(19)
(11) EP 2 587 191 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
06.05.2020 Bulletin 2020/19

(21) Application number: 12188981.0

(22) Date of filing: 18.10.2012
(51) International Patent Classification (IPC): 
F25B 7/00(2006.01)
F25B 29/00(2006.01)
F25B 25/00(2006.01)
F25B 13/00(2006.01)

(54)

Heating and refrigerating unit and method for the control thereof

Heiz- und Kühleinheit und Verfahren zur Steuerung davon

Unité de chauffage et de réfrigération et son procédé de commande


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 25.10.2011 IT MI20111933

(43) Date of publication of application:
01.05.2013 Bulletin 2013/18

(73) Proprietor: Mitsubishi Electric Hydronics & IT Cooling Systems S.p.A.
36061 Bassano del Grappa (Vicenza) (IT)

(72) Inventors:
  • Covolo, Mariano
    36064 Mason Vicentino (Vicenza) (IT)
  • Marsan, Pierluigi
    36020 Pove del Grappa (Vicenza) (IT)
  • Seravalli, Francesco
    33013 Gemona del Friuli (Udine) (IT)

(74) Representative: Rapisardi, Mariacristina 
Ufficio Brevetti Rapisardi S.r.l. Via Serbelloni, 12
20122 Milano
20122 Milano (IT)


(56) References cited: : 
EP-A1- 2 363 663
WO-A1-2004/020918
US-A1- 2009 120 117
EP-A2- 0 240 441
WO-A1-2011/036905
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The present invention relates to a multipurpose heating and refrigerating unit and a method for the control thereof.

    [0002] The use of two heating and refrigerating units which, working in cascade one after the other, produce water at different temperature levels, in particular cold water, water at a medium temperature and water at a high temperature, is well known.

    [0003] The drawbacks tied to the use of two heating and refrigerating units working in cascade to produce water at different temperature levels essentially regards their structural and operating costs and their efficiency, which is not always adequate.

    [0004] EP2363663 discloses a refrigeration unit according to preamble of claim 1 the technical task the present invention has set itself is therefore to realize a system for producing water at at least three temperature levels, which allows the aforementioned technical drawbacks of the prior art to be eliminated.

    [0005] Within the scope of this technical task, one object of the invention is to realize a system which assures both high operating flexibility and an adequate efficiency in the production of water at low, medium and high temperatures, also when demand in terms of the different loads requested by users varies.

    [0006] The technical task, as well as these and other objects according to the present invention, are achieved by realizing a multipurpose heating and refrigerating unit and a method for the control thereof in accordance with the independent claims set forth below.

    [0007] Other features of the present invention are defined, moreover, in the subsequent claims.

    [0008] The multipurpose heating and refrigerating unit used to produce water at various temperatures can achieve adequate efficiency also when the user load demand conditions vary.

    [0009] This is because the primary and secondary refrigeration cycles can function without mutual interference, or with limited mutual interference, in such a way as to optimize the unit's efficiency.

    [0010] In particular, it is possible to meet the high temperature load without requiring activation of the primary circuit when there is no load requested at a low or medium temperature.

    [0011] This necessarily means a lower consumption of energy to achieve the useful effect desired and ultimately an increase in unit efficiency.

    [0012] One of the advantageous effects resulting from the adoption of the construction and integrated control logic of the unit thus consists in avoiding or limiting the stop and restart cycles of the primary circuit.

    [0013] The control logic provides for cooling energy to be accumulated in the cold water-producing circuit even when the cold load demand is met.

    [0014] Similarly, the control logic provides for thermal energy to be accumulated in the circuit for producing water at a medium temperature also when the medium temperature load demand is met.

    [0015] Additional advantages of the invention will be more apparent from the description of a preferred, but not exclusive, embodiment of the multipurpose heating and refrigerating unit and method for the control thereof according to the invention, illustrated by way of non-restrictive example in the appended drawings, in which:

    Figure 1 shows a possible system layout of the multipurpose heating and refrigerating unit in accordance with the invention, wherein the primary refrigerating circuit, in the operating mode which provides for the selection of a low-pressure water heat exchanger and a high-pressure water heat exchanger, is shown with a line in boldface;

    Figure 2 shows the system layout of the multipurpose heating and refrigerating unit of figure 1, wherein the primary refrigerating circuit, in the operating mode which provides for the selection of a low-pressure air heat exchanger and a high-pressure water heat exchanger, is shown with a line in boldface;

    Figure 3 shows the system layout of the multipurpose heating and refrigerating unit of figure 1, wherein the primary refrigerating circuit, in the operating mode which provides for the selection of a low-pressure water heat exchanger and a high-pressure air heat exchanger, is shown with a line in boldface.



    [0016] With reference to the aforementioned figures, there is shown a multipurpose heating and refrigerating unit 1 comprising a primary refrigerating circuit 2, a secondary refrigerating circuit 3, a first water-producing circuit 4 producing water at a first temperature, a second water-producing circuit 5 producing water at a second temperature above the first temperature, and a third water-producing circuit 6 producing water at a third temperature above the second temperature.

    [0017] By way of example, the first circuit 4 is suitable for cooling water entering at 12 °C to produce water at an outlet temperature of 7 °C, the second circuit 5 is suitable for heating water entering at 40 °C to produce water at an outlet temperature of 45 °C, and the third circuit 6 is suitable for heating water entering at 70 °C to produce water at an outlet temperature of 80 °C.

    [0018] The scope of the invention naturally extends to a unit 1 which also has a larger number refrigerating circuits, even though in the minimal configuration illustrated the unit 1 has only one primary refrigerating circuit 2 and only one secondary refrigerating circuit 3.

    [0019] The primary refrigerating circuit 2 comprises at least one first low-pressure primary heat exchanger 7 connected to the first water-producing circuit 4 and at least one first high-pressure primary heat exchanger 8 connected to the second water-producing circuit 5, a compressor 9, and an expansion device 10.

    [0020] The primary refrigerating circuit 2 can naturally include more than one compressor 9, even though in the minimal configuration illustrated it has only one compressor 9.

    [0021] The secondary refrigerating circuit 3 comprises at least one first low-pressure secondary heat exchanger 11 connected to the second water-producing circuit 5, at least one first high-pressure secondary heat exchanger 12 connected to the third water-producing circuit 6, at least one second low-pressure secondary heat exchanger 13 connected to a high-pressure section 14 of the primary refrigerating circuit 2 downstream of the first high-pressure primary heat exchanger 8.

    [0022] Preferably, in the secondary refrigerating circuit 3 the first low-pressure secondary heat exchanger 11 and the second low-pressure secondary heat exchanger 13 are connected to each other in parallel.

    [0023] Preferably, the second refrigerating circuit 3 comprises valve means 15 for selecting one or both the first low-pressure secondary heat exchanger 11 and the second low-pressure secondary heat exchanger 13.

    [0024] In particular, the first low-pressure secondary heat exchanger 11 operates on a branch 27 of the second water-producing circuit 5 which originates downstream of the first high-pressure primary heat exchanger 8 and connects back to the second water-producing circuit 5 upstream of the first high-pressure primary heat exchanger 8.

    [0025] In the branch 27 there is present a feed pump 28 and a check valve 29.

    [0026] The secondary refrigerating circuit further has a compressor 16, a first expansion device 17 upstream of the first low-pressure secondary heat exchanger 11, and a second expansion device 18 upstream of the second low-pressure secondary heat exchanger 13.

    [0027] In this case as well, the secondary refrigerating circuit 3 can naturally include more than one compressor 16, even though in the minimal configuration illustrated it has only one compressor 16.

    [0028] Preferably, the primary refrigerating circuit 2 comprises at least one second primary air heat exchanger 19 suitable for acting selectively in a high-pressure heat exchanger mode as an alternative to the first high-pressure primary heat exchanger 8, or in a low-pressure heat exchanger mode as an alternative to the low-pressure first primary heat exchanger 7, and valve means 20, 21, 22 for selecting the low-pressure heat exchanger and high-pressure heat exchanger of the primary refrigerating circuit 2.

    [0029] The primary refrigerating circuit 2 further comprises check valves 30, 31 and a further expansion device 32, which is set upstream of the second primary air heat exchanger 19 when the latter is operating in the low-pressure heat exchanger mode. Finally, the primary refrigerating circuit 2 preferably comprises, upstream of the first high-pressure primary heat exchanger 8, a second high-pressure primary heat exchanger 23 connected to a section 24 of the third water-producing circuit 6 upstream of the first high-pressure secondary heat exchanger 12.

    [0030] The third water-producing circuit 6 has a feed pump 26 and valve means 25, for example a three-way valve, for excluding the second high-pressure primary heat exchanger 23.

    [0031] In a possible variant of the invention, the first low-pressure secondary heat exchanger 11 is integrated into the first high-pressure primary heat exchanger 8. This makes it possible to render the unit 1 more compact, to eliminate the branch 27 with the feed pump 28 and check valve 29, and to limit the exposed parts which must be covered and protected from freezing.

    [0032] The logical controller of the unit 1 can activate different operating states of the unit 1 in relation to the various possible combinations of the loads to be met in the first, second and third water-producing circuits 4, 5 and 6.

    [0033] The basic idea of the invention is to force the unit 1 to operate in a state wherein the first refrigerating circuit 2 is activated with the first high-pressure primary heat exchanger 8 and the first low-pressure primary heat exchanger 7 selected even when a load is requested only of the first water-producing circuit 4 or the second water-producing circuit 5.

    [0034] By way of example we shall describe the following situations.

    [0035] The unit 1 is working in the state wherein the first refrigerating circuit 2 is activated with the first high-pressure primary heat exchanger 8 and the first low-pressure primary heat exchanger 7 selected. This initial configuration of the unit 1 is illustrated in figure 1, in which the valve means 20, in particular a four-way valve, connect the heat exchanger 23 to the heat exchanger 8, the valve means 21 are closed and the valve means 22 are open. The load requested of the second water-producing circuit 5 is met, whereas the load requested of the first water-producing circuit 4 has not yet reached its set point. The unit 1 should change its operating state by excluding the first high-pressure primary heat exchanger 8 and including instead the second primary air heat exchanger 19 operating in the high-pressure mode (as shown in figure 3, in which the valve means 20 connect the heat exchanger 23 to the heat exchanger 19, the valve means 21 are closed and the valve means 22 are open). The unit 1 is instead forcedly maintained in the state wherein the first refrigerating circuit 2 is activated with the first high-pressure primary heat exchanger 8 and the first low-pressure primary heat exchanger 7 selected. In this manner, thermal energy will be accumulated in the second water-producing circuit 5, in which, consequently, the water temperature will rise a few degrees, thus exceeding its set point.

    [0036] The logical controller of the unit 1 operates according to the thermodynamic variables of the first refrigerating circuit 2 (evaporation and condensation temperatures) and the historical temperature trend in the first, second and third water-producing circuits 4, 5 and 6.

    [0037] Let us make a first hypothesis that there is subsequently no longer any load requested of the first water-producing circuit 4, but only of the second water-producing circuit 5. If thermal energy were not stored in the second water-producing circuit 5 as previously done, the unit 1 would have to activate the first refrigerating circuit 2 with the first high-pressure primary heat exchanger 8 and the second primary air heat exchanger 19 operating in the low-pressure mode selected (as shown in figure 2, wherein the valve means 20 connect the heat exchanger 23 to the heat exchanger 8, the valve means 21 are open and the valve means 22 are closed). Instead, before activating the first refrigerating circuit 2, the unit 1 exploits the previously accumulated thermal energy. In this manner, the start and stop cycles of the unit 1 are decreased and less efficient operating states are limited. Let us make a second hypothesis that there is subsequently no longer any load requested of the first water-producing circuit 4, but only of the third water-producing circuit 6. The secondary refrigerating circuit 3 is activated, while the primary refrigerating circuit 2 remains deactivated. If thermal energy were not stored in the second water-producing circuit 5 as previously done, when the first low-pressure secondary heat exchanger 11 went to cool the water of the second water-producing circuit 5, the load in the second water-producing circuit 5 would no longer be met and the controller would have to activate the first refrigerating circuit 2 with the first high-pressure primary heat exchanger 8 selected. In this manner as well, the start and stop cycles of the unit 1 are decreased, resulting in a reduction in energy consumption and component wear, and less efficient operating states are limited.

    [0038] The same advantage is obtained by accumulating cooling energy in the first water-producing circuit 4.

    [0039] Let us consider a situation in which the unit 1 is working in a state wherein the first refrigerating circuit 2 is activated with the first high-pressure primary heat exchanger 8 and the first low-pressure primary heat exchanger 7 selected. The load requested of the first water-producing circuit 4 is met whereas the load requested of the second water-producing circuit 5 has not yet reached its set point. The unit 1 should change its operating state by excluding the first low-pressure primary heat exchanger 7 and including the second primary air heat exchanger 19 operating in the low-pressure mode. The unit 1 is instead forcedly maintained in the state wherein the first refrigerating circuit 2 is activated with the first high-pressure primary heat exchanger 8 and the first low-pressure primary heat exchanger 7 selected. In this manner, thermal energy is accumulated in the first water-producing circuit 4, in which the water temperature consequently falls by a few degrees, exceeding its set point.

    [0040] Let us make the hypothesis that there is subsequently no longer any load requested of the second water-producing circuit 5, but only of the first water-producing circuit 4. If thermal energy were not stored in the first water-producing circuit 4 as previously done, the unit 1 would have to activate the first refrigerating circuit 2 with the first low-pressure primary heat exchanger 7 and the second primary air heat exchanger 19 operating in the high-pressure mode selected. Instead, before activating the first refrigerating circuit 2, the unit 1 exploits the previously accumulated thermal energy. In this manner, the start and stop cycles of the unit 1 are decreased and less efficient operating states are limited.

    [0041] In addition to the concept of energy accumulation, there are no doubt further benefits deriving from the integrated, synergetic control of the primary refrigerating circuit 2 and secondary refrigerating circuit 3.

    [0042] When the first refrigerating circuit 2 is already activated and there is a load requested also of the third water-producing circuit 6, the second refrigerating circuit 3 can be more favourably activated by initially selecting at least the second low-pressure secondary heat exchanger 13, which also acts as a subcooler for the primary refrigerating circuit 2. In this manner, the consumption of the feed pump 28 will be eliminated, the water of the second water-producing circuit 5 will not be cooled and, thanks to the high subcooling obtainable, the enthalpic jump - that is to say, the useful effect obtainable in the first low-pressure primary heat exchanger 7 - will be increased, and, consequently, so will the overall efficiency of the unit 1. If the primary circuit 2 is working in a capacity-controlled mode and does not have at its disposal a sufficient flow of refrigerant fluid to efficiently disperse the evaporation capacity of the secondary circuit 3, it is forced within certain limits to work at 100% capacity, accumulating the excess energy in the other heat exchangers. If this is not sufficient or not more economical in terms of overall efficiency, the first low-pressure secondary heat exchanger 11 will also be selected and the pump 28 will be switched on so that the secondary circuit 3 can have two evaporators operating in parallel.

    [0043] In order to maximise the useful effect of the unit 1, this solution is used when the first primary high-pressure heat exchanger 8 and the first low-pressure primary heat exchanger 7 are selected in the primary refrigerating circuit 2, but it can also be used when the second primary air heat exchanger 19 is selected as a replacement for the first low-pressure primary heat exchanger 7 or as a replacement for the first high-pressure primary heat exchanger 8.

    [0044] On the other hand, when the primary refrigerating circuit 2 is deactivated or fails and a load is requested solely of the third water-producing circuit 6, only the first low-pressure secondary heat exchanger 11 can be selected in the secondary refrigerating circuit 3 to meet the load.

    [0045] Another advantageous aspect in the control of the unit 1 consists in the use of the second high-pressure primary heat exchanger 23 with the function of a desuperheater in the primary refrigerating circuit 2. When a load is requested of the third water-producing circuit 6, the logical controller checks whether the primary refrigerating circuit 2 is activated and whether the use of the desuperheater is useful and sufficient for such a purpose; if not, the secondary refrigerating circuit 3 will be activated.

    [0046] In particular, if the primary refrigerating circuit 2 is activated, the logical controller of the unit 1 checks whether the load on the second water-producing circuit 6 is met. If it is, the logical controller will switch the valve 25 to include the second high-pressure primary heat exchanger 23 in the primary refrigerating circuit 2. If the load cannot be met, only at this point will the secondary refrigerating circuit 3 also be activated. If, on the other hand, the load on the second water-producing circuit 6 is not met, the logical controller will switch the valve 25 to exclude the second high-pressure primary heat exchanger 23 from the primary refrigerating circuit 2 and directly activate the secondary refrigerating circuit 3.

    [0047] The multipurpose heating and refrigerating unit and method for the control thereof thus conceived are susceptible of numerous modifications and variants; moreover, all the details may be replaced with technically equivalent ones.

    [0048] In practice, all of the materials used, as well as the dimensions, can be any whatsoever according to need the state of the art.


    Claims

    1. Multipurpose heating and refrigerating unit (1) comprising a primary refrigerating circuit (2), a secondary refrigerating circuit (3), a first water-producing circuit (4) producing water at a first temperature, a second water-producing circuit (5) producing water at a second temperature above the first temperature, a third circuit (6) producing water at a third temperature above the second temperature, said primary refrigerating circuit (2) comprising at least one low-pressure primary heat exchanger (7) connected to said first water-producing circuit (4), at least one first high-pressure primary heat exchanger (8) connected to said second water-producing circuit (5), a compressor (9) and an expansion device (10), at least one second primary air heat exchanger (19) adapted to act selectively in high-pressure heat exchanger mode as an alternative to the first high-pressure primary heat exchanger (8) or in low-pressure heat exchanger mode as an alternative to the low-pressure primary heat exchanger (7), and valve means (20, 21, 22) for selecting the low-pressure primary heat exchanger and the first high-pressure primary heat exchanger for the primary refrigerating circuit (2), said secondary refrigerating circuit (3) comprising at least one first low-pressure secondary heat exchanger (11) connected to said second water-producing circuit (5), and at least one first high-pressure secondary heat exchanger (12) connected to said third water-producing circuit (6), characterized in that said primary refrigerating circuit (2) further comprises, upstream of said first high-pressure primary heat exchanger (8), a second high-pressure primary heat exchanger (23) connected to a section (24) of said third water-producing circuit (6) upstream of said first high-pressure secondary heat exchanger (12), said second high-pressure primary heat exchanger (23) having the function of a desuperheater in said primary refrigerating circuit (2), said valve means (20, 21, 22) including a four-way valve (20), a first interception valve (21) and a second interception valve (22), said four-way valve (20) selectively connecting the second high-pressure primary heat exchanger (23) to said first high-pressure primary heat exchanger (8), to said second primary air heat exchanger (19) in high-pressure heat exchanger mode, and to said second primary air heat exchanger (19) in low pressure heat exchanger mode, said first interception valve (21) being open and said second interception valve (22) being closed to connect said first high-pressure primary heat exchanger (8) to said second primary air heat exchanger (19) in low-pressure heat exchanger mode, said first interception valve (21) being closed and said second interception valve (22) being open either to connect said first high-pressure primary heat exchanger (8) to said low-pressure primary heat exchanger (7) or to connect said second primary air heat exchanger (19) in high-pressure heat exchanger mode to said low-pressure primary heat exchanger (7).
     
    2. Multipurpose heating and refrigerating unit (1) according to claim 1, characterised in that said secondary refrigerating circuit (3) further comprises at least one second low-pressure secondary heat exchanger (13) connected to a high-pressure section (14) of the primary refrigerating circuit (2) downstream of the first high-pressure primary heat exchanger (8).
     
    3. Multipurpose heating and refrigerating unit (1) according to the preceding claim, characterised in that in said secondary refrigerating circuit (3) said first low-pressure secondary heat exchanger (11) and said second low-pressure secondary heat exchanger (13) are connected to one another in parallel.
     
    4. Multipurpose heating and refrigerating unit (1) according to the preceding claim, characterised in that said second connected refrigerating circuit (3) comprises valve means (15) for selecting one or both said first low-pressure secondary heat exchanger (11) and said second low-pressure secondary heat exchanger (13).
     
    5. Multipurpose heating and refrigerating unit (1) according to claim 1, characterised in that said third water-producing circuit (6) has valve means (25) excluding said second high-pressure primary heat exchanger (23).
     
    6. Multipurpose heating and refrigerating unit (1) according to any preceding claim, characterised in that said first low-pressure secondary heat exchanger (11) is integrated into said first high-pressure primary heat exchanger (7).
     
    7. Method for controlling a multipurpose heating and refrigerating unit (1) according to any one of claims 2 to 6, characterised in that when the primary refrigerating circuit (2) is already activated and a load to the third water-producing circuit (6) is requested, in said second refrigerating circuit (3) at least said second low-pressure secondary heat exchanger (13) is selected to increase the enthalpy jump to said first low-pressure primary heat exchanger (7), and also the secondary refrigerating circuit (3) is activated.
     
    8. Method for controlling a multipurpose heating and refrigerating unit (1) according to the preceding claim, characterised in that when a load is requested only to the third water-producing circuit (6), in said secondary refrigerating circuit (3) only said first low-pressure secondary heat exchanger (11) is selected, and only the secondary refrigerating circuit (3) is activated.
     
    9. Method for controlling a multipurpose heating and refrigerating unit (1) according to any one of claims 7 and 8, characterised in that when a load to the first water-producing circuit (4) is requested and the request to load the second water-producing circuit (5) is met, said first high-pressure primary heat exchanger (8) is anyway selected to accumulate thermal energy in said second water-producing circuit (5).
     
    10. Method for controlling a multipurpose heating and refrigerating unit (1) according to any one of claims 7 to 9, characterised in that when a load to the second water-producing circuit (5) is requested and the request to load the first water-producing circuit (4) is met, said first low-pressure primary heat exchanger (7) is selected to accumulate refrigerating energy in said first water-producing circuit (4).
     


    Ansprüche

    1. Mehrzweckheiz- und Kühleinheit (1), umfassend einen Primärkühlkreislauf (2), einen Sekundärkühlkreislauf (3), einen ersten Wassererzeugungskreislauf (4), der Wasser bei einer ersten Temperatur erzeugt, einen zweiten Wassererzeugungskreislauf (5), der Wasser bei einer zweiten Temperatur oberhalb der ersten Temperatur erzeugt, einen dritten Kreislauf (6), der Wasser bei einer dritten Temperatur oberhalb der zweiten Temperatur erzeugt, wobei der Primärkühlkreislauf (2) mindestens einen Niederdruckprimärwärmetauscher (7), der mit dem ersten Wassererzeugungskreislauf (4) verbunden ist, mindestens einen ersten Hochdruckprimärwärmetauscher (8), der mit dem zweiten Wassererzeugungskreislauf (5) verbunden ist, einen Kompressor (9) und eine Expansionsvorrichtung (10), mindestens einen zweiten Primärluftwärmetauscher (19), der so ausgelegt ist, dass er selektiv im Hochdruckwärmetauschermodus als Alternative zum ersten Hochdruckprimärwärmetauscher (8) oder im Niederdruckwärmetauschermodus als Alternative zum Niederdruckwärmetauschermodus wirkt, Ventilmittel (20, 21, 22) zum Auswählen des Niederdruckprimärwärmetauschers und des ersten Hochdruckprimärwärmetauschers für den Primärkühlkreislauf (2) umfasst, wobei der Sekundärkühlkreislauf (3) mindestens einen ersten Niederdrucksekundärwärmetauscher (11), der mit dem zweiten Wassererzeugungskreislauf (5) verbunden ist, und mindestens einen ersten Hochdrucksekundärwärmetauscher (12), der mit dem dritten Wassererzeugungskreislauf (6) verbunden ist, umfasst, dadurch gekennzeichnet, dass der Primärkühlkreislauf (2) zudem stromaufwärts des ersten Hochdruckprimärwärmetauschers (8) einen zweiten Hochdruckprimärwärmetauscher (23) umfasst, der mit einem Abschnitt (24) des dritten Wassererzeugungskreislaufs (6) stromaufwärts des ersten Hochdrucksekundärwärmetauschers (12) verbunden ist, wobei der zweite Hochdruckprimärwärmetauscher (23) die Funktion eines Enthitzers im
    Primärkühlkreislauf (2) hat, wobei die Ventilmittel (20, 21, 22) ein Vierwegeventil (20), ein erstes Abfangventil (21) und ein zweites Abfangventil (22) enthalten, wobei das Vierwegeventil (20) den zweiten Hochdruckprimärwärmetauscher (23) mit dem ersten Hochdruckprimärwärmetauscher (8), dem zweiten Primärluftwärmetauscher (19) im Hochdruckwärmetauschermodus und mit dem zweiten Primärluftwärmetauscher (19) im Niederdruckwärmetauschermodus selektiv verbindet, wobei das erste Abfangventil (21) offen ist und das zweite Abfangventil (22) geschlossen ist, um den ersten Hochdruckprimärwärmetauscher (8) mit dem zweiten Primärluftwärmetauscher (19) im Niederdruckwärmetauschermodus zu verbinden, wobei das erste Abfangventil (21) geschlossen ist und das zweite Abfangventil (22) offen ist, entweder um den ersten Hochdruckprimärwärmetauscher (8) mit dem Niederdruckprimärwärmetauscher (7) zu verbinden oder um den zweiten Primärluftwärmetauscher (19) im Hochdruckwärmetauschermodus mit dem Niederdruckprimärwärmetauscher (7) zu verbinden.
     
    2. Mehrzweckheiz- und Kühleinheit (1) nach Anspruch 1, dadurch gekennzeichnet, dass der Sekundärkühlkreislauf (3) zudem mindestens einen zweiten Niederdrucksekundärwärmetauscher (13) umfasst, der mit einem Hochdruckabschnitt (14) des Primärkühlkreislaufs (2) stromabwärts des ersten Hochdruckprimärwärmetauschers (8) verbunden ist.
     
    3. Mehrzweckheiz- und Kühleinheit (1) nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass der erste Niederdrucksekundärwärmetauscher (11) und der zweite Niederdrucksekundärwärmetauscher (13) im Sekundärkühlkreislauf (3) parallel zueinander verbunden sind.
     
    4. Mehrzweckheiz- und Kühleinheit (1) nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass der zweite verbundene Kühlkreislauf (3) Ventilmittel (15) zum Auswählen eines oder sowohl des Niederdrucksekundärwärmetauschers (11) und des zweiten Niederdrucksekundärwärmetauschers (13) umfasst.
     
    5. Mehrzweckheiz- und Kühleinheit (1) nach Anspruch 1, dadurch gekennzeichnet, dass der dritte Wassererzeugungskreislauf (6) Ventilmittel (25) ohne den zweiten Hochdruckprimärwärmetauscher (23) aufweist.
     
    6. Mehrzweckheiz- und Kühleinheit (1) nach einem vorhergehenden Anspruch, dadurch gekennzeichnet, dass der erste Niederdrucksekundärwärmetauscher (11) im ersten Hochdruckprimärwärmetauscher (7) integriert ist.
     
    7. Verfahren zur Steuerung einer Mehrzweckheiz- und Kühleinheit (1) nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, dass, wenn der Primärkühlkreislauf (2) bereits aktiviert ist und eine Last an den dritten Wassererzeugungskreislauf (6) angefordert wird, mindestens der zweite Niederdrucksekundärwärmetauscher (13) im zweiten Kühlkreislauf (3) ausgewählt wird, um den Enthalpiesprung zu dem ersten Niederdruckprimärwärmetauscher (7) zu erhöhen und auch der Sekundärkühlkreislauf (3) aktiviert ist.
     
    8. Verfahren zur Steuerung einer Mehrzweckheiz- und Kühleinheit (1) nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass, wenn eine Last nur an den dritten Wassererzeugungskreislauf (6) angefordert wird, nur der erste Niederdrucksekundärwärmetauscher (11) im Sekundärkühlkreislauf (3) ausgewählt wird und nur der Sekundärkühlkreislauf (3) aktiviert wird.
     
    9. Verfahren zur Steuerung einer Mehrzweckheiz- und Kühleinheit (1) nach einem der Ansprüche 7 und 8, dadurch gekennzeichnet, dass, wenn eine Last an den ersten Wassererzeugungskreislauf (4) angefordert wird und die Anforderung zum Laden des zweiten Wassererzeugungskreislaufs (5) erfüllt ist, der erste Hochdruckprimärwärmetauscher (8) ohnehin so ausgewählt wird, dass er Wärmeenergie in dem zweiten Wassererzeugungskreislauf (5) ansammelt.
     
    10. Verfahren zur Steuerung einer Mehrzweckheiz- und Kühleinheit (1) nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass, wenn eine Last an den zweiten Wassererzeugungskreislauf (5) angefordert wird und die Anforderung zum Laden des ersten Wassererzeugungskreislaufs (4) erfüllt ist, der erste Niederdruckprimärwärmetauscher (7) ausgewählt wird, um Kühlenergie in dem ersten Wassererzeugungskreislauf (4) anzusammeln.
     


    Revendications

    1. Unité de chauffage et frigorifique polyvalente (1) comprenant un circuit frigorifique primaire (2), un circuit frigorifique secondaire (3), un premier circuit (4) de production d'eau produisant de l'eau à une première température, un deuxième circuit (5) de production d'eau produisant de l'eau à une deuxième température supérieure à la première température, un troisième circuit (6) produisant de l'eau à une troisième température supérieure à la deuxième température, ledit circuit frigorifique primaire (2) comprenant au moins un échangeur de chaleur primaire (7) basse pression relié au dit premier circuit (4) de production d'eau, au moins un premier échangeur de chaleur primaire (8) haute pression relié au dit deuxième circuit (5) de production d'eau, un compresseur (9) et un dispositif d'expansion (10), au moins un deuxième échangeur de chaleur primaire (19) à air adapté pour agir sélectivement en mode échangeur de chaleur haute pression comme une solution alternative au premier échangeur de chaleur primaire (8) haute pression ou en mode échangeur de chaleur basse pression comme une solution alternative à l'échangeur de chaleur primaire (7) basse pression, et des moyens de valve (20, 21, 22) pour sélectionner l'échangeur de chaleur primaire basse pression et le premier échangeur de chaleur primaire haute pression pour le circuit frigorifique primaire (2), ledit circuit frigorifique secondaire (3) comprenant au moins un premier échangeur de chaleur secondaire (11) basse pression relié au dit deuxième circuit (5) de production d'eau, et au moins un premier échangeur de chaleur secondaire (12) haute pression relié au dit troisième circuit (6) de production d'eau, caractérisée en ce que ledit circuit frigorifique primaire (2) comprend de plus, en amont dudit premier échangeur de chaleur primaire (8) haute pression, un deuxième échangeur de chaleur primaire (23) haute pression relié à une section (24) dudit troisième circuit (6) de production d'eau en amont dudit premier échangeur de chaleur secondaire (12) haute pression, ledit deuxième échangeur de chaleur primaire (23) haute pression ayant la fonction d'un désurchauffeur dans ledit circuit frigorifique primaire (2), lesdits moyens de valve (20, 21, 22) comprenant un distributeur progressif à quatre voies (20), une première vanne d'interception (21) et une seconde vanne d'interception (22), ledit distributeur progressif à quatre voies (20) reliant sélectivement le second échangeur de chaleur primaire (23) haute pression au dit premier échangeur de chaleur primaire (8) haute pression, au dit second échangeur de chaleur primaire (19) à air en mode échangeur de chaleur haute pression, et au dit second échangeur de chaleur primaire (19) à air en mode échangeur de chaleur basse pression, ladite première vanne d'interception (21) étant ouverte et ladite seconde vanne d'interception (22) étant fermée pour raccorder ledit premier échangeur de chaleur primaire (8) haute pression au dit second échangeur de chaleur primaire (19) à air en mode échangeur de chaleur basse pression, ladite première vanne d'interception (21) étant fermée et ladite seconde vanne d'interception (22) étant ouverte soit pour raccorder ledit premier échangeur de chaleur primaire (8) haute pression au dit échangeur de chaleur primaire (7) basse pression, ou pour raccorder ledit second échangeur de chaleur primaire (19) à air en mode échangeur de chaleur haute pression au dit échangeur de chaleur primaire (7) basse pression.
     
    2. Unité de chauffage et frigorifique polyvalente (1) selon la revendication 1, caractérisée en ce que ledit circuit frigorifique secondaire (3) comprend de plus au moins un deuxième échangeur de chaleur secondaire (13) basse pression relié à une section haute pression (14) du circuit frigorifique primaire (2) en aval du premier échangeur de chaleur primaire (8) haute pression.
     
    3. Unité de chauffage et frigorifique polyvalente (1) selon la revendication précédente, caractérisée en ce que dans ledit circuit frigorifique secondaire (3), ledit premier échangeur de chaleur secondaire (11) basse pression et ledit second échangeur de chaleur secondaire (13) basse pression sont reliés l'un à l'autre en parallèle.
     
    4. Unité de chauffage et frigorifique polyvalente (1) selon la revendication précédente, caractérisée en ce que ledit deuxième circuit frigorifique (3) relié comprend des moyens de valve (15) pour sélectionner l'un ou les deux desdits premier échangeur de chaleur secondaire (11) basse pression et deuxième échangeur de chaleur secondaire (13) basse pression.
     
    5. Unité de chauffage et frigorifique polyvalente (1) selon la revendication 1, caractérisée en ce que ledit troisième circuit (6) de production d'eau comporte des moyens de valve (25) excluant ledit deuxième échangeur de chaleur primaire (23) haute pression.
     
    6. Unité de chauffage et frigorifique polyvalente (1) selon l'une quelconque des revendications précédentes, caractérisée en ce que ledit premier échangeur de chaleur secondaire (11) basse pression est intégré dans ledit premier échangeur de chaleur primaire (7) haute pression.
     
    7. Procédé de commande d'une unité de chauffage et frigorifique polyvalente (1) selon l'une quelconque des revendications 2 à 6, caractérisé en ce que, lorsque le circuit frigorifique primaire (2) est déjà activé et qu'une charge est demandée au troisième circuit (6) de production d'eau, dans ledit deuxième circuit frigorifique (3) au moins ledit deuxième échangeur de chaleur secondaire (13) basse pression est sélectionné pour augmenter le saut d'enthalpie vers ledit premier échangeur de chaleur primaire (7) basse pression, et le circuit frigorifique secondaire (3) est aussi activé.
     
    8. Procédé de commande d'une unité de chauffage et frigorifique polyvalente (1) selon la revendication précédente, caractérisé en ce que lorsqu'une charge est demandée uniquement au troisième circuit (6) de production d'eau, dans ledit circuit frigorifique secondaire (3), seul ledit premier échangeur de chaleur secondaire (11) basse pression est sélectionné, et seul le circuit frigorifique secondaire (3) est activé.
     
    9. Procédé de commande d'une unité de chauffage et frigorifique polyvalente (1) selon l'une quelconque des revendications 7 et 8, caractérisé en ce que lorsqu'une charge du premier circuit (4) de production d'eau est demandée et que la demande de charge du deuxième circuit (5) de production d'eau est satisfaite, ledit premier échangeur de chaleur primaire (8) haute pression est de toute façon sélectionné pour accumuler de l'énergie thermique dans ledit deuxième circuit (5) de production d'eau.
     
    10. Procédé de commande d'une unité de chauffage et frigorifique polyvalente (1) selon l'une quelconque des revendications 7 à 9, caractérisé en ce que lorsqu'une charge du second circuit (5) de production d'eau est demandée et que la demande de charge du premier circuit (4) de production d'eau est satisfaite, ledit premier échangeur de chaleur primaire (7) basse pression est sélectionné pour accumuler de l'énergie frigorifique dans ledit premier circuit (4) de production d'eau.
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description