Technical Field
[0001] The present disclosure relates to thermoelectric conversion technology, and more
particularly, to a method for manufacturing a thermoelectric conversion material with
excellent thermoelectric conversion properties.
Background Art
[0002] A compound semiconductor is a compound that is composed of at least two types of
elements rather than one type of element such as silicon or germanium and operates
as a semiconductor. Various types of compound semiconductors have been developed and
are currently being used in various fields of industry. Typically, a compound semiconductor
may be used in thermoelectric conversion elements using the Peltier Effect, light
emitting devices using the photoelectric conversion effect, for example, light emitting
diodes or laser diodes, fuel cells, and the like.
[0003] Particularly, a thermoelectric conversion element is used for thermoelectric conversion
power generation or thermoelectric conversion cooling applications, and generally
includes an N-type thermoelectric semiconductor and a P-type thermoelectric semiconductor
electrically connected in series and thermally connected in parallel. The thermoelectric
conversion power generation is a method which generates power by converting thermal
energy to electrical energy using a thermoelectromotive force generated by creating
a temperature difference in a thermoelectric conversion element. Also, the thermoelectric
conversion cooling is a method which produces cooling by converting electrical energy
to thermal energy using an effect that a temperature difference creates between both
ends of a thermoelectric conversion element when a direct current flows through the
both ends of the thermoelectric conversion element.
[0004] The energy conversion efficiency of the thermoelectric conversion element generally
depends on a performance index value or ZT of a thermoelectric conversion material.
Here, the ZT may be determined based on the Seebeck coefficient, electrical conductivity,
and thermal conductivity, and as a ZT value increases, a thermoelectric conversion
material has better performance.
[0005] Many thermoelectric materials available for a thermoelectric conversion element have
been now proposed and developed, and among them, Cu
xSe (x≤2) was proposed as a Cu-Se based thermoelectric material and is being developed.
This is because Cu
xSe (x≤2) is known.
[0006] Hu Y et al describe a method for the growth of copper selenide thin films and nanoparticles
using copper acetylacetonate and trioctylphosphine selenide (Journal of Crystal Growth,
Elsevier, Amsterdam, NL, vol.297, no. 1, pp 61-65);
Takahashi T et al have discussed the ionic conductivity of copper selenide measured
in a temperature range of 30-180°C by blocking the electronic current by a copper
ion high conductivity solid electrolyte, 37CuBr·3[C6H12N2·2CH3BR] (Journal of Solid
State Chemistry, Orlando, FL, US, vol. 16, no.1-2, pp. 35-39);
Danilkin S A et al have studied the crystal structure and lattice dynamics of copper
selenide in the superionic (α) and the non-superionic β-phase (Journal of Alloys and
Compounds, Elsevier Squoia, Lausanne, CH, vol. 361, no. 1-2, pp 57-61); and
WO 2012/102523 A2 discusses a thermoelectric device using a bulk material of a nano type and a phonon
scattering film formed one surface of the thermoelectric semiconductor base material.
[0007] Particularly, it has been recently reported that a relatively low thermal conductivity
and a high ZT value was achieved in Cu
xSe (1.98≤x≤2). Typically, Lidong Chen group has reported that Cu
2Se exhibited ZT=1.5 at 727°C (
Nature Materials, 11, (2012), 422-425). Also, Gang Chen group of MIT has reported a high ZT value at x=1.96(Cu
2Se
1.02) and x=1.98(Cu
2Se
1.01) (x is less than 2) (
Nano Energy (2012) 1, 472-478).
[0008] However, seeing both of the two results, a comparatively good ZT value was observed
at 600°C∼727°C, but a ZT value was found very low at the temperature lower than or
equal to 600°C. Even though a thermoelectric conversion material has a high ZT at
a high temperature, if the thermoelectric conversion material has a low ZT value at
a low temperature, such a thermoelectric conversion material is not preferred, in
particular, unsuitable for a thermoelectric material for power generation. Even if
such a thermoelectric material is applied to a heat source of high temperature, a
certain region of the material is subjected to a temperature much lower than a desired
temperature due to a temperature gradient in the material itself. Therefore, there
is a need to develop a thermoelectric material capable of maintaining a high ZT value
over a broad temperature range due to having a high ZT value in a temperature range
lower than or equal to 600°C, for example, 100°C∼600°C, as well as in a temperature
range higher than 600°C.
DISCLOSURE
Technical Problem
[0009] Accordingly, the present disclosure is designed to solve the above problem, and therefore,
the present disclosure is directed to providing a method for manufacturing a thermoelectric
material having high thermoelectric conversion performance over a broad temperature
range.
[0010] These and other objects and advantages of the present disclosure may be understood
from the following detailed description and will become more fully apparent from the
exemplary embodiments of the present disclosure. Also, it will be easily understood
that the objects and advantages of the present disclosure may be realized by the means
shown in the appended claims and combinations thereof.
Technical Solution
[0011] To achieve the above object, a method for manufacturing a thermoelectric material
according to the present disclosure includes forming a mixture by weighing Cu and
Se based on the following chemical formula 1 and mixing the Cu and the Se, and forming
a compound by thermally treating the mixture:
<Chemical Formula 1> Cu
xSe
where 2<x≤2.6;
wherein the forming of the mixture comprises mixing Cu and Se in powder form.
[0012] Preferably, the forming of the compound may be performed by a solid state reaction
method.
[0013] Also, preferably, the forming of the compound may be performed in a temperature range
of 200°C to 650°C.
[0014] Also, preferably, the method for manufacturing a thermoelectric material may further
include, after the forming of the compound, sintering the compound under pressure.
[0015] Also, preferably, the pressure sintering may be performed by a hot press or spark
plasma sintering technique.
[0016] Also, preferably, the pressure sintering may be performed under a pressure condition
of 30MPa to 200MPa.
[0017] Also, preferably, the pressure sintering may include grinding the compound into powder
and sintering under pressure.
[0018] Also, preferably, during the pressure sintering, Cu-containing particles may be spontaneously
induced at a grain boundary in a matrix including the Cu and the Se.
[0019] Also, preferably, the forming of the mixture may include mixing Cu and Se in powder
form.
Advantageous Effects
[0020] According to the present disclosure, a method for manufacturing a thermoelectric
material having excellent thermoelectric conversion performance may be provided.
[0021] Particularly, the thermoelectric material manufactured according to one aspect of
the present disclosure may have a low thermal diffusivity and a low thermal conductivity
and a high Seebeck coefficient and a high ZT value in a broad temperature range between
100°C and 600°C.
[0022] Accordingly, the thermoelectric material manufactured according to the present disclosure
may replace a traditional thermoelectric material, or may be used as another material
in conjunction with a traditional thermoelectric material.
[0023] Moreover, the thermoelectric material manufactured according to one aspect of the
present disclosure may maintain a ZT value higher than a traditional thermoelectric
material at a temperature lower than or equal to 600°C, to be more concrete, at a
low temperature close to 100°C∼200°C. Thus, when used in a thermoelectric device for
power generation, the thermoelectric material manufactured according to the present
disclosure may ensure stable thermoelectric conversion performance even if the material
is exposed to a comparatively low temperature.
[0024] Also, the thermoelectric material manufactured according to the present disclosure
may be used in a solar cell, an infrared (IR) window, an IR sensor, a magnetic device,
a memory, and the like.
BRIEF DESCRIPTION OF THE DRAWINGS
[0025] The accompanying drawings illustrate a preferred embodiment of the present disclosure
and together with the foregoing disclosure, serve to provide further understanding
of the technical spirit of the present disclosure, and thus, the present disclosure
is not construed as being limited to the drawing.
FIG. 1 is a flow chart schematically illustrating a method for manufacturing a thermoelectric
material according to an exemplary embodiment of the present disclosure.
FIG. 2 is a graph of an X-ray diffraction (XRD) analysis result of a thermoelectric
material according to exemplary embodiments of the present disclosure.
FIG. 3 is an enlarged graph of section A of FIG. 2.
FIGS. 4 through 8 are diagrams illustrating a scanning electron microscope/energy
dispersive spectroscopy (SEM/EDS) analysis result of a thermoelectric material manufactured
according to an exemplary embodiment of the present disclosure.
FIG. 9 is a graph illustrating a comparison of thermal diffusivity measurement results
based on temperature for thermoelectric materials manufactured according to examples
of the present disclosure and comparative examples.
FIG. 10 is a graph illustrating a comparison of Seebeck coefficient measurement results
based on temperature for thermoelectric materials manufactured according to examples
of the present disclosure and comparative examples.
FIG. 11 is a graph illustrating a comparison of ZT value measurement results based
on temperature for thermoelectric materials manufactured according to examples of
the present disclosure and comparative examples.
FIG. 12 is a scanning ion microscope (SIM) image of a thermoelectric material manufactured
according to an example of the present disclosure.
FIG. 13 is an SIM image of a thermoelectric material manufactured according to a comparative
example.
FIG. 14 is a graph with a change in y-axis scale only for the examples of FIG. 9.
FIG. 15 is a graph with a change in y-axis scale only for the examples of FIG. 10.
FIG. 16 is a graph illustrating a comparison of XRD analysis results of thermoelectric
materials manufactured according to different exemplary embodiments of the present
disclosure, manufactured by different synthesis methods.
FIG. 17 is an enlarged graph of section D of FIG. 16.
FIG. 18 is a graph illustrating a comparison of lattice thermal conductivity measurement
results based on temperature for thermoelectric materials manufactured according to
different exemplary embodiments of the present disclosure, manufactured by different
synthesis methods.
FIG. 19 is a graph illustrating a comparison of power factor measurement results based
on temperature for thermoelectric materials manufactured according to different exemplary
embodiments of the present disclosure, manufactured by different synthesis methods.
FIG. 20 is a graph illustrating a comparison of ZT value measurement results based
on temperature for thermoelectric materials manufactured according to different exemplary
embodiments of the present disclosure, manufactured by different synthesis methods.
DETAILED DESCRIPTION
[0026] Hereinafter, preferred embodiments of the present disclosure will be described in
detail with reference to the accompanying drawings. Prior to the description, it should
be understood that the terms used in the specification and the appended claims should
not be construed as limited to general and dictionary meanings, but interpreted based
on the meanings and concepts corresponding to technical aspects of the present disclosure
on the basis of the principle that the inventor is allowed to define terms appropriately
for the best explanation.
[0027] Therefore, the description proposed herein is just a preferable example for the purpose
of illustrations only, not intended to limit the scope of the disclosure.
[0028] FIG. 1 is a flow chart schematically illustrating a method for manufacturing a thermoelectric
material according to an exemplary embodiment of the present disclosure.
[0029] As shown in FIG. 1, the method for manufacturing a thermoelectric material according
to the present disclosure includes a mixture forming step (S110) and a compound forming
step (S120).
[0030] The mixture forming step S110 is a step for mixing Cu and Se as a raw material to
form a mixture.
[0031] Particularly, S110 is a step for forming the mixture by weighing Cu and Se based
on the chemical formula weight of the following chemical formula 1 and mixing them:
<Chemical Formula 1> Cu
xSe
[0032] In the chemical formula 1, x is a positive rational number.
[0033] Particularly, in the chemical formula 1, 2<x≤2.6.
[0034] More preferably, in the chemical formula 1, the condition of x≤2.2 may be satisfied.
Particularly, in the chemical formula 1, x<2.2.
[0035] Preferably, in S110, Cu and Se in powder form may be mixed. In this case, Cu and
Se may be mixed better, resulting in more favorable synthesis of Cu
xSe.
[0036] In this instance, mixing of Cu and Se in the mixture forming step S110 may be performed
by hand milling using a mortar, ball milling, planetary ball mill, and the like, but
the present disclosure is not limited to these specific mixing methods.
[0037] The compound forming step S120 is a step for thermally treating the mixture formed
in S110 to form a compound represented by Cu
xSe (2<x≤2.6). For example, in S120, the Cu
xSe compound may be formed by putting the mixture of Cu and Se into a furnace and heating
for a predetermined time at a predetermined temperature.
[0038] Preferably, S120 may be performed by a solid state reaction (SSR) method. When the
synthesis is performed by the solid state reaction method, the raw material used in
the synthesis, that is, the mixture may cause reaction in a solid state without changing
to a liquid state during the synthesis.
[0039] For example, S120 may be performed in the temperature range of 200°C to 650°C for
1 to 24 hours. Because the temperature is in a temperature range lower than a melting
point of Cu, when the heating is performed in the temperature range, the Cu
xSe compound may be formed in which Cu does not melt. Particularly, S120 may be performed
under the temperature condition of 500°C for 15 hours.
[0040] In S120, to form the Cu
xSe compound, the mixture of Cu and Se may be put into a hard mold and formed into
pellets, and the mixture in pellet form may be put into a fused silica tube and vacuum-sealed.
Also, the vacuum-sealed first mixture may be put into the furnace and thermally treated.
[0041] Preferably, the method for manufacturing a thermoelectric material according to the
present disclosure may further include sintering the compound under pressure (S130)
after the compound forming step S120.
[0042] Here, S130 is preferably performed by a hot press (HP) or spark plasma sintering
(SPS) technique. The thermoelectric material according to the present disclosure may
be easy to obtain a high sintering density and a thermoelectric performance improvement
effect, when sintered by the pressure sintering technique.
[0043] For example, the pressure sintering step may be performed under the pressure condition
of 30MPa to 200MPa. Also, the pressure sintering step may be performed under the temperature
condition of 300°C to 800°C. Also, the pressure sintering step may be performed under
the pressure and temperature conditions for 1 minute to 12 hours.
[0044] Also, S130 may be performed in a vacuum state, or while flowing gas such as Ar, He,
N
2, and the like, containing some or no hydrogen.
[0045] The thermoelectric material manufactured by the method for manufacturing a thermoelectric
material according to one aspect of the present disclosure may be represented the
above chemical formula 1 in terms of composition.
[0046] In this instance, a second phase may be included in the thermoelectric material represented
by the chemical formula 1 in part, and its amount may change based on the heat treatment
condition.
[0047] The thermoelectric material manufactured by the method for manufacturing a thermoelectric
material according to one aspect of the present disclosure includes a Cu-Se matrix
including Cu and Se, and Cu-containing particles. Here, the Cu-containing particles
represent particles containing at least Cu, and may include particles containing only
Cu and particles containing Cu and at least one element other than Cu.
[0048] Preferably, the Cu-containing particles may include at least one of Cu particles
having a single Cu composition and Cu
2O particles having Cu-O bonds.
[0049] Particularly, the thermoelectric material manufactured by the method for manufacturing
a thermoelectric material according to one aspect of the present disclosure may include
induced nano-dots (INDOT) as the Cu-containing particles. Here, the INDOT represents
particles of a nanometer size (for example, a size of 1 nanometer to 100 nanometers
in diameter) spontaneously generated during production of the thermoelectric material.
That is, in the present disclosure, the INDOT may be particles formed by itself within
the thermoelectric material during production of the thermoelectric material, rather
than particles forcibly introduced into the thermoelectric material from outside.
[0050] Further, in the present disclosure, the nano-dots, or INDOT may be present at a grain
boundary of a semiconductor. Also, the INDOT may be generated at the grain boundary
in the manufacture of the thermoelectric material according to the present disclosure,
particularly, during the sintering step S130. That is, in the case of the method for
manufacturing a thermoelectric material according to one aspect of the present disclosure,
during the pressure sintering, the Cu-containing particles may be spontaneously generated
at the grain boundary in the matrix including Cu and Se. Also, in this sense, the
Cu-containing particles may be defined as nano-dots spontaneously induced at the grain
boundary of the semiconductor (induced nano-dots (INDOT) on grain boundary). According
to this aspect of the present disclosure, a thermoelectric material including the
Cu-Se matrix and the INDOT may be manufactured. According to this aspect of the present
disclosure, to improve the thermoelectric performance, the Cu-containing particles
may be easily formed without the need for intensive efforts to introduce the Cu-containing
particles into the thermoelectric material, particularly, at the grain boundary.
[0051] Based on the chemical formula in the mixture forming step, the method for manufacturing
a thermoelectric material according to the present disclosure may include a larger
amount of Cu than a method for manufacturing a traditional Cu-Se based thermoelectric
material. In this instance, at least a part of the Cu does not form a matrix with
Se, and may exist singularly as a single element or in combination with other element,
for example, oxygen, and Cu existing singularly or in combination with other element
may be included in a form of nano-dots. Its detailed description is provided with
reference to experiment results.
[0052] FIG. 2 is a graph of an X-ray diffraction (XRD) analysis result of a thermoelectric
material manufactured according to exemplary embodiments of the present disclosure,
and FIG. 3 is an enlarged graph of section A of FIG. 2.
[0053] More specifically, FIGS. 2 and 3 show a graph (x-axis units: degree) of XRD pattern
analysis of a Cu
xSe (x=2.025, 2.05, 2.075, 2.1) thermoelectric material (manufactured by the same method
as the following examples 2∼5) as an example of the present disclosure. Particularly,
for ease of distinguishment, in FIG. 2, the XRD pattern analysis graphs for each example
are spaced a predetermined distance away from each other in the vertical direction.
Also, for convenience of comparison, in FIG. 3, the graphs of each example are not
spaced away from each other and overlap with each other. Further, in FIG. 3, a Cu
peak occurring at a single Cu composition is indicated by B.
[0054] Referring to FIGS. 2 and 3, it can be seen that as a relative content of copper in
Cu
xSe, or x, gradually increases from 2.025 to 2.05, 2.075, and 2.1, a height of a Cu
peak gradually increases. Thus, according to the XRD analysis result, it can be found
that as x gradually increases, more than 2, Cu in excess does not form a matrix such
as Cu
xSe with Se and exists singularly.
[0055] In this instance, Cu existing without forming a matrix with Se may be in a form of
nano-dots. Also, the Cu-containing nano-dots may exist in the way of aggregating with
each other within the thermoelectric material, particularly, within the Cu-Se matrix,
or may be present at a grain boundary of the Cu-Se matrix.
[0056] FIGS. 4 through 8 are diagrams illustrating a scanning electron microscope/energy
dispersive spectroscopy (SEM/EDS) analysis result of a thermoelectric material according
to an exemplary embodiment of the present disclosure.
[0057] More specifically, FIG. 4 is an SEM image of a part of Cu
2.075Se manufactured by an example of the present disclosure, and FIGS. 5 and 6 are SEM
images of different parts of Cu
2.1Se manufactured by another example of the present disclosure. Also, FIG. 7 is a graph
illustrating an EDS analysis result of section C1 of FIG. 3, and FIG. 8 is a graph
illustrating an EDS analysis result of section C2 of FIG. 3.
[0058] First, referring to the images of FIGS. 4 through 6, it can be seen that there are
a plurality of grains having a size from about several micrometers to tens of micrometers
and a plurality of nano-dots having a nanometer size smaller than the grains. In this
instance, it can be seen that the nano-dots may be formed along a grain boundary in
a matrix including the plurality of grains as shown in the drawings, and at least
some of the nano-dots may exist in the way of aggregating with each other as indicated
by C2. Particularly, referring to the SEM images of FIGS. 5 and 6, it can be apparently
seen that the nano-dots are distributed in large amounts along the grain boundary
in the Cu-Se matrix.
[0059] Next, referring to FIG. 7 illustrating an analysis result of section C1 of FIG. 4
where no nano-dot is observed, that is, internal analysis of the grain, it can be
seen that a Cu peak and a Se peak primarily occur. From this, it can be found that
Cu and Se form a matrix in section C1 of FIG. 4. That is, the grains shown in FIG.
4 may be a Cu-Se grain having Cu and Se as a main component. Also, through a quantitative
analysis, the Cu-Se matrix may exist as Cu
xSe in which x has 2 or a value close to 2.
[0060] In contrast, referring to FIG. 8 illustrating an analysis result of section C2 of
FIG. 4 where aggregation of nano-dots is observed, it can be seen that a Cu peak is
formed dominantly high. It can be found that the nano-dots exist as Cu rather than
a Cu-Se matrix. The reason that a Se peak is observed a little bit is because Se existing
in the Cu-Se matrix located around or under the nano-dots is measured due to the limit
of the resolving power of analysis equipment or the limit of an analysis method.
[0061] Accordingly, based on these results, it can be found that the particles concentrated
on section C2 of FIG. 4 are Cu-containing nano-dots. Thus, the thermoelectric material
manufactured according to one aspect of the present disclosure may include Cu particles,
particularly, Cu-containing INDOT, together with the Cu-Se matrix including Cu and
Se. Particularly, at least a part of the Cu-containing INDOT may exist in the way
of aggregating with each other in the thermoelectric material. Here, the Cu-containing
INDOT may include Cu along, but as shown in FIG. 8 illustrating that an O peak is
observed a little bit, the Cu-containing INDOT may exist in a form of Cu oxide having
bonds with O, for example, Cu
2O.
[0062] As described in the foregoing, the thermoelectric material manufactured according
to one aspect of the present disclosure may include Cu-containing nano-dots, particularly,
INDOT and a Cu-Se matrix. Here, the Cu-Se matrix may be represented by a chemical
formula Cu
xSe in which x is a positive rational number. Particularly, x may have a value near
2, for example, 1.8∼2.2. Further, x may have a value less than or equal to 2, for
example, 1.8∼2.0. For example, the thermoelectric material according to the present
disclosure may include a Cu
2Se matrix and Cu-containing nano-dots.
[0063] Here, the Cu-containing nano-dots may be present at the grain boundary in the Cu-Se
matrix. For example, the thermoelectric material manufactured according to the present
disclosure may include a Cu
2Se matrix and copper particles of a single composition at the grain boundary in the
Cu
2Se matrix. It is obvious that some of the Cu-containing nano-dots may be present within
the grains in the Cu-Se matrix.
[0064] Meanwhile, according to the present disclosure, a thermoelectric material, in particular,
a Cu-Se based thermoelectric material including Cu and Se, having a lower thermal
conductivity and a higher ZT value than a traditional Cu-Se based thermoelectric material,
may be manufactured.
[0065] Particularly, the thermoelectric material manufactured according to the present disclosure
includes a Cu-Se matrix and Cu-containing particles. The Cu-containing particles may
be prone to phonon scattering and reduce the thermal diffusivity.
[0066] The thermoelectric material manufactured according to the present disclosure may
have a thermal diffusivity less than or equal to 0.5 mm
2/s in the temperature range of 100°C to 600°C.
[0067] Also, the thermoelectric material manufactured according to the present disclosure
may have a ZT value higher than or equal to 0.3 over the entire temperature range
100°C to 600°C.
[0068] Particularly, the thermoelectric material manufactured according to the present disclosure
may have a ZT value higher than or equal to 0.3 in the temperature condition of 100°C.
Preferably, the thermoelectric material manufactured according to the present disclosure
may have a ZT value higher than or equal to 0.4 in the temperature condition of 100°C.
[0069] Also, the thermoelectric material manufactured according to the present disclosure
may have a ZT value higher than or equal to 0.4 in the temperature condition of 200°C.
Preferably, the thermoelectric material manufactured according to the present disclosure
may have a ZT value higher than or equal to 0.5 in the temperature condition of 200°C.
More preferably, the thermoelectric material manufactured according to the present
disclosure may have a ZT value higher than 0.6 in the temperature condition of 200°C.
[0070] Also, the thermoelectric material manufactured according to the present disclosure
may have a ZT value higher than or equal to 0.6 in the temperature condition of 300°C.
Preferably, the thermoelectric material manufactured according to the present disclosure
may have a ZT value higher than or equal to 0.75 in the temperature condition of 300°C.
More preferably, the thermoelectric material manufactured according to the present
disclosure may have a ZT value higher than 0.8 in the temperature condition of 300°C.
More preferably, the thermoelectric material manufactured according to the present
disclosure may have a ZT value higher than 0.9 in the temperature condition of 300°C.
[0071] Also, the thermoelectric material manufactured according to the present disclosure
may have a ZT value higher than or equal to 0.7 in the temperature condition of 400°C.
Preferably, the thermoelectric material manufactured according to the present disclosure
may have a ZT value higher than or equal to 0.8 in the temperature condition of 400°C.
More preferably, the thermoelectric material manufactured according to the present
disclosure may have a ZT value higher than or equal to 1.0 in the temperature condition
of 400°C.
[0072] Also, the thermoelectric material manufactured according to the present disclosure
may have a ZT value higher than or equal to 0.6 in the temperature condition of 500°C.
Preferably, the thermoelectric material manufactured according to the present disclosure
may have a ZT value higher than or equal to 0.7 in the temperature condition of 500°C.
More preferably, the thermoelectric material manufactured according to the present
disclosure may have a ZT value higher than or equal to 1.1 in the temperature condition
of 500°C. More preferably, the thermoelectric material manufactured according to the
present disclosure may have a ZT value higher than or equal to 1.3 in the temperature
condition of 500°C.
[0073] Also, the thermoelectric material manufactured according to the present disclosure
may have a ZT value higher than or equal to 0.6 in the temperature condition of 600°C.
Preferably, the thermoelectric material manufactured according to the present disclosure
may have a ZT value higher than or equal to 0.8 in the temperature condition of 600°C.
More preferably, the thermoelectric material manufactured according to the present
disclosure may have a ZT value higher than or equal to 1.4 in the temperature condition
of 600°C. More preferably, the thermoelectric material manufactured according to the
present disclosure may have a ZT value higher than or equal to 1.8 in the temperature
condition of 600°C.
[0074] The present disclosure may be used in the manufacture of a thermoelectric conversion
element. That is, the thermoelectric conversion element may include the thermoelectric
material manufactured by the manufacturing method according to the present disclosure.
Particularly, the thermoelectric material according to the present disclosure may
effectively improve a ZT value in a broad temperature range, compared to a traditional
thermoelectric material, particularly, a Cu-Se based thermoelectric material. Thus,
the thermoelectric material manufactured according to the present disclosure may replace
a traditional thermoelectric conversion material or may be effectively used in a thermoelectric
conversion element in conjunction with a traditional compound semiconductor.
[0075] Also, the present disclosure may be used in a thermoelectric power generator designed
for thermoelectric power generation using a waste heat source, etc. That is, the thermoelectric
power generator may include the thermoelectric material manufactured according to
the present disclosure. The thermoelectric material manufactured according to the
present disclosure exhibits a high ZT value in a broad temperature range such as a
temperature range of 100°C to 600°C, and thus, may be applied to thermoelectric power
generation more usefully.
[0076] Hereinafter, the present disclosure will be described in detail through examples
and comparative examples. The examples of the present disclosure, however, may take
several other forms, and the scope of the present disclosure should not be construed
as being limited to the following examples. The examples of the present disclosure
are provided to more fully explain the present disclosure to those having ordinary
knowledge in the art to which the present disclosure pertains.
EXAMPLE 1
[0077] Cu and Se in powder form were weighed based on a chemical formula Cu
2.01Se, and put in an alumina mortar, followed by mixing. The mixed materials were put
into a hard mold, formed into pellets, put in a fused silica tube, and vacuum-sealed.
Also, the result was put in a box furnace, and heated at 500°C for 15 hours, and after
heating, was slowly cooled down to room temperature to obtain a Cu
2.01Se compound.
[0078] Also, the Cu
2.01Se compound was filled in a hard mold for hot pressing, and was hot press sintered
in the condition of 650°C under vacuum to obtain a sample of example 1. In this instance,
a sintering density was at least 98% of a theoretical value.
EXAMPLE 2
[0079] Cu and Se in powder form were weighed based on a chemical formula Cu
2.025Se, and mixed and synthesized by the same process as example 1 to obtain a Cu
2.025Se compound. Also, the compound was sintered by the same process as example 1 to obtain
a sample of example 2.
EXAMPLE 3
[0080] Cu and Se in powder form were weighed based on a chemical formula C
U2.
05Se, and mixed and synthesized by the same process as example 1 to obtain a Cu
2.05Se compound. Also, the compound was sintered by the same process as example 1 to obtain
a sample of example 3.
EXAMPLE 4
[0081] Cu and Se in powder form were weighed based on a chemical formula Cu
2.075Se, and mixed and synthesized by the same process as example 1 to obtain a Cu
2.075Se compound. Also, the compound was sintered by the same process as example 1 to obtain
a sample of example 4.
EXAMPLE 5
[0082] Cu and Se in powder form were weighed based on a chemical formula Cu
2.1Se, and mixed and synthesized by the same process as example 1 to obtain a Cu
2.1Se compound. Also, the compound was sintered by the same process as example 1 to obtain
a sample of example 5.
EXAMPLE 6
[0083] Cu and Se in powder form were weighed based on a chemical formula Cu
2.15Se, and mixed and synthesized by the same process as example 1 to obtain a Cu
2.15Se compound. Also, the compound was sintered by the same process as example 1 to obtain
a sample of example 6.
EXAMPLE 7
[0084] Cu and Se in powder form were weighed based on a chemical formula Cu
2.2Se, and mixed and synthesized by the same process as example 1 to obtain a Cu
2.2Se compound. Also, the compound was sintered by the same process as example 1 to obtain
a sample of example 7.
COMPARATIVE EXAMPLE 1
[0085] Cu and Se in powder form were weighed based on a chemical formula Cu
1.8Se, and mixed and synthesized by the same process as example 1 to obtain a Cu
1.8Se compound. Also, the compound was sintered by the same process as example 1 to obtain
a sample of comparative example 1.
COMPARATIVE EXAMPLE 2
[0086] Cu and Se in powder form were weighed based on a chemical formula Cu
1.9Se, and mixed and synthesized by the same process as example 1 to obtain a Cu
1.9Se compound. Also, the compound was sintered by the same process as example 1 to obtain
a sample of comparative example 2.
COMPARATIVE EXAMPLE 3
[0087] Cu and Se in powder form were weighed based on a chemical formula Cu
2.0Se, and mixed and synthesized by the same process as example 1 to obtain a Cu
2.0Se compound. Also, the compound was sintered by the same process as example 1 to obtain
a sample of comparative example 3.
[0088] For the samples of examples 1∼7 and the samples of comparative examples 1∼3 obtained
in this way, the thermal diffusivity (TD) was measured at a predetermined temperature
interval using LFA457 (Netzsch), and its result is illustrated in FIG. 9 with examples
1∼7 and comparative examples 1∼3.
[0089] Also, for different parts of each of the samples of examples 1∼7 and the samples
of comparative examples 1∼3, the electrical conductivity and Seebeck coefficient of
the samples were measured at a predetermined temperature interval using ZEM-3 (Ulvac-Riko,
Inc), and its Seebeck coefficient (S) measurement result is illustrated in FIG. 10
with examples 1-7 and comparative examples 1∼3. Also, a ZT value was calculated using
each of the measured values, and its result is illustrated in FIG. 11 with examples
1∼7 and comparative examples 1∼3.
[0090] First, referring to the result of FIG. 9, it can be seen that the thermoelectric
materials of examples 1∼7 in which x is higher than 2 in the chemical formula Cu
xSe have a remarkably lower thermal diffusivity than the thermoelectric materials of
comparative examples 1∼3 in which x is lower than or equal to 2 over the entire temperature
measurement range of 100°C to 700°C.
[0091] Particularly, it can be seen that the samples of examples according to the present
disclosure have a thermal diffusivity lower than or equal to 0.5 mm
2/s, preferably, lower than 0.4 mm
2/s, remarkably lower than the samples of comparative examples, over the entire temperature
range of 100°C to 600°C.
[0092] Next, referring to the result of FIG. 10, it can be seen that the thermoelectric
materials of examples 1∼7 according to the present disclosure have a Seebeck coefficient
much higher than the thermoelectric materials of comparative examples 1∼3 over the
entire temperature measurement range of 100°C to 700°C.
[0093] Also, seeing ZT values of each sample with reference to the result of FIG. 11, the
thermoelectric materials of examples 1∼7 according to the present disclosure have
a ZT value remarkably higher than the thermoelectric materials of comparative examples
1∼3.
[0094] Particularly, the thermoelectric materials according to comparative examples generally
has a very low ZT value in the temperature range lower than 500°C, and moreover, has
a ZT value lower than or equal to 0.2 in the low temperature range of 100°C to 300°C.
[0095] In contrast, it can be seen that the thermoelectric materials according to examples
of the present disclosure have a very high ZT value in the low temperature range and
the intermediate temperature range lower than 500°C as well as in the high temperature
range higher than or equal to 500°C, when compared to comparative examples.
[0096] In summary, the thermoelectric materials of examples 1∼6 show performance improvement
in ZT value about twice higher at 600°C than the thermoelectric materials of comparative
examples 1∼3.
[0097] More specifically, the thermoelectric materials according to comparative examples
generally exhibit very low performance of a ZT value of 0.15 to 0.1 or lower in the
temperature condition of 100°C, while the thermoelectric materials of examples according
to the present disclosure exhibit high performance of 0.3 to 0.4 or higher in the
temperature condition of 100°C.
[0098] Also, in the temperature condition of 200°C, the thermoelectric materials according
to comparative examples exhibit a very low ZT value of 0.15 to 0.1 or lower similar
to the case of 100°C, while the thermoelectric materials of examples according to
the present disclosure exhibit a high ZT value of 0.4 or higher, to the maximum, 0.5∼0.7.
[0099] Also, in the temperature condition of 300°C, the thermoelectric materials according
to comparative examples exhibit a ZT value near about 0.1∼0.2, while the thermoelectric
materials of examples according to the present disclosure all exhibit a value of 0.6
or higher, to the maximum, 0.7∼0.8 or higher, with a large difference therebetween.
[0100] Also, in the temperature condition of 400°C, the thermoelectric materials according
to comparative examples exhibit a ZT value of 0.1∼0.2, to the maximum, about 0.35,
while the thermoelectric materials of examples according to the present disclosure
all exhibit a value higher than or equal to 0.7, and most of them exhibit a high value
of 0.8, to the maximum, 1.0∼1.2.
[0101] Also, in the temperature condition of 500°C, it can be seen that the thermoelectric
materials according to comparative examples exhibit a value lower than or equal to
about 0.5, while the thermoelectric materials of examples according to the present
disclosure exhibit a very high ZT value higher than or equal to 0.6, to the maximum,
1.0∼1.4.
[0102] Also, in the temperature condition of 600°C, the thermoelectric materials of comparative
examples 1∼3 generally exhibit a ZT value of 0.4∼0.9, while the thermoelectric materials
of examples 1∼5 according to the present disclosure exhibit a very high ZT value of
1.4∼1.7, with a large difference from the thermoelectric materials of comparative
examples.
[0103] Taking the foregoing results into comprehensive consideration, it can be seen that
the thermoelectric materials according to each example of the present disclosure have
a remarkably low thermal diffusivity and a remarkably high ZT value over the entire
temperature range of 100°C to 600°C, compared to the conventional thermoelectric materials
according to comparative examples. Accordingly, the thermoelectric material manufactured
according to the present disclosure is excellent in thermoelectric conversion performance,
and may be used as a thermoelectric conversion material very usefully.
[0104] In this instance, as described in the foregoing, the thermoelectric material manufactured
according to the present disclosure may further include Cu-containing nano-dots, particularly,
INDOT, as well as the Cu-Se matrix. Its detailed description is provided with reference
to FIGS. 12 and 13.
[0105] FIG. 12 is a scanning ion microscope (SIM) image of the sample manufactured in example
4, and FIG. 13 is an SIM image of the sample manufactured in comparative example 3.
[0106] First, referring to FIG. 12, in the case of the thermoelectric material according
to example 4 of the present disclosure, manufactured by weighing Cu and Se based on
the chemical formula Cu
2.075Se, and mixing, synthesizing and sintering, nano-dots are found. Also, the nano-dots
are Cu-containing nano-dots as previously noted. Particularly, as shown in FIG. 12,
the nano-dots may be primarily distributed along a grain boundary.
[0107] In contrast, referring to FIG. 13, it can be seen that a nano-dot is absent in the
Cu-Se thermoelectric material manufactured according to a related art, manufactured
by weighing Cu and Se based on the chemical formula Cu
2Se, and mixing, synthesizing and sintering. It can be said that a black spot seen
in FIG. 13 is just a pore, but is not a nano-dot.
[0108] Additionally, for comparison of examples, a description is provided with reference
to FIGS. 14 and 15 because it is not easy to distinguish the examples in FIGS. 9 and
10.
[0109] FIGS. 14 and 15 are graphs with a change in y-axis scale only for the examples in
FIGS. 9 and 10.
[0110] Referring to FIGS. 14 and 15, it can be seen that the thermoelectric material manufactured
according to the present disclosure represented by the chemical formula 1 (Cu
xSe) has a much lower thermal diffusivity and a much higher Seebeck coefficient, when
x>2.04, more specifically, x≥2.05.
[0111] Further, seeing the thermal diffusivity (TD) result of FIG. 14, it can be found that
the thermal diffusivity of examples 3 through 7 in which x in chemical formula 1 is
higher than 2.04 is generally lower than examples 1 and 2 in which x is lower than
2.04. Particularly, examples 5 through 7, more specifically, examples 5 and 6 show
remarkably low results in the temperature range of 200°C to 600°C.
[0112] Also, seeing the Seebeck coefficient (S) result of FIG. 16, it can be found that
the thermal diffusivity of examples 3 through 7 in which x in chemical formula 1 is
higher than 2.04 is generally higher in Seebeck coefficient than examples 1 and 2
in which x is lower than 2.04. Particularly, for examples 5 through 7, the Seebeck
coefficient is found much higher than that of the other examples. Further, in the
range of 100°C to 200°C, and in the range of 400°C to 600°C, the Seebeck coefficient
of examples 6 and 7 is found much higher than that of the other examples.
[0113] As described in the foregoing, in the method for manufacturing a thermoelectric material
according to the present disclosure, the compound forming step S120 is preferably
performed by a solid state reaction (SSR) method. Hereinafter, a description of the
SSR synthesis method and its effect is provided in comparison to a melting method.
EXAMPLE 8
[0114] Cu and Se in powder form were weighed based on a chemical formula Cu
2.025Se, and put in an alumina mortar, followed by mixing. The mixed materials were put
into a hard mold, formed into pellets, put in a fused silica tube, and vacuum-sealed.
Also, the result was put in a box furnace, and heated at 1100°C for 12 hours, and
in this instance, a temperature increase time was 9 hours. Then, the result was heated
at 800°C for 24 hours again, and in this instance, a temperature decrease time was
24 hours. After heating, the result was slowly cooled down to room temperature to
obtain a Cu
2.025Se compound.
[0115] Also, the Cu
2.025Se compound was filled in a hard mold for hot pressing, and was hot press sintered
in the condition of 650°C under vacuum to obtain a sample of example 8. In this instance,
a sintering density was at least 98% of a theoretical value.
EXAMPLE 9
[0116] Cu and Se in powder form were weighed based on a chemical formula Cu
2.1Se, and mixed and synthesized by the same process as example 8 to obtain a Cu
2.1Se compound. Also, the compound was sintered by the same process as example 8 to obtain
a sample of example 9.
[0117] The samples according to examples 8 and 9 differ in synthesis method from the previous
examples 1 through 7. That is, in the case of the samples according to examples 1
through 7, the thermoelectric material was synthesized by an SSR method by which synthesis
is performed in a state that at least some of the raw materials does not melt, but
in the case of the samples according to examples 8 and 9, the thermoelectric material
was synthesized by a melting method by which all the raw materials were heated beyond
the melting point.
[0118] For the samples of examples 8 and 9 obtained in this way, an XRD analysis was conducted,
and its result is shown in FIG. 16. Also, with an aim to compare to them, for the
samples corresponding to examples 2 and 5 synthesized by an SSR method, an XRD analysis
was conducted, and its result is shown in FIG. 16, and its partial enlarged graph
is provided in FIG. 17. Particularly, for ease of distinguishment, in FIG. 16, the
XRD pattern analysis graphs for each example are spaced a predetermined distance away
from each other in the vertical direction. Also, in FIG. 17, the graphs of each example
are not spaced away from each other and overlap with each other. Further, in FIG.
17, a Cu peak occurring at a single Cu composition is represented by E.
[0119] Referring to FIGS. 16 and 17, it can be seen that a height of the Cu peak of example
2 and example 5 synthesized by an SSR method is formed much higher than that of example
8 and example 9 synthesized by a melting method. Thus, according to the XRD analysis
result, it can be seen that a larger amount of Cu existing singularly is present when
the thermoelectric material according the present disclosure is synthesized by an
SSR method than a melting method. Particularly, in the case of a melting method, copper
does not exist within a Cu-Se matrix or at a grain boundary in the form of nano-dots,
and may be in a released and precipitated form. Thus, in the case of the thermoelectric
material according to the present disclosure, synthesis by an SSR method is preferred.
The advantage of the SSR method over the melting method is described in more detail
with reference to FIGS. 18 through 20.
[0120] FIGS. 18 through 20 are graphs illustrating a comparison of measurement results of
a lattice thermal conductivity (κ
L), a power factor (PF), and a ZT value based on temperature for example 2, example
5, example 8, and example 9.
[0121] First, in FIG. 18, the lattice thermal conductivity was calculated using the Wiedemann-Franz
Law, and in this instance, the Lorenz number used was 1.86
∗10
-8. More specifically, the lattice thermal conductivity may be calculated using the
following mathematical formula:

[0122] Here, κ
L denotes the lattice thermal conductivity, κ
total denotes the thermal conductivity, and κ
e denotes the thermal conductivity to the electrical conductivity. Also, κ
e may be expressed as below:

[0123] Here, σ denotes the electrical conductivity, and L denotes the Lorenz number and
represents 1.86 E-8. Also, T denotes the temperature (K).
[0124] Referring to the result of FIG. 18, it can be seen that the lattice thermal conductivity
of examples 2 and 5 synthesized by an SSR method is lower than that of examples 8
and 9 synthesized by a melting method. Particularly, when comparing examples 2 and
8 of the same composition, a lattice thermal conductivity change pattern based on
temperature is similar, but in the case of example 2, the lattice thermal conductivity
is found remarkably low in the entire temperature range of 100°C to 600°C, compared
to example 8. Also, when comparing example 5 and example 9 of the same composition,
the lattice thermal conductivity of example 5 by an SSR method is lower than the lattice
thermal conductivity of example 9 in the temperature range of 200°C to 600°C, and
moreover, it is found that as the temperature increases, its difference increases.
[0125] Next, referring to the result of FIG. 19, it can be seen that the power factor (PF)
of example 2 and example 5 synthesized by an SSR method is higher than that of example
8 and example 9 synthesized by a melting method. Particularly, when comparing example
2 and example 8 of the same composition, example 2 based on an SSR method is found
higher in power factor than example 8 based on a melting method in the entire temperature
measurement range of 100°C to 600°C. Also, when comparing example 5 and example 9
of the same composition, example 5 is found higher than example 9 in the entire temperature
measurement range of 100°C to 600°C.
[0126] Finally, referring to the result of FIG. 20, it can be seen that the ZT of example
2 and example 5 synthesized by an SSR method is higher than that of example 8 and
example 9 synthesized by a melting method. Particularly, when comparing example 2
and example 8 of the same composition, example 2 based on an SSR method is found higher
in in ZT than example 8 based on a melting method in the temperature measurement range
of 200°C to 600°C. Also, when comparing example 5 and example 9 of the same composition,
example 5 is found higher than example 9 in the entire temperature measurement range
of 100°C to 600°C.
[0127] Considering this comprehensively, in the case of the method for manufacturing a thermoelectric
material according to the present disclosure, synthesis by an SSR method may contribute
to higher thermoelectric performance of the thermoelectric material than synthesis
by a melting method.
[0128] Hereinabove, the present disclosure has been described in detail. However, it should
be understood that the detailed description and specific examples, while indicating
preferred embodiments of the disclosure, are given by way of illustration only.