone).

    [0063] As can be seen from the above, various valve and/or valve and related equipment embodiments will react to flow conditions such as insufficient fluid flow, no fluid flow, or reverse fluid flow. For example, referring to the production string of FIG. 2 and the valves of FIGS. 3-4, the valve 108 and pump 104 are substantially removed from the fluid circuit when flow through the shuttle 310, 410 is blocked and the outlet chamber 365, 465 is isolated from the inlet chamber 364, 464.

    [0064] A benefit of this isolation is protection of the valve 108 and pump 104. For example, one protection afforded is protection from solids (such as sand), normally rising with the fluid but during insufficient flow conditions moving toward the valve and pump, that might otherwise foul or block one or both of these and potentially other components. Blocking the flow path through the shuttle 352, 452 and opening the spill port(s) 328, 428 removes these solids outside the tubing string 203, 204.

    [0065] Recent experience shows adaptations of the flow management systems of FIG. 1 retard and/or eliminate pump backspin associated with backflow events. This backspin protection is a significant improvement over hydraulic damping brake and small orfice on pumps used previously but prone to frequent failure.

    [0066] Various embodiments and applications of the valves of FIGS. 3, 4 provide valve fouling/plugging protection and pump fouling/plugging/burn-out protection. For example, lower than design production flow rates causing valve/pump misoperation or damage in traditional production string equipment is avoided in many cases using embodiments of the valves of the present invention.

    [0067] Notably, embodiments of the bypass valves of FIGS. 3, 4 can replace or supplement protection systems now associated with some production strings. One such protection system is the "pump-off controller" ("POC") used to protect pumps from failures due to abnormal operations such as reduced flow conditions and loss of flow conditions.

    [0068] FIG. 7 shows an illustrative example in the form of a schematic diagram of a pump-off controller installation in a production string 700. A portion of the production string 712 includes a pump 702 lifting product from a reservoir 714 to a higher level such as a surface level 716. A pump-off controller 708 receives power from a power supply 707 and provides power to the pump 710 in accordance with a control algorithm. For example, a pressure indicating device 704 monitors a pressure near a pump discharge 711 and provides a signal indicative of pressure 706 to the pump-off controller. If the pump-off controller determines the indicated pressure is below a preselected low-pressure set point, the POC stops supplying power to the pump. Conditions causing low pump discharge pressure include insufficient product at the pump inlet 713 (sometimes described as a "dry suction"), pump fouling, and pump damage. Attempting to run the pump under any of these conditions has the potential to damage or further damage the pump.

    [0069] FIG. 8 shows a pump-off controller embodiment of the present invention 800. A production string 801 includes a flow management system with a pump 836 interposed between a reservoir 838 and a valve 834. Product the pump lifts from the reservoir 829 passes first through the pump and then through a bypass valve 834. The bypass valve discharges 821 into a tubing space 804 of a tubing string 802 that is surrounded by a casing 812 creating an annulus 814 between the outer casing and the inner tubing.

    [0070] FIG. 9 shows a mode of bypass valve operation that substitutes for or augments a production string pump-off controller 900. For example, after a period of normal operation 902, the pressure differential (inlet pressure P111 > outlet P222) driving the flow in a production string 821 begins to fall 904. As explained above, low flow conditions cause flow through the shuttle to be blocked (see FIGS. 3C, 4D). When the forces on the shuttle including force applied by the charge spring 308, 408 are insufficient to maintain the shuttle in a position blocking the spill port 328, 428, the shuttle moves toward the valve inlet 398, 498 and unblocks the spill port/opens the bypass 906. During bypass operation 908, flow through the valve along the valve centerline y-y is blocked and the spill port(s) is open, product flows from the upper tubing string 823, enters the valve outlet chamber 366, 466, and leaves the valve through its spill port(s) 328, 428. The spill port empties into a space such as an annulus between the tubing and the casing 814 and is returned 827 to the reservoir 838. Here, the shuttles of FIG. 3A, 4A, 5, 7 are exemplary.

    [0071] Because the annulus 814 is fluidly coupled to the reservoir 838 (e.g. as shown in FIG. 8), valve bypass from the spill ports is returned to the reservoir 827 in the replenishment step 910. In various embodiments, filling the reservoir with the fluid from the valve bypass serves to provide fluid to the suction of the pump 836, lift the shuttle e.g., 310, 410 and unblock flow through the valve along its centerline y-y where forward flow such as normal forward flow is re-established in step 912. Re-establishment of normal flow is followed by a return to normal operation in step 914.

    [0072] The pump-off control steps of FIG. 9 result, in various embodiments, in cyclic flows through the pump. The time between these cyclic flows is shorter than would occur with a traditional valve in a traditional production string configuration because such strings are unable to bypass flow to the reservoir.

    [0073] As persons of ordinary skill in the art will appreciate, many production string pumps rely on the pumped product as pump lubrication and coolant. Therefore, reducing the duration of dry pumping periods reduces pump damage due to operation with insufficient lubricant and coolant. The benefits include one or more of longer pump life, fewer outages, and higher production from tight reservoirs.

    [0074] The present invention has been disclosed in the form of exemplary embodiments. However, it should not be limited to these embodiments. Rather, the present invention should be limited only by the claims which follow where the terms of the claims are given the meaning a person of ordinary skill in the art would find them to have.


    Claims

    1. A fluid flow manager (100) for a hydrocarbon well, the fluid flow manager comprising:

    a valve (108, 300A; 400A) having valve body (302; 402) with a spill port (328; 428), a shuttle (310; 410) located within the valve body and a spring (308; 408) for urging the shuttle in a direction within the valve body; and a drag part (354; 411);

    the valve being configured for use as part of a hydrocarbon well production string (200A) comprising a pump (104) and an upper tubing string (204), the valve for use being interposed between the pump and the upper tubing string;

    wherein:

    the valve body includes a middle body (305; 405) with the spill port, the middle body interposed between upper (304; 404) and lower (306;406) bodies along a valve centerline (Y-Y);

    a valve body cavity (369, 371,373; 469, 471, 473) fluidly couples the middle, upper, and lower bodies;

    an internal nose(330; 430) extends inwardly from the valve body, the nose located within the valve body cavity;

    the shuttle is a substantially constant diameter shuttle (310; 410) located within the valve body cavity and moveable with respect to the valve body along the centerline, the shuttle having a shuttle upper end closure (314; 414) and a shuttle bore (352; 452) therethrough along the centerline;

    a sliding seal (335; 435) is located between the shuttle and a wall (339; 439) of the valve body cavity, said sliding seal blocking flow between the shuttle and said wall of the valve body cavity;

    the spring (308; 408)) urges the shuttle upper end closure to mate with an internal nose seat (332; 432) to form a stationery seal (331; 431);

    the drag part (354; 411) mates with a shuttle seat (326; 481) to form a movable seal blocking flow through the shuttle bore, when upward flow induced drag forces acting on said drag part are overcome by gravitational forces acting on said drag part;

    the spill port is in fluid communication with the valve upper body cavity when the stationery seal is open and the moveable seal is closed;

    the spill port is fluidly isolated from the valve upper body cavity when the moveable seal is open and the stationery seal is closed;

    the valve passes a flow to the upper tubing string when the flow enters the valve via the valve lower body; and,

    the valve diverts a flow through the spill port when the flow enters the valve via the valve upper body;

    the spring has a spring end seated in a valve body pocket (363; 463), said spring end encircling a pocket sidewall (342; 442);

    characterized in said sidewall having one or more ports (356; 456) for flushing the pocket and in said sidewall forming part of the valve body (302; 402).


     
    2. The fluid flow manager of claim 1 further comprising seal rings (520, 530) seated in grooves (525, 527) formed in part by a seal cartridge (522) of the shuttle.
     
    3. The fluid flow manager of claim 1 or claim 2 further comprising shuttle parts (351) for retaining the drag part within the shuttle.
     
    4. The fluid flow manager of claim 3 further comprising a drag part surface (355) for mating with the shuttle seat.
     
    5. The fluid flow manager of claim 4 wherein the drag part has a spherically shaped outer surface (355).
     
    6. The fluid flow manager of any preceding claim fluidly interposed between a tubing string (204) for receiving flow leaving the valve via the upper valve body and the pump (104), the pump being a submersible electric pump for supplying flow to the lower valve body.
     
    7. The fluid flow manager of claim 1 or claim 2 further comprising:

    one or more valve body cavity dimensions sufficient to allow a pump drive rod (250) to extend through the valve ; and,

    a drag part feature (418) for slidably engaging the pump drive rod.


     
    8. The fluid flow manager of claim 7 further comprising:

    an upper adapter (403) for limiting travel of the drag part; and,

    wherein the upper valve body includes or is connected to a stand-off (404) for guiding the drive rod, the stand-off having a length of about 4 to 20 times the size of the valve


     
    9. The fluid flow manager of any of claims 7 or 8 further comprising peripheral drag part ring (413) incorporating the drag part closure for mating with the shuttle seat.
     
    10. The fluid flow manager of claim 9 wherein the drag part ring is located between tapered drag part ends (411).
     
    11. The fluid flow manager of any of claims 7 to 10 fluidly interposed between a tubing string (204) for receiving flow leaving the valve via the upper valve body and the pump, the pump being a rod driven pump for supplying flow to the lower valve body.
     
    12. The fluid flow manager of any preceding claim wherein the valve body pocket is an annular pocket (363).
     
    13. The fluid flow manager of any preceding claim wherein said one or more ports (356, 456) of the pocket sidewall (342,442) extend between the valve body pocket and the valve body cavity (373) of the lower body.
     
    14. The fluid flow manager of any preceding claim wherein action of the spring (310) causes flushing of the valve body pocket via said one or more ports of the pocket sidewall.
     
    15. A method of managing fluid flow for a hydrocarbon well comprising the steps of:

    providing a well flow manager (100) according to claim 1 fluidly interposed between an upper tubing (204) and a pump (104) in the hydrocarbon well;

    providing a fluid to be lifted from a reservoir of the well;

    passing a flow entering the valve via the valve lower body; and

    diverting a flow through the spill port when the flow enters the valve via the valve upper body.


     


    Ansprüche

    1. Strömungssteuerung (100) für ein Kohlenwasserstoffbohrloch, wobei die Strömungssteuerung umfasst:

    ein Ventil (108, 300A; 400A) mit einem Ventilkörper (302; 402) mit einer Absteuerbohrung (328; 428), einem Shuttle (310; 410) im Ventilkörper und einer Feder (308; 408), um das Shuttle im Ventilkörper in eine Richtung zu drücken; und ein Widerstandsteil (354; 411);

    wobei das Ventil dafür ausgelegt ist, als Teil einer Kohlenwasserstoffbohrloch-Produktionsrohrtour (200A) verwendet zu werden, die eine Pumpe (104) und einen oberen Steigrohrstrang (204) umfasst, wobei das Ventil im Einsatz zwischen der Pumpe und dem oberen Steigrohrstrang angeordnet ist;

    wobei:

    der Ventilkörper einen Mittelkörper (305; 405) mit der Absteuerbohrung aufweist, wobei der Mittelkörper zwischen den oberen (304; 404) und unteren (306; 406) Körpern entlang einer Ventilmittellinie (Y-Y) angeordnet ist;

    ein Ventilkörperhohlraum (369, 371, 373; 469, 471, 473) den mittleren, oberen und unteren Körper strömungstechnisch verbindet;

    sich ein innerer Vorsprung (330; 430) vom Ventilkörper nach innen erstreckt, wobei sich der Vorsprung im Ventilkörperhohlraum befindet;

    das Shuttle im Wesentlichen ein Shuttle (310; 410) mit konstantem Durchmesser ist, das sich im Ventilkörperhohlraum befindet und in Bezug auf den Ventilkörper entlang der Mittellinie bewegt werden kann, wobei das Shuttle am oberen Ende des Shuttles einen Verschluss (314; 414) und dadurch entlang der Mittellinie eine Shuttle-Bohrung (352; 452) aufweist;

    eine Gleitdichtung (335; 435) zwischen dem Shuttle und einer Wand (339; 439) des Ventilkörperhohlraums angeordnet ist, wobei die Gleitdichtung die Strömung zwischen dem Shuttle und der Wand des Ventilkörperhohlraums blockiert;

    die Feder (308; 408) den Verschluss am oberen Ende des Shuttles zur Bildung einer statischen Dichtung (331; 431) auf einen inneren Vorsprungsitz (332; 432) drückt;

    das Widerstandsteil (354; 411) zur Bildung einer beweglichen Dichtung auf einen Shuttle-Sitz (326; 481) passt, das eine Strömung durch die Shuttle-Bohrung blockiert, wenn durch die Aufwärtsströmung induzierte und auf das Widerstandsteil wirkende Widerstandskräfte durch auf das Widerstandsteil wirkende Gravitationskräfte überwunden werden;

    die Absteuerbohrung strömungstechnisch mit dem Hohlraum des Ventiloberteils verbunden ist, wenn die statische Dichtung geöffnet und die bewegliche Dichtung geschlossen ist;

    die Absteuerbohrung strömungstechnisch vom Hohlraum des Ventiloberteils getrennt ist, wenn die bewegliche Dichtung geöffnet und die statische Dichtung geschlossen ist;

    das Ventil eine Strömung zum oberen Steigrohrstrang führt, wenn die Strömung über den unteren Ventilkörper in das Ventil eintritt; und

    das Ventil eine Strömung über die Absteuerbohrung umleitet, wenn die Strömung über den oberen Ventilkörper in das Ventil eintritt;

    die Feder ein Federende aufweist, das in einer Ventilkörpertasche (363; 463) sitzt, wobei das Federende eine Taschenseitenwand (342; 442) umschließt;

    dadurch gekennzeichnet ist, dass die Seitenwand eine oder mehrere Öffnungen (356; 456) zum Spülen der Tasche aufweist und dass die Seitenwand einen Teil des Ventilkörpers (302; 402) bildet.


     
    2. Strömungssteuerung gemäß Anspruch 1, ferner umfassend in Nuten (525, 527) sitzende Dichtungsringe (520, 530), wobei die Nuten teilweise durch eine Dichtungspatrone (522) des Shuttles gebildet werden.
     
    3. Strömungssteuerung gemäß Anspruch 1 oder Anspruch 2, ferner umfassend Shuttle-Teile (351), um das Widerstandsteil im Shuttle zu halten.
     
    4. Strömungssteuerung gemäß Anspruch 3, ferner umfassend eine in den Shuttle-Sitz eingreifende Widerstandsteilfläche (355).
     
    5. Strömungssteuerung gemäß Anspruch 4, wobei das Widerstandsteil eine kugelförmig geformte Außenfläche (355) aufweist.
     
    6. Strömungssteuerung gemäß einem der vorhergehenden Ansprüche, die stömungstechnisch zwischen einem Steigrohrstrang (204), um Strömungen zu empfangen, die das Ventil über den oberen Ventilkörper verlassen und der Pumpe (104) angeordnet ist, wobei die Pumpe eine elektrische Tauchpumpe ist, um dem unteren Ventilkörper eine Strömung zuzuführen.
     
    7. Strömungssteuerung gemäß Anspruch 1 oder Anspruch 2, ferner umfassend:

    eine oder mehrere ausreichende Ventilkörperhohlraum-Abmessungen, damit sich eine Pumpenantriebsstange (250) durch das Ventil erstrecken kann; und

    eine Widerstandsteilfunktion (418), um verschiebbar in die Pumpenantriebsstange einzugreifen.


     
    8. Strömungssteuerung gemäß Anspruch 7, ferner umfassend:

    einen oberen Adapter (403), um die Bewegung des Widerstandsteils zu begrenzen; und

    wobei der obere Ventilkörper einen Abstandshalter (404) zum Führen der Antriebsstange aufweist oder mit diesem verbunden ist, wobei der Abstandshalter eine Länge von etwa dem 4- bis 20-fachen der Ventilgröße hat.


     
    9. Strömungssteuerung gemäß einem der Ansprüche 7 oder 8, ferner umfassend einen peripheren Widerstandsteil-Ring (413), in dem der Widerstandsteil-Verschluss zum Eingriff in den Shuttle-Sitz aufgenommen ist.
     
    10. Strömungssteuerung gemäß Anspruch 9, wobei der Widerstandsteil-Ring zwischen konisch zulaufenden Widerstandsteil-Enden (411) angeordnet ist.
     
    11. Strömungssteuerung gemäß einem der Ansprüche 7 bis 10, die stömungstechnisch zwischen einem Steigrohrstrang (204), um Strömungen zu empfangen, die das Ventil über den oberen Ventilkörper verlassen, und der Pumpe angeordnet ist, wobei die Pumpe eine Bohrloch-Wellenpumpe ist, um dem unteren Ventilkörper eine Strömung zuzuführen.
     
    12. Strömungssteuerung gemäß einem der vorhergehenden Ansprüche, wobei die Ventilkörpertasche eine ringförmige Tasche (363) ist.
     
    13. Strömungssteuerung gemäß einem der vorhergehenden Ansprüche, wobei sich eine oder mehrere Öffnungen (356, 456) der Taschenseitenwand (342.442) zwischen der Ventilkörpertasche und dem Ventilkörperhohlraum (373) des unteren Körpers erstrecken.
     
    14. Strömungssteuerung gemäß einem der vorhergehenden Ansprüche, wobei die Kraft der Feder (310) bewirkt , dass die Ventilkörpertasche über eine oder mehrere Öffnungen in der Taschenseitenwand gespült wird.
     
    15. Verfahren zur Steuerung der Fluidströmung in einem Kohlenwasserstoffbohrloch, folgende Schritte umfassend:

    eine Bohrloch-Strömungssteuerung (100) gemäß Anspruch 1 bereitstellen, die strömungstechnisch zwischen einem oberen Steigrohrstrang (204) und einer Pumpe (104) im Kohlenwasserstoffbohrloch angeordnet ist;

    ein Fluid bereitstellen, das aus einem Reservoir des Bohrlochs gehoben werden soll;

    eine Strömung weiterleiten, die über das Ventilunterteil in das Ventil eintritt; und

    die Strömung über die Absteuerbohrung umleiten, wenn die Strömung über den oberen Ventilkörper in das Ventil eintritt;


     


    Revendications

    1. Un gestionnaire d'écoulement de fluide (100) pour un puits d'hydrocarbures, le gestionnaire d'écoulement de fluide comprenant :

    une valve (108, 300A ; 400A) ayant un corps de valve (302 ; 402) avec un orifice de déversement (328 ; 428), une navette (310 ; 410) située à l'intérieur du corps de valve et un ressort (308 ; 408) pour pousser la navette dans une direction à l'intérieur du corps de valve ; et une partie de traînée (354 ; 411) ;

    la valve étant configurée pour être utilisée comme une partie d'une chaîne de production de puits d'hydrocarbures (200A) comprenant une pompe (104) et une chaîne de tubage supérieure (204), la valve à utiliser étant interposée entre la pompe et la chaîne de tubage supérieure ;

    dans lequel :

    le corps de valve comprend un corps intermédiaire (305 ; 405) avec l'orifice de déversement, le corps intermédiaire interposé entre les corps supérieur (304 ; 404) et inférieur (306 ; 406) le long d'un axe central de valve (Y-Y) ;

    une cavité de corps de valve (369, 371, 373 ; 469, 471, 473) couple fluidiquement les corps intermédiaire, supérieur et inférieur ;

    un nez interne (330 ; 430) s'étend vers l'intérieur à partir du corps de valve, le nez situé à l'intérieur de la cavité du corps de valve ;

    la navette est une navette de diamètre sensiblement constant (310 ; 410) située dans la cavité du corps de valve et mobile par rapport au corps de valve le long de l'axe central, la navette ayant une fermeture d'extrémité supérieure de navette (314 ; 414) et un alésage de navette (352 ; 452) à travers celle-ci le long de l'axe central ;

    un joint d'étanchéité coulissant (335 ; 435) est situé entre la navette et une paroi (339 ; 439) de la cavité de corps de valve, ledit joint d'étanchéité coulissant bloquant l'écoulement entre la navette et ladite paroi de la cavité de corps de valve ;

    le ressort (308 ; 408) pousse la fermeture d'extrémité supérieure de la navette à s'accoupler avec un siège de nez interne (332 ; 432) pour former un joint d'étanchéité fixe (331 ; 431) ;

    la partie de traînée (354 ; 411) s'accouple avec un siège de navette (326 ; 481) pour former un joint d'étanchéité mobile bloquant l'écoulement à travers l'alésage de navette, lorsque des forces de traînée induites d'écoulement ascendant agissant sur ladite partie de traînée sont surmontées par des forces gravitationnelles agissant sur ladite partie de traînée ;

    l'orifice de déversement est en communication fluide avec la cavité de corps supérieure de valve lorsque le joint d'étanchéité fixe est ouvert et le joint d'étanchéité mobile est fermé ;

    l'orifice de déversement est isolé fluidiquement de la cavité de corps supérieure de valve lorsque le joint d'étanchéité mobile est ouvert et le joint d'étanchéité fixe est fermé ;

    la valve transmet un écoulement à la chaîne de tubage supérieure lorsque l'écoulement entre dans la valve via le corps inférieur de valve ; et

    la valve dévie un écoulement à travers l'orifice de déversement lorsque l'écoulement entre dans la valve via le corps supérieur de valve ;

    le ressort a une extrémité de ressort logée dans une poche de corps de valve (363 ; 463), ladite extrémité de ressort encerclant une paroi latérale de la poche (342 ; 442) ; caractérisé en ce que ladite paroi latérale a un ou plusieurs orifices (356 ; 456) pour rincer la poche et dans ladite paroi latérale fait partie du corps de valve (302 ; 402).


     
    2. Le gestionnaire d'écoulement de fluide selon la revendication 1 comprenant en outre des anneaux d'étanchéité (520, 530) logés dans des rainures (525, 527) formées en partie par une cartouche d'étanchéité (522) de la navette.
     
    3. Le gestionnaire d'écoulement de fluide selon la revendication 1 ou la revendication 2 comprenant en outre des parties de navette (351) pour retenir la partie de traînée à l'intérieur de la navette.
     
    4. Le gestionnaire d'écoulement de fluide selon la revendication 3 comprenant en outre une surface de partie de traînée (355) pour s'accoupler avec le siège de navette.
     
    5. Le gestionnaire d'écoulement de fluide selon la revendication 4 dans lequel la partie de traînée a une surface extérieure de forme sphérique (355).
     
    6. Le gestionnaire d'écoulement de fluide selon l'une quelconque des revendications précédentes interposé fluidiquement entre une chaîne de tubage (204) pour recevoir l'écoulement quittant la valve via le corps de valve supérieur et la pompe (104), la pompe étant une pompe électrique submersible pour fournir l'écoulement au corps de valve inférieur.
     
    7. Le gestionnaire d'écoulement de fluide selon la revendication 1 ou la revendication 2 comprenant en outre :

    une ou plusieurs dimensions de cavité de corps de valve suffisantes pour permettre à une tige d'entraînement de pompe (250) de s'étendre à travers la valve ; et,

    une caractéristique de partie de traînée (418) pour engager de manière coulissante la tige d'entraînement de pompe.


     
    8. Le gestionnaire d'écoulement de fluide selon la revendication 7 comprenant en outre :

    un adaptateur supérieur (403) pour limiter le déplacement de la partie de traînée ; et,

    dans lequel le corps de valve supérieur comprend ou est relié à une douille-entretoise autosertissable (404) pour guider la tige d'entraînement, la douille-entretoise autosertissable ayant une longueur d'environ 4 à 20 fois la taille de la valve.


     
    9. Le gestionnaire d'écoulement de fluide selon l'une quelconque des revendications 7 ou 8 comprenant en outre un anneau de partie de traînée périphérique (413) incorporant la fermeture de la partie de traînée pour s'accoupler avec le siège de navette.
     
    10. Le gestionnaire d'écoulement de fluide selon la revendication 9 dans lequel l'anneau de la partie de traînée est situé entre des extrémités coniques de la partie de traînée (411).
     
    11. Le gestionnaire d'écoulement de fluide selon l'une quelconque des revendications 7 à 10 interposé fluidiquement entre une chaîne de tubage (204) pour recevoir l'écoulement quittant la valve via le corps de valve supérieur et la pompe, la pompe étant une pompe entraînée par tige pour fournir un écoulement au corps de valve inférieur.
     
    12. Le gestionnaire d'écoulement de fluide selon l'une quelconque des revendications précédentes dans lequel la poche de corps de valve est une poche annulaire (363).
     
    13. Le gestionnaire d'écoulement de fluide selon l'une quelconque des revendications précédentes dans lequel lesdits un ou plusieurs orifices (356, 456) de la paroi latérale de la poche (342, 442) s'étendent entre la poche de corps de valve et la cavité de corps de valve (373) du corps inférieur.
     
    14. Le gestionnaire d'écoulement de fluide selon l'une quelconque des revendications précédentes dans lequel l'action du ressort (310) provoque le rinçage de la poche de corps de valve via lesdits un ou plusieurs orifices de la paroi latérale de la poche.
     
    15. Un procédé de gestion d'écoulement de fluide pour un puits d'hydrocarbures comprenant les étapes suivantes :

    la fourniture d'un gestionnaire d'écoulement de puits (100) selon la revendication 1 interposé fluidiquement entre un tubage supérieur (204) et une pompe (104) dans le puits d'hydrocarbures ;

    la fourniture d'un fluide à soulever à partir d'un réservoir du puits ;

    le passage d'un écoulement entrant dans la valve via le corps inférieur de valve ; et

    la déviation d'un écoulement à travers l'orifice de déversement lorsque l'écoulement entre dans la valve via de corps supérieur de valve.


     




    Drawing















































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description