(19)
(11) EP 2 943 556 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
08.04.2020 Bulletin 2020/15

(21) Application number: 14702755.1

(22) Date of filing: 08.01.2014
(51) International Patent Classification (IPC): 
C10K 1/00(2006.01)
C10K 1/34(2006.01)
(86) International application number:
PCT/EP2014/050190
(87) International publication number:
WO 2014/108423 (17.07.2014 Gazette 2014/29)

(54)

PROCESS FOR THE HYDROGENATION OF CARBON SULPHIDE USING A SULPHIDIC COBALT MOLYBDENUM CATALYST ON AN ALUMINIUM OXIDE CARRIER

VERFAHREN ZUR HYDRIERUNG VON CARBONSULFIDE UNTER VERWENDUNG VON EINEM SULFIDIERTEN KOBALT- UND MOLYBDÄN-KATALYSATOR AUF EINEM ALUMINIUMOXID-TRÄGER

PROCÉDÉ D'HYDROGÉNATION DE SULFURE DE CARBONE À L'AIDE D'UN CATALYSEUR SULFURÉ AU COBALT ET AU MOLYBDÈNE SUR SUPPORT ALUMINE


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 09.01.2013 DE 102013000173
03.06.2013 DE 102013010473
06.06.2013 DE 102013009885

(43) Date of publication of application:
18.11.2015 Bulletin 2015/47

(73) Proprietor: thyssenkrupp Industrial Solutions AG
45143 Essen (DE)

(72) Inventors:
  • RIEGER, Michael
    22846 Norderstedt (DE)
  • SCHÖNEBERGER, Jan
    14089 Berlin (DE)
  • THIELERT, Holger
    44379 Dortmund (DE)

(74) Representative: thyssenkrupp Intellectual Property GmbH 
ThyssenKrupp Allee 1
45143 Essen
45143 Essen (DE)


(56) References cited: : 
EP-A1- 2 412 667
WO-A1-2004/105922
GB-A- 1 018 630
GB-A- 1 404 581
US-A- 4 336 233
WO-A1-93/13184
DE-A1- 2 647 690
GB-A- 1 332 337
US-A- 4 085 199
US-A- 4 863 489
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF THE INVENTION



    [0001] The invention belongs to the field of coke making technology and relates to a new process for the removal of carbon sulphides from coke oven gas.

    STATE OF THE ART



    [0002] Coke oven gas (synonym: coking gas) is obtained from dry distillation of hard coal in coke oven plants. As main constituents, the gas typically contains approx. 55 %-wt hydrogen, 25 %-wt methane, 10 %-wt nitrogen and 5 %-wt. carbon monoxide. Due to this, coke oven gas is generally qualified as a synthesis gas for chemical reactions; disadvantageous, however, are the contents of carbonyl sulphide and carbon disulphide, which must previously be removed as they act as catalyst poisons in subsequent reactions, for example. The consequence is that the catalysts must frequently be cleaned or even exchanged, which directly involves effort and cost and is also unwanted because of the turnaround of the plant.

    [0003] A common method to free industrial gas from unwanted carbon sulphides is the catalytic hydrolysis of such compounds as described in DE 26 47 690 A1, EP 2 412 667 A1, GB 1 332 337 A, US 4 336 233 A, US 4 863 489 A, WO 2004/105922 A1, and WO 93/13184 A1.

    [0004] One further method to free coke oven gas from unwanted carbon sulphides is to subject the gas to a catalytic hydrogenation and to convert the sulphur compounds into hydrogen sulphide. Although this gas is also unwanted, it can be washed out easily by means of aqueous lye, for example, ammonia solution. For example, from GB 1 018 630 A, a catalytic hydrogenation of gas mixtures is known in which carbonyl sulphide is hydrogenated using catalyst materials such as alumina, bauxite, activated clays, aluminium phosphate, thoria and magnesium chloride while carbon disulphide is hydrogenated using a catalyst containing at least one metal from Groups VI and/or VIII of the Periodic System of the Elements, either as such or in chemically bound form. Cobalt-molybdenum-aluminium catalysts for hydrogenation of carbonyl sulphide and carbon disulphide are also known from US 4 336 233 and EP 2 412 667 A1, respectively.Related processes are already known according to prior art. German patent application DE 1545470 A1 (Pichler), for example, suggests to hydrogenate carbon sulphides over cobalt molybdenum, nickel molybdenum or nickel cobalt molybdenum catalysts to hydrogen sulphide, which is then to be separated. The reaction temperature in the examples is above 550 °C.

    [0005] The use of catalysts on a nickel, cobalt, molybdenum or palladium basis for the hydrodesul-phurisation of coke oven gas can also be found in various older Japanese patent applications, as, for instance, JP 59 145288 A2 (Shinnittetsu) or JP 59 230092 A1 (Hitachi). These processes as well

    [0006] A similar process is also known from German patent application DE 2647690 A1 (Parsons), which proposes to hydrogenate sulphur-bearing carbon compounds over catalysts on the basis of cobalt, molybdenum, iron, chromium, vanadium, thorium, nickel, tungsten and/or uranium and to remove the hydrogen sulphide obtained in an extraction column by means of an alkali hydroxide solution. The sulphides of the above metals are proposed as concrete catalysts. A disadvantage involved is, however, that in this case as well the catalysts require a minimum temperature of 260 °C and the hydrogenation must preferably be carried out at significantly higher temperatures, partly even above 400 °C. This is not desired especially for reasons of energy cost; in addition, such temperatures will change the composition of the gas, i.e. methanation will take place already.

    [0007] Although prior-art processes serve to transform carbon sulphides to hydrogen sulphide at high yields and to thus convert coke oven gases into synthesis gases of sufficiently high quality, they all involve the substantial disadvantage that these processes must take place at very high temperatures of considerably more than 280 °C, as otherwise no adequate conversion rates will be achieved.

    [0008] Furthermore, from GB 1 404 581 A, it is generally known to perform hydrogenation of crude gas by employing a catalyst containing at least a metal from Group VI and/or a metal from Group VIII of the Periodic System of Elements, either as such or as an oxide or sulphide. US 4 085 199 A discloses the hydrogenation of sulphur compounds in the presence of sulphidized cobalt molybdate catalysts on alumina.

    [0009] Aim of the present invention therefore was to improve the existing processes in so far as the carbon sulphides and organic sulphur compounds (e.g. thiophenes), if any, are transformed virtually quantitatively to hydrogen sulphide but at temperatures which are significantly lower. Furthermore, the process was intended to ensure keeping the mass ratio of carbon oxides to methane unchanged, i.e. preventing methanation.

    DESCRIPTION OF THE INVENTION



    [0010] Subject matter of the invention is a process for the production of synthesis gas from hard coal, in which
    1. (a) hard coal is subjected to dry pyrolysis, resulting in the production of a gas mixture containing hydrogen, methane, nitrogen and carbon monoxide as major constituents and carbon sulphides as minor constituents,
    2. (b) the gas mixture is subjected to hydrogenation at a temperature in the range of 200 to 280 °C over a sulphidic cobalt molybdenum catalyst provided on an aluminium oxide carrier material, and
    3. (c) the hydrogen sulphide obtained from hydrogenation is separated from the gas mixture,
    wherein sulphidic cobalt molybdenum catalysts are used which contain molybdenum sulphide as the actual catalyst and cobalt as the promoter,
    wherein said catalysts are composed of more than 50 %-mole of molybdenum sulphide and said catalysts contain the cobalt in sulphidic form, the quantity in %-mole of said cobalt in sulphidic form resulting as the difference to 100,
    wherein molybdenum sulphide has been obtained by sulphidation of the respective oxide, wherein the MoO3 has been converted completely to MoS2,
    wherein after sulphidation the cobalt is present in three forms: first as Co9S8 crystals deposited on the carrier, as Co2+ ions on the edges of the MoS2 plates ('CoMo phase') and as Co2+ ions on the tetrahedral positions in the aluminum oxide lattice.

    [0011] Surprisingly it was found that the sulphidic cobalt molybdenum catalysts known for hydrogenation of carbon sulphides feature a high activity and selectivity even below 280 and preferably below 260°C if they are deposited on aluminium oxide carrier material. Carbon sulphides are actually hydrogenated to hydrogen sulphide at at least 95 %-vol. without observing an influence of the hydrogenation on the ratio of carbon oxides to methane. This is an unexpected result, as on account of the experience according to document DE 2647690 A1 quoted at the beginning one would have expected that catalysts which mainly contain cobalt and molybdenum in sulphidic form also facilitate unwanted methanation to a non-negligible degree, especially if the reaction is performed, as usual, under pressure.

    Production of coking gas by pyrolysis of hard coal



    [0012] During dry distillation or pyrolysis of hard coal, which takes place at 900 to 1400 °C, the volatile constituents of the coal are released and porous coke forms, which now essentially contain only carbon. By fractionated condensation the raw gas is decomposed into tar, sulphuric acid, ammonia, naphthalene, benzene and the so-called coking gas. The latter is composed of hydrogen, methane, nitrogen and carbon oxides and may, after adequate treatment to obtain synthesis gas, be used for further chemical reactions.

    HYDROGENATION PROCESS



    [0013] Hydrogenation of the pyrolysis gases may be done in the manner customary, for which mainly fixed-bed reactors have proved best suited, as the catalysts are provided in the form of lumps as bulk layer or fixed packing. Since bulk material leads to channelling more easily and hence to an inhomogeneous flow distribution, preference is given to the embodiment in which the catalysts are arranged in packings inside the reactor.

    [0014] The advantage of the hydrogenation in the fixed-bed reactor, however, is that high space/time yields can be achieved, which is why the process according to the invention can also be carried out at high GSHV values of approx. 500 to approx. 1500 and preferably approx. 1000 to approx. 1200 l/h. Another advantage is provided in that no special measures are required for the product discharge, as the reactants - i.e. pyrolysis gas and hydrogen - are preferably introduced jointly at the bottom of the reactor, pass through the catalyst bed leading to hydrogenation and leave the reactor as products at the top.

    [0015] As already mentioned at the beginning, a specific advantage of the process is that the sulphur compounds are hydrogenated over the catalysts to be used according to the invention, so that the reaction is possible at significantly more moderate conditions and effects the complete conversion of the carbon sulphides, without any signs of methanation. The reaction temperature ranges between 200 and 280 and with regard to an adequate reaction velocity preferably between 240 and 260 °C. The reactor may be heated from the outside - which results in a higher energy consumption - or the reaction components may be heated before introducing them into the reactor, with the mixing being possibly done in a nozzle which works, for example, by the Venturi principle.

    [0016] Furthermore, the reaction may take place in the range of 1 to 15 bar, i.e. at atmospheric pressure or under pressure. Preference is given to an embodiment which uses a pressure in the range of approx. 5 to approx. 10 bar, as this is of benefit to yield and reaction velocity.

    CATALYSTS


    Sulphidic cobalt molybdenum catalysts



    [0017] The term 'sulphidic cobalt molybdenum catalysts' mainly refers to catalysts which contain molybdenum sulphide as the actual catalyst and cobalt as the promoter. Catalysts of that kind are produced in known manner by joint sulphidation of the respective oxides, where the MoO3 is converted completely to MoS2. When the latter is applied to the aluminium oxide carrier, it is either bonded flat to the surface ('basal bonding') or to one edge only ('edge bonding'). After sulphidation the cobalt is available in three forms: first as Co9S8 crystals deposited on the carrier, as Co2+ ions on the edges of the MoS2 plates ('CoMo phase') and as Co2+ ions on the tetrahedral positions in the aluminium oxide lattice. The catalysts are hence composed predominantly, i.e. of more than 50 %-mole, preferably of more than 70 %-mole and most preferably of more than 90 %-mole, of molybdenum sulphide and contain the cobalt in sulphidic form as a promoter, the quantity in %-mole resulting as the difference to 100. From this it follows that in a likewise preferred embodiment the catalysts do not contain any other metals, especially no other transition metals.

    Aluminium oxide carrier



    [0018] Aluminium oxides of especially high specific surface area come into consideration as suitable carriers for the sulphidic cobalt molybdenum catalysts, the aluminium oxides preferably featuring the following characteristics:
    • minimum V37A of 75 ml/100g, preferably 80 ml/100g and most preferably 85 ml/100g;
    • maximum V0.1µm of 31 ml/100g, preferably 25 ml/100g and most preferably 15 ml/100gM;
    • maximum V0.2µm of 20 ml/100g, preferably 15 ml/100g and most preferably 10 ml/100g; and
    • ratio of V0.1µm to V0.2µm of at least 1.5.


    [0019] Aluminium oxide carriers of the type mentioned are sufficiently known from the state of the art. European patent documents EP 1385786 B1 and EP 1385787 B1 (Axens), for example, describe a process for their manufacture, in which a hydrargillite-type aluminium oxide is ground, undergoes hydrothermal treatment with an aqueous solution of aluminium nitrate and formic acid at 200 °C for 6 hours, the resulting product then being calcined at 400 to 1300. The carrier material is then extruded and is thus ready for loading. As far as the nature and manufacture of the catalyst carriers is concerned, the two documents mentioned are related to by reference.

    PURIFICATION



    [0020] The hydrogenation products leaving the reactor, particularly the fixed-bed reactor, now contain the sulphur compounds in the form of hydrogen sulphide, the content being typically within the range of 50 to 300 ppm. The presence of H2S is just as little desirable as that of the carbon sulphides but, in contrast to the latter, hydrogen sulphide can be washed out comparatively easily and, above all, quantitatively. The hydrogenation gases are, for this purpose, preferably passed through an absorption column, where they are treated, for example, in counter current with an aqueous base such as caustic soda or ammonia. Alternatively, other devices may be used for the purification of gases as, for example, venturi scrubbers.

    [0021] When the H2S portions have been separated, the purified product is available without restriction as a high-quality synthesis gas for further chemical reactions.

    [0022] A further subject matter of the present invention is the use of sulphidic cobalt molybdenum catalysts provided on aluminum oxide carriers for the hydrogenation of carbon sulphides to hydrogen sulphide,
    wherein sulphidic cobalt molybdenum catalysts are used which contain molybdenum sulphide as the actual catalyst and cobalt as the promoter,
    wherein said catalysts are composed of more than 50 %-mole of molybdenum sulphide
    and said catalysts contain the cobalt in sulphidic form, the quantity in %-mole of said cobalt in sulphidic form resulting as the difference to 100,
    wherein molybdenum sulphide has been obtained by sulphidation of the respective oxide, wherein the MoO3 has been converted completely to MoS2,
    wherein after sulphidation the cobalt is present in three forms: first as Co9S8 crystals deposited on the carrier, as Co2+ ions on the edges of the MoS2 plates ('CoMo phase') and as Co2+ ions on the tetrahedral positions in the aluminum oxide lattice.

    [0023] Also preferred as carriers for the cobalt molybdenum catalysts are aluminium oxides that feature a high specific area surface and at the same time feature the following characteristics:
    1. (i) minimum V37A of 75 ml/100g, preferably 80 ml/100g and most preferably 85 ml/100g;
    2. (ii) maximum V0.1µm of 31 ml/100g, preferably 25 ml/100g and most preferably 15 ml/100gM;
    3. (iii) maximum V0.2µm of 20 ml/100g, preferably 15 ml/100g and most preferably 10 ml/100g; and
    4. (iv) ratio of V0.1µm to V0.2µm of at least 1.5.


    [0024] The present invention also encompasses a method for preparing hydrogen sulphide, wherein carbon sulphides are subjected to hydrogenation in the presence of a working amount of sulphidic cobalt molybdenum catalysts provided on aluminium oxide carriers.

    [0025] The carbon sulphides are subjected to hydrogenation in the presence of cobalt molybdenum catalysts which, with reference to the metal components, predominantly consist of molybdenum sulphide and contain cobalt sulphide as a promoter only. Also preferred are aluminium oxide carriers meeting the following characteristics:
    1. (i) minimum V37A of at least 75 ml/100g, preferably 80 ml/100g and most preferably 85 ml/100g;
    2. (ii) maximum V0.1µm of 31 ml/100g, preferably 25 ml/100g and most preferably 15 ml/100gM;
    3. (iii) maximum V0.2µm of 20 ml/100g, preferably 15 ml/100g and most preferably 10 ml/100g; and
    4. (iv) ratio of V0.1µm to V0.2µm of at least 1.5.

    EXAMPLES


    Example 1



    [0026] A pilot plant for fixed-bed hydrogenation was equipped with a bulk layer of commercially available lumpy sulphidic cobalt molybdenum catalyst on an aluminium oxide carrier. Subsequently, different coking gases were introduced at the bottom of the column. The only difference between these so-called feed gases was the amount of carbon sulphides, in particular carbon disulphide. The hydrogenation was performed at a temperature of 220 °C and a pressure of 10 bar. The GHSV was about 1200 l/h.

    [0027] The product gas was analysed for sulphur in the gas chromatograph and the fractions of hydrogen sulphide and carbon sulphides were determined by means of the retention periods. Table 1 sums up the results. The conversion rates refer to the hydrogenation of the CS2 fraction.
    Table 1
    Hydrogenation results (weight specified in %-vol. unless otherwise indicated)
      1 2 3 4
    Feed Prod. Feed Prod. Feed Prod. Feed Prod.
    Hydrogen 59.0 59.0 59.0 59.0 59.0 59.0 59.0 59.0
    Methane 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0
    Nitrogen 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
    Carbon monoxide 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5
    Carbon dioxide 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5
    COS (ppm) 1 10 0 0 0 0 0 10
    CS2 (ppm) 117 0 94 0 95 0 54 0
    H2S (ppm) 1 211 0 141 0 182 0 141
    Conversion rate 95.5 100 100 93.4


    [0028] The test results show that the fraction of carbon sulphides is converted to at least 95% hydrogen sulphide. At the same time the proportion of the other constituents in the coke oven gas remained constant, i.e. no methanation was observed.


    Claims

    1. A process for the production of synthesis gas from hard coal, wherein

    (a) hard coal is subjected to dry pyrolysis, resulting in the production of a gas mixture containing hydrogen, methane, nitrogen and carbon monoxide as major constituents and carbon sulphides as minor constituents,

    (b) the gas mixture is subjected to hydrogenation at a temperature in the range of 200 to 280 °C over a sulphidic cobalt molybdenum catalyst provided on an aluminum oxide carrier material, and

    (c) the hydrogen sulphide obtained from hydrogenation is separated from the gas mixture,

    wherein sulphidic cobalt molybdenum catalysts are used which contain molybdenum sulphide as the actual catalyst and cobalt as the promoter,
    wherein said catalysts are composed of more than 50 %-mole of molybdenum sulphide and said catalysts contain the cobalt in sulphidic form, the quantity in %-mole of said cobalt in sulphidic form resulting as the difference to 100,
    wherein molybdenum sulphide has been obtained by sulphidation of the respective oxide, wherein the MoO3 has been converted completely to MoS2,
    wherein after sulphidation the cobalt is present in three forms: first as Co9S8 crystals deposited on the carrier, as Co2+ ions on the edges of the MoS2 plates ('CoMo phase') and as Co2+ ions on the tetrahedral positions in the aluminum oxide lattice.
     
    2. The process of claim 1, wherein said catalysts are composed of more than 70 %-mole of molybdenum sulphide.
     
    3. The process of claim 2, wherein said catalysts are composed of more than 90 %-mole of molybdenum sulphide.
     
    4. The process of claim 1 wherein synthesis gases of a content of 10 to 200 ppm carbon sulphides are used.
     
    5. The process of Claim 1, wherein hydrogenation is carried out in a temperature range between 240 and 260 °C.
     
    6. The process of Claim 1, wherein hydrogenation is carried out at a pressure of 1 to 15 bar.
     
    7. The process of Claim 6, wherein hydrogenation is carried out at a pressure of 5 to 10 bar.
     
    8. The process of Claim 1, wherein that hydrogenation is carried out at a GHSV of 500 to 1500 l/h.
     
    9. The process according to at least one of claims 1 to 8, characterized in that hydrogenation is carried out in a fixed-bed reactor.
     
    10. The process of Claim 9, wherein the catalysts used in the fixed-bed reactor are provided as bulk layer or packing.
     
    11. The process of Claim 1, wherein the hydrogenation product, after leaving the reactor, is passed through an absorption column, where the hydrogen sulphide is washed out with a basic liquid.
     
    12. Use of sulphidic cobalt molybdenum catalysts provided on aluminum oxide carriers for the hydrogenation of carbon sulphides to hydrogen sulphide,
    wherein sulphidic cobalt molybdenum catalysts are used which contain molybdenum sulphide as the actual catalyst and cobalt as the promoter,
    wherein said catalysts are composed of more than 50 %-mole of molybdenum sulphide and said catalysts contain the cobalt in sulphidic form, the quantity in %-mole of said cobalt in sulphidic form resulting as the difference to 100,
    wherein molybdenum sulphide has been obtained by sulphidation of the respective oxide, wherein the MoO3 has been converted completely to MoS2,
    wherein after sulphidation the cobalt is present in three forms: first as Co9S8 crystals deposited on the carrier, as Co2+ ions on the edges of the MoS2 plates ('CoMo phase') and as Co2+ ions on the tetrahedral positions in the aluminum oxide lattice.
     


    Ansprüche

    1. Verfahren zur Herstellung von Synthesegas aus Steinkohle, wobei

    (a) Steinkohle trockener Pyrolyse unterzogen wird, um ein Gasgemisch zu erzeugen, das Wasserstoff, Methan, Stickstoff und Kohlenmonoxid als Hauptbestandteile und Kohlenstoffsulfide als Nebenbestandteile enthält,

    (b) das Gasgemisch Hydrierung bei einer Temperatur in dem Bereich von 200 bis 280 °C über einem sulfidischen Cobalt-Molybdän-Katalysator, der auf einem Aluminiumoxidträgermaterial bereitgestellt ist, unterzogen wird, und

    (c) der durch Hydrierung erhaltene Schwefelwasserstoff von dem Gasgemisch abgetrennt wird,

    wobei sulfidische Cobalt-Molybdän-Katalysatoren verwendet werden, die Molybdänsulfid als den eigentlichen Katalysator und Cobalt als den Promotor enthalten,
    wobei die Katalysatoren aus mehr als 50 mol-% Molybdänsulfid bestehen und die Katalysatoren das Cobalt in sulfidischer Form enthalten, wobei die Menge des Cobalts in sulfidischer Form in mol-% den Unterschied zu 100 bildet,
    wobei Molybdänsulfid durch Sulfidierung des entsprechenden Oxids erhalten worden ist,
    wobei das MoO3 vollständig zu MoS2 umgewandelt worden ist,
    wobei das Cobalt nach der Sulfidierung in drei Formen vorhanden ist: zuerst als Co9S8-Kristalle, die auf dem Träger abgeschieden sind, als Co2+-Ionen an den Kanten der MoS2-Platten ("CoMo-Phase") und als Co2+-Ionen an den tetraedrischen Positionen in dem Aluminiumoxidgitter.
     
    2. Verfahren gemäß Anspruch 1, wobei die Katalysatoren aus mehr als 70 mol-% Molybdänsulfid bestehen.
     
    3. Verfahren gemäß Anspruch 2, wobei die Katalysatoren aus mehr als 90 mol-% Molybdänsulfid bestehen.
     
    4. Verfahren gemäß Anspruch 1, wobei Synthesegase mit einem Gehalt von 10 bis 200 ppm Kohlenstoffsulfiden verwendet werden.
     
    5. Verfahren gemäß Anspruch 1, wobei Hydrierung in einem Temperaturbereich zwischen 240 und 260 °C durchgeführt wird.
     
    6. Verfahren gemäß Anspruch 1, wobei Hydrierung bei einem Druck von 1 bis 15 bar durchgeführt wird.
     
    7. Verfahren gemäß Anspruch 6, wobei Hydrierung bei einem Druck von 5 bis 10 bar durchgeführt wird.
     
    8. Verfahren gemäß Anspruch 1, wobei die Hydrierung bei einem GHSV von 500 bis 1500 l/h durchgeführt wird.
     
    9. Verfahren gemäß wenigstens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass Hydrierung in einem Festbettreaktor durchgeführt wird.
     
    10. Verfahren gemäß Anspruch 9, wobei die in dem Festbettreaktor verwendeten Katalysatoren als Masseschicht oder Packung bereitgestellt werden.
     
    11. Verfahren gemäß Anspruch 1, wobei das Hydrierungsprodukt nach dem Verlassen des Reaktors durch eine Absorptionssäule geleitet wird, in der der Schwefelwasserstoff mit einer basischen Flüssigkeit ausgewaschen wird.
     
    12. Verwendung von sulfidischen Cobalt-Molybdän-Katalysatoren, die auf Aluminiumoxidträgern bereitgestellt sind, zur Hydrierung von Kohlenstoffsulfiden zu Schwefelwasserstoff,
    wobei sulfidische Cobalt-Molybdän-Katalysatoren verwendet werden, die Molybdänsulfid als den eigentlichen Katalysator und Cobalt als den Promotor enthalten,
    wobei die Katalysatoren aus mehr als 50 mol-% Molybdänsulfid bestehen und die Katalysatoren das Cobalt in sulfidischer Form enthalten, wobei die Menge des Cobalts in sulfidischer Form in mol-% den Unterschied zu 100 bildet,
    wobei Molybdänsulfid durch Sulfidierung des entsprechenden Oxids erhalten worden ist,
    wobei das MoO3 vollständig zu MoS2 umgewandelt worden ist,
    wobei das Cobalt nach der Sulfidierung in drei Formen vorhanden ist: zuerst als Co9S8-Kristalle, die auf dem Träger abgeschieden sind, als Co2+-Ionen an den Kanten der MoS2-Platten ("CoMo-Phase") und als Co2+-Ionen an den tetraedrischen Positionen in dem Aluminiumoxidgitter.
     


    Revendications

    1. Procédé de production de gaz de synthèse à partir de houille, dans lequel

    (a) de la houille est soumise à une pyrolyse sèche, se soldant par la production d'un mélange gazeux contenant de l'hydrogène, du méthane, de l'azote et du monoxyde de carbone comme principaux constituants et des sulfures de carbone comme constituants mineurs,

    (b) le mélange gazeux est soumis à une hydrogénation à une température de la gamme de 200 à 280 °C sur un catalyseur au cobalt-molybdène sulfurique disposé sur un matériau de support en oxyde d'aluminium, et

    (c) le sulfure d'hydrogène obtenu à partir de l'hydrogénation est séparé du mélange gazeux,

    dans lequel sont utilisés des catalyseurs au cobalt-molybdène sulfuriques qui contiennent du sulfure de molybdène comme catalyseur réel et du cobalt comme promoteur,
    dans lequel lesdits catalyseurs sont composés pour plus de 50 % en moles de sulfure de molybdène
    et lesdits catalyseurs contiennent le cobalt sous forme sulfurique, la quantité en pourcentage molaire dudit cobalt sous forme sulfurique étant le résultat de la différence jusqu'à 100,
    dans lequel du sulfure de molybdène a été obtenu par sulfuration de l'oxyde respectif,
    dans lequel le MoO3 a été entièrement transformé en MoS2,
    dans lequel, après sulfuration, le cobalt est présent sous trois formes : d'abord sous forme de cristaux de Co9S8 déposés sur le support, sous forme d'ions Co2+ sur les bords des plaques de MoS2 ('phase CoMo'), et sous forme d'ions Co2+ sur les positions tétraédriques dans le réseau d'oxyde d'aluminium.
     
    2. Procédé de la revendication 1, dans lequel lesdits catalyseurs sont composés pour plus de 70 % en moles de sulfure de molybdène.
     
    3. Procédé de la revendication 2, dans lequel lesdits catalyseurs sont composés pour plus de 90 % en moles de sulfure de molybdène.
     
    4. Procédé de la revendication 1 dans lequel des gaz de synthèse d'une teneur de 10 à 200 ppm de sulfures de carbone sont utilisés.
     
    5. Procédé de la revendication 1, dans lequel l'hydrogénation est réalisée dans une gamme de températures entre 240 et 260 °C.
     
    6. Procédé de la revendication 1, dans lequel l'hydrogénation est réalisée à une pression de 1 à 15 bar.
     
    7. Procédé de la revendication 6, dans lequel l'hydrogénation est réalisée à une pression de 5 à 10 bar.
     
    8. Procédé de la revendication 1, dans lequel l'hydrogénation est réalisée à une GHSV de 500 à 1500 l/h.
     
    9. Procédé selon au moins une des revendications 1 à 8, caractérisé en ce que l'hydrogénation est réalisée dans un réacteur à lit fixe.
     
    10. Procédé de la revendication 9, dans lequel les catalyseurs utilisés dans le réacteur à lit fixe sont fournis sous forme de couche épaisse ou de garnissage.
     
    11. Procédé de la revendication 1, dans lequel le produit d'hydrogénation, après avoir quitté de réacteur, est passé à travers une colonne d'absorption, ou le sulfure d'hydrogène est éliminé par lavage avec un liquide basique.
     
    12. Utilisation de catalyseurs au cobalt-molybdène sulfuriques disposés sur des supports en oxyde d'aluminium pour l'hydrogénation de sulfures de carbone en sulfure d'hydrogène,
    dans laquelle sont utilisés des catalyseurs au cobalt-molybdène sulfuriques qui contiennent du sulfure de molybdène comme catalyseur réel et du cobalt comme promoteur,
    dans laquelle lesdits catalyseurs sont composés pour plus de 50 % en moles de sulfure de molybdène
    et lesdits catalyseurs contiennent le cobalt sous forme sulfurique, la quantité en pourcentage molaire dudit cobalt sous forme sulfurique étant le résultat de la différence jusqu'à 100,
    dans laquelle du sulfure de molybdène a été obtenu par sulfuration de l'oxyde respectif,
    dans laquelle le MoO3 a été entièrement transformé en MoS2,
    dans laquelle, après sulfuration, le cobalt est présent sous trois formes : d'abord sous forme de cristaux de Co9S8 déposés sur le support, sous forme d'ions Co2+ sur les bords des plaques de MoS2 ('phase CoMo'), et sous forme d'ions Co2+ sur les positions tétraédriques dans le réseau d'oxyde d'aluminium.
     






    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description