(19)
(11) EP 3 086 166 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
06.05.2020 Bulletin 2020/19

(21) Application number: 14859302.3

(22) Date of filing: 15.05.2014
(51) International Patent Classification (IPC): 
G02F 1/13(2006.01)
G02F 1/1343(2006.01)
G02F 1/1347(2006.01)
G02B 5/18(2006.01)
G02F 1/1335(2006.01)
(86) International application number:
PCT/CN2014/077544
(87) International publication number:
WO 2015/089983 (25.06.2015 Gazette 2015/25)

(54)

LIQUID CRYSTAL GRATING, DISPLAY DEVICE, AND DRIVE METHOD

FLÜSSIGKRISTALLGITTER, ANZEIGEVORRICHTUNG UND ANSTEUERUNGSVERFAHREN

RÉSEAU DE CRISTAUX LIQUIDES, DISPOSITIF D'AFFICHAGE, ET PROCÉDÉ D'ATTAQUE


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 19.12.2013 CN 201310706112

(43) Date of publication of application:
26.10.2016 Bulletin 2016/43

(73) Proprietor: BOE Technology Group Co., Ltd.
Beijing 100015 (CN)

(72) Inventor:
  • LIN, Chiachiang
    Beijing 100176 (CN)

(74) Representative: Isarpatent 
Patent- und Rechtsanwälte Behnisch Barth Charles Hassa Peckmann & Partner mbB Friedrichstrasse 31
80801 München
80801 München (DE)


(56) References cited: : 
CN-A- 102 681 180
CN-A- 103 197 474
CN-U- 201 673 311
US-A1- 2013 176 619
CN-A- 102 928 904
CN-A- 103 209 332
CN-U- 203 054 416
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present disclosure relates to the field of optical elements, in particular to a liquid crystal grating, a display device and a driving method.

    BACKGROUND



    [0002] Display technology has been developed from a two-dimension (2D) display technology to a three-dimension (3D) display technology. The 3D display technology has been developing rapidly in recent years, and as a research hotspot, it has been widely used in such fields as medical cares, advertisements, militaries, exhibitions and games.

    [0003] For the early 3D display technology, a 3D spectacle is mainly used to view a 3D image, while a binocular parallax-based autostereoscopic 3D display device is used as a mainstream product now. Liquid crystal grating is one of the elements capable of achieving the autostereoscopic 3D display. Fig.1 is a schematic view showing the principle of separating light transmission paths for a left-eye image and a right-eye image by the liquid crystal grating. Due to the existence of the liquid crystal grating 100, the left-eye image displayed by a display panel 200 can merely be viewed by a left eye, and the right-eye image can merely be viewed by a right eye, so as to provide a stereoscopic parallax effect for a viewer, thereby to achieve the 3D display.

    [0004] However, for the autostereoscopic 3D display technology, a viewing position is fixed, i.e., only when the viewer is located within a 3D viewing region could an appropriate 3D image be viewed. When the viewer is not located within this region, such defects as a reverse visual effect, a ghost image and a distorted image will occur, thereby the 3D display effect will be adversely affected.

    [0005] In this regard, there is an urgent demand to develop a liquid crystal grating with movable slit position, so as to enable the slit position of the grating to match positions of the eyes, thereby to achieve an optimal visual effect.

    [0006] However, for the existing liquid crystal grating with movable slit position, there are too many electrodes, and these electrodes are arranged in close proximity to each other. As a result, a short circuit, and thereby a line defect, is prone to happen. In the prior art, the following document discloses technological background for the present invention:
    D1 US 2013/176619 A1 (HOSHINO NORIFUMI [JP] ET AL) 11 July 2013 (2013-07-11)
    Document D1 provides an electronic device, such as a display apparatus, which includes a display panel, comprising a plurality of pixels; and a parallax barrier, comprising a plurality of light transmission sections and a plurality of light blocking sections. The electronic device is operable to switch between a first setting, in which at least one of the plurality of light transmission sections has a first width, and a second setting, in which the at least one of the plurality of light transmission sections has a second width different than the first width.

    SUMMARY



    [0007] An object of the present disclosure is to provide a grating, a display device and a driving method, so as to adjust a slit position of the liquid crystal grating, thereby to prevent a short circuit and a line defect due to an excessive number of electrodes in the prior art. This object is solved by a grating according to claim 1, by a display device according to claim 8 and by a driving method in accordance with claim 9. Further advantageous embodiments and improvements of the present invention are listed in the dependent claims. However, before coming to a detailed description and discussion of the embodiments of the invention, some general aspects of the present invention will be discussed below.

    [0008] In one aspect, the present disclosure provides a liquid crystal grating, including a plurality of grating element groups for forming dark fringes and transparent fringes. The dark fringe of each grating element group may be arranged adjacent to a transparent fringe of adjacent neighboring grating element group. Each grating element group may include a plurality of first grating elements and at least one second grating element arranged parallel to each other. At least one of the first grating elements may be transparent so as to form the transparent fringe of the grating element group, and different first grating elements are enabled to be transparent so as to change positions of the transparent fringes. The second grating element may be opaque, an opaque first grating elements and the second grating element may be used to form the dark fringes of the grating element group, and the second grating element may have a width greater than that of each of the first grating elements.

    [0009] Alternatively, there may be one second grating element, and the second grating element may have a width greater than or equal to a total width of the transparent fringes of the grating element group.

    [0010] Alternatively, each of the first grating elements may have an identical width.

    [0011] Alternatively, there may be four first grating elements, two neighboring first grating elements are transparent so as to form the transparent fringes of the grating element group, and each of the first grating elements may have a width equal to a half of the total width of the transparent fringes of the grating element group.

    [0012] Alternatively, there may be five first grating elements, three neighboring first grating elements are transparent so as to form the transparent fringes of the grating element group, and each of the first grating elements may have a width equal to one third of the total width of the transparent fringes of the grating element group.

    [0013] Alternatively, there may be seven first grating elements, three neighboring first grating elements are transparent so as to form the transparent fringes of the grating element group, and each of the first grating elements may have a width equal to one third of the total width of the transparent fringes of the grating element group.

    [0014] Alternatively, when there are M first grating elements, each of the first grating elements may have a width equal to one Nth of the total width of the transparent fringes of the grating element group, wherein N is an integer less than M.

    [0015] Alternatively, the liquid crystal grating may further include a first transparent electrode and a second transparent electrode arranged opposite to each other, and a liquid crystal layer arranged between the first transparent electrode and the second transparent electrode. The grating element group may be arranged on the first transparent electrode and consist of a plurality of stripe electrode units arranged parallel to each other. Each of the first grating elements may correspond to one electrode unit, and the second grating element may also correspond to one electrode unit.

    [0016] In another aspect, the present disclosure provides a display device including a display panel and the above-mentioned liquid crystal grating.

    [0017] In yet another aspect, the present disclosure provides a method for driving the above-mentioned liquid crystal grating, including steps of:

    controlling a first portion of neighboring grating elements within the first grating elements to be transparent, so as to form the transparent fringes of the grating element group, and controlling the second grating element and a second portion of grating elements within the first grating elements to be opaque, so as to form the dark fringes of the grating element group, thereby to provide a first state of the liquid crystal grating, wherein the first grating elements consist of the first portion of grating elements and the second portion of grating elements; and

    controlling a third portion of neighboring grating elements within the first grating elements to be transparent, so as to form the transparent fringes of the grating element group, and controlling the second grating element and a fourth portion of grating elements within the first grating elements to be opaque, so as to form the dark fringes of the grating element group, thereby to provide a second state of the liquid crystal grating, wherein the first grating elements consist of the third portion of grating elements and the fourth portion of grating elements, and the first portion of grating elements is different from the third portion of grating elements.



    [0018] The present disclosure at least has the following advantageous effects. According to the liquid crystal grating of the present disclosure, the second grating element dedicated for forming the dark fringe has a width greater than any of the first grating elements, and the liquid crystal grating includes a plurality of grating elements with different widths. In addition, the widths of the first grating element and the second grating element may be set in accordance with widths of the transparent fringes and dark fringes desired to be formed by the liquid crystal grating, respectively. As compared with the prior art where the grating elements have an identical width, it is able to reduce the number of the grating elements, thereby to prevent a short circuit and a line defect due to an excessive number of electrodes.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0019] 

    Fig.1 is a schematic view showing the principle of separating light transmission paths for a left-eye image and a right-eye image by a liquid crystal grating;

    Fig.2 is a schematic view showing a liquid crystal grating according to one embodiment of the present disclosure;

    Fig.3 is a schematic view showing the arrangement of grating elements in the liquid crystal grating according to the first embodiment of the present disclosure;

    Fig.4 is a schematic view showing the arrangement of the grating elements in the liquid crystal grating according to the second embodiment of the present disclosure; and

    Fig.5 is a schematic view showing the arrangement of the grating elements in the liquid crystal grating according to the third embodiment of the present disclosure.


    DETAILED DESCRIPTION



    [0020] In order to make the objects, the technical solutions and the advantages of the present disclosure more apparent, the present disclosure will be described hereinafter in conjunction with the drawings and the embodiments.

    [0021] A liquid crystal grating of the present disclosure includes a plurality of grating element groups for forming dark fringes and transparent fringes, and the dark fringe of each grating element group is arranged adjacent to a transparent fringe of a neighboring grating element group. Each grating element group includes a plurality of first grating elements and at least one second grating element arranged parallel to each other. At least one of the first grating elements is transparent so as to form the transparent fringe of the grating element group, and different first grating elements are enabled to be transparent so as to change positions of the transparent fringes. The second grating element is opaque, and the first grating elements and the second grating element that are opaque are used to form the dark fringes of the grating element group, and the second grating element has a width greater than that of each of the first grating elements.

    [0022] According to the liquid crystal grating of the present disclosure, the grating element (the second grating element) dedicated for forming the dark fringes and the grating elements (the first grating elements) with an unfixed state, i.e., for forming the transparent fringes or dark fringes, are used, and the plurality of first grating elements may be changed between a transparent state and an opaque state so as to move the slits of the liquid crystal grating. In addition, the second grating element dedicated for merely forming the dark fringe has a width greater than that of each of the first grating elements, so that the liquid crystal grating includes a plurality of grating elements with different widths. The widths of the first grating elements and the second grating element may be set in accordance with widths of the transparent fringes and the dark fringes desired to be formed by the liquid crystal grating, respectively. As compared with the prior art where the grating elements have an identical width, it is able to reduce the number of the grating elements.

    [0023] In particular, when there is one second grating element, the second grating element may be of a width greater than or equal to a total width of the transparent fringes, for example, twice or triple the total width of the transparent fringes. In this way, it is able to further reduce the number of the grating elements, thereby to prevent a short circuit and a line defect due to an excessive number of electrodes.

    [0024] The term "grating element group" mentioned in the present disclosure may also be defined as one grating pitch, i.e., a range between two neighboring transparent fringes. The grating element group consists of a plurality of grating elements, which are combined so as to form the dark fringes and the transparent fringes. According to the definition of the term "grating element group", a dark fringe of one grating element group is located adjacent to a transparent fringe of a neighboring grating element group. In addition, a width of the transparent fringe of the grating element group forms "one unit width" of the liquid crystal grating.

    [0025] According to the liquid crystal grating of the present disclosure, within one grating element group, at least one grating element is always used for forming the dark fringe, and states of the other grating elements may be adjusted so as to adjust positions of the transparent fringes.

    [0026] In addition, in a preferred embodiment of the present disclosure, there may be one or more second grating elements (which are dedicated for forming the dark fringes) in one grating element group, while there may be more than one first grating elements (the states of which may be adjusted). The grating element is a minimum unit of the liquid crystal grating, and one grating element group consists of a plurality of grating elements.

    [0027] Fig.2 is a schematic view showing the liquid crystal grating according to one embodiment of the present disclosure. In this embodiment, the liquid crystal grating includes a first substrate 10 and a second substrate 20 arranged opposite to each other. A first transparent electrode 30 is arranged on the first substrate 10, a second transparent electrode 40 is arranged on the second substrate 20, and a liquid crystal layer 50 is arranged between the first transparent electrode 30 and the second transparent electrode 40. In addition, a spacer 60 is arranged between the first transparent electrode 30 and the second transparent electrode 40 so as to provide support for a thickness of the liquid crystal grating filled with the liquid crystal layer 50.

    [0028] Usually, the first transparent electrode 30 consists of a plurality of stripe electrode units 31 arranged parallel to each other, and the second transparent electrode 40 consists of block-like electrode units. When different control voltages are applied to the respective stripe electrode units 31 of the first transparent electrode 30, liquid crystal molecules in the liquid crystal layer 50 will rotate under the effect of different electric fields between the first transparent electrode 30 and the second transparent electrode 40, so as to form the dark fringes or the transparent fringes. The dark fringes and the transparent fringes are arranged at intervals.

    [0029] Based on the above, the states of the liquid crystal grating may be determined by controlling the voltages applied to the respective electrode units 31 of the first transparent electrode 30, so in this embodiment, the grating elements in the grating element group include the respective electrode units of the first transparent electrode 30, i.e., the stripe electrode units 31 arranged parallel to each other on the first transparent electrode 30 form the first grating elements and the second grating element. Each grating element may include one or more electrode units 31.

    [0030] In this embodiment, the electrode unit 31 is the minimum unit of the liquid crystal grating, so it may correspond to the above-mentioned grating element. The second grating element dedicated for merely forming the dark fringe corresponds to one electrode unit 31, a width of which may be set as greater than a total width of the transparent fringes of the grating element group, i.e., greater than one unit width of the liquid crystal grating. To be specific, the width of the electrode unit 31 may be set in accordance with image requirements of a display device. As compared with the prior art where the different electrode units 31 of the liquid crystal grating have an identical width, it is able to reduce the number of the electrodes.

    [0031] Alternatively, according to a specific embodiment of the present disclosure, the first grating elements each has an identical width, i.e., a width of the electrode unit 31 corresponding to each first grating element. This width is less than a total width of the transparent fringes of the grating element group, i.e., less than one unit width of the liquid crystal grating.

    [0032] To be specific, when there are M first grating elements, each first grating element has a width equal to one Nth of the total width of the transparent fringes of the grating element group, where N is an integer less than M.

    [0033] The structure of the liquid crystal grating according to the present disclosure will be described hereinafter in details.

    [0034] Fig.3 is a schematic view showing the arrangement of the grating elements (or the electrode units 31) in the liquid crystal grating according to the first embodiment of the present disclosure. In this embodiment, as shown in Fig.3, grating elements 1, 2, 3, 4 and 5 constitute one grating element group. A control voltage is applied to the grating element 5 so as to be dedicated for forming the dark fringe, i.e., the grating element 5 is just the above-mentioned second grating element. A portion of the grating elements 1, 2, 3 and 4 are enabled to be transparent by controlling the control voltages applied to these grating elements. The transparent grating elements are changed so as to change transparent positions, i.e., slit positions, of the liquid crystal grating, so the grating elements 1, 2, 3 and 4 are just the above-mentioned first grating elements. Each of the first grating elements has a width equal to a half of the total width of the transparent fringes of the grating element group.

    [0035] In this embodiment, the grating elements 1, 2, 3 and 4 have an identical width. When this width is a half of one unit width, two neighboring grating elements may be transparent so as to form the transparent fringes of the grating element group. Any two of the grating elements may be transparent by changing the control voltages applied to the grating elements 1, 2, 3 and 4, so as to adjust the slit positions of the liquid crystal grating. The slit positions may be moved minimally by a distance of a half of one unit width.

    [0036] Referring to Fig.3, when the control voltages are applied so as to enable the grating elements 2 and 3 to form the transparent fringes and enable the grating elements 4 and 5 to form the dark fringes, slits of the grating element group are located at positions corresponding to the grating elements 2 and 3. At this time, the liquid crystal grating is in a first state. When the control voltages are applied so as to enable the grating elements 1 and 2 to form the transparent fringes and enable the grating elements 3 and 4 to form the dark fringes, the slits of the grating element group are located at positions corresponding to the grating elements 1 and 2. At this time, the liquid crystal grating is in a second state and as compared with that in the first state, the slits are moved left by a distance of a half of one unit width. When the control voltages are applied so as to enable the grating elements 3 and 4 to form the transparent fringes and enable the grating elements 1 and 2 to form the dark fringes, the slits of the grating element group are located at positions corresponding to the grating elements 3 and 4. At this time, the liquid crystal grating is in a third state, and the slits are moved right by a distance of one unit width as compared with that in the second state and moved right by a distance of a half of one unit width as compared with that in the first state.

    [0037] In addition, in the first embodiment, the grating element 5 dedicated for forming the dark fringe has a width greater than one unit width, for example, four unit widths, so as to reduce the number of the grating elements.

    [0038] Fig.4 is a schematic view showing the arrangement of the grating elements (or the electrode units 31) in the liquid crystal grating according to the second embodiment of the present disclosure. In this embodiment, grating elements 1, 2, 3, 4, 5 and 6 constitute one grating element group. A control voltage is applied to the grating element 6 so as to be dedicated for forming the dark fringe, i.e., the grating element 6 is just the above-mentioned second grating element. A portion of the grating elements 1, 2, 3, 4 and 5 are enabled to be transparent by controlling the control voltages applied to these grating elements. The transparent grating elements are changed so as to change the transparent positions, i.e., the slit positions, of the liquid crystal grating, so the grating elements 1, 2, 3, 4 and 5 are just the above-mentioned first grating elements. Each first grating element has a width equal to one third of the total width of the transparent fringes of the grating element group.

    [0039] In the first embodiment, the grating elements 1, 2, 3, 4 and 5 have an identical width. When this width is one third of one unit width, three neighboring grating elements are transparent so as to form the transparent fringes of the grating element group. By changing the control voltages applied to the grating elements 1, 2, 3, 4 and 5, the slits of the liquid crystal grating may be moved minimally by a distance of one third of one unit width.

    [0040] Referring to Fig.4, when the control voltages are applied so as to enable the grating elements 2, 3 and 4 to form the transparent fringes and enable the grating elements 1 and 5 to form the dark fringes, the slits of the grating element group are located at positions corresponding to the grating elements 2, 3 and 4. At this time, the liquid crystal grating is in the first state. When the control voltages are applied so as to enable the grating elements 1, 2 and 3 to form the transparent fringes and enable the grating elements 4 and 5 to form the dark fringes, the slits of the grating element group are located at positions corresponding to the grating elements 1, 2 and 3. At this time, the liquid crystal grating is in the second state, and as compared with that in the first state, the slits are moved left by a distance of one third of one unit width. When the control voltages are applied so as to enable the grating elements 3, 4 and 5 to form the transparent fringes and enable the grating elements 1 and 2 to form the dark fringes, the slits of the grating element group are located positions corresponding to the grating elements 3, 4 and 5. At this time, the liquid crystal grating is in the third state, and the slits are moved right by a distance of one third of one unit width as compared with that in the first state and moved right by a distance of two thirds of one unit width as compared with that in the second state.

    [0041] As similar to the first embodiment, the grating element 6 dedicated for forming the dark fringe in the second embodiment has a width greater than one unit width, for example, four unit widths, so as to reduce the number of the grating elements.

    [0042] Fig.5 is a schematic view showing the arrangement of the grating elements (or the electrode units 31) in the liquid crystal grating according to the third embodiment of the present disclosure. In this embodiment, the grating elements 1, 2, 3, 4, 5, 6, 7 and 8 constitute one grating element group. A control voltage is applied to the grating element 8 so as to be dedicated for forming the dark fringe, i.e., the grating element 8 is just the above-mentioned second grating element. A portion of the grating elements 1, 2, 3, 4, 5, 6 and 7 is enabled to be transparent by controlling the control voltages applied to these grating elements. The transparent grating elements are changed so as to change the transparent positions, i.e., the slit positions, of the liquid crystal grating, so the grating elements 1, 2, 3, 4, 5, 6 and 7 are just the above-mentioned first grating elements. Each of the first grating elements has a width equal to one third of the total width of the transparent fringes of the grating element group.

    [0043] In this embodiment, the gating elements 1, 2, 3, 4, 5, 6 and 7 have an identical width. When this width is one third of one unit width, three neighboring grating elements are transparent so as to form the transparent fringes of the grating element group. By changing the control voltages applied to the grating elements 1, 2, 3, 4, 5, 6 and 7, the slits of the liquid crystal grating may be moved minimally by a distance of one third of one unit width.

    [0044] Referring to Fig.5, when the control voltages are applied so as to enable the grating elements 3, 4 and 5 to form the transparent fringes and enable the grating elements 1, 2, 6 and 7 to form the dark fringes, the slits of the grating element group are located at positions corresponding to the grating elements 3, 4 and 5. At this time, the liquid crystal grating is in the first state. When the control voltages are applied so as to enable the grating elements 2, 3 and 4 to form the transparent fringes and enable the grating elements 1, 5, 6 and 7 to form the dark fringes, the slits of the grating element group are located at positions corresponding to the grating elements 2, 3 and 4. At this time, the liquid crystal grating is in the second state, and as compared that in the first state, the slits are moved left by a distance of one third of one unit width. When the control voltages are applied so as to enable the grating elements 1, 2 and 3 to form the transparent fringes and enable the grating elements 4, 5, 6 and 7 to form the dark fringes, the slits of the grating element group are located at positions corresponding to the grating elements 1, 2 and 3. At this time, the liquid crystal grating in the third state, and the slits are moved left by a distance of one third of one unit width as compared with that in the second state and moved left by a distance of two thirds of one unit width as compared with that in the first state. When the control voltages are applied so as to enable the grating elements 4, 5 and 6 to form the transparent fringes and enable the grating elements 1, 2, 3 and 7 to form the dark fringes, the slits of the grating element group are located at positions corresponding to the grating elements 4, 5 and 6. At this time, the liquid crystal grating is in a fourth state, and the slits are moved right by a distance of one unit width as compared with that in the third state and moved right by a distance of one third of one unit width as compared with that in the first state. When the control voltages are applied so as to enable the grating elements 5, 6 and 7 to form the transparent fringes and enable the grating elements 1, 2, 3 and 4 to form the dark fringes, the slits of the grating element group are located at positions corresponding to the grating elements 5, 6 and 7. At this time, the liquid crystal grating is in a fifth state, and the slits are moved right by a distance of one third of one unit width as compared with that in the fourth state and moved right by a distance of two thirds of one unit width as compared with that in the first state.

    [0045] As similar to the first embodiment and the third embodiment, the grating element 8 dedicated for forming the dark fringe in the third embodiment has a width greater than one unit width, for example, three unit widths, so as to reduce the number of the grating elements.

    [0046] According to the liquid crystal grating of the present disclosure, the first grating element may be of a width less than one unit width and the slit position of the grating element group may be changed among several first grating elements, so as to move the slits minimally by a distance of one unit width. The grating element may be of a width a half, one third or one quarter of one unit width of the liquid crystal grating, but not limited to those mentioned in the above embodiments. Hence, according to the present disclosure, it is able to precisely move the slits of the liquid crystal grating within one unit width.

    [0047] In addition, referring to Fig.2, each first grating element corresponds to one electrode unit 31, and one second grating element also corresponds to one electrode unit 31. The second grating element dedicated for forming the dark fringe merely includes one electrode unit 31, which may be of a width greater than one unit width. The electrode units 31 of the first grating elements each has a width less than one unit width. According to the present disclosure, the first transparent electrode includes more than two kinds of stripe electrode units with different widths, and these electrode units are arranged alternately and repeatedly. As a result, it is able to reduce the number of the electrodes while ensuring the movable slits.

    [0048] In another aspect, the present disclosure provides a display device including a display panel and the above-mentioned liquid crystal grating.

    [0049] The structure of the liquid crystal grating in the display device may refer to the above description, and it will not be repeated herein. In addition, a person skilled in the art should know the structure of the display device obtained by combining the liquid crystal grating and the display panel. This structure is not an important part of the present disclosure, and thus will not be particularly described herein.

    [0050] In yet another aspect, the present disclosure provides a method for driving the liquid crystal grating, including steps of:

    controlling a first portion of the neighboring grating elements within the first grating elements to be transparent, so as to form the transparent fringes of the grating element group, and controlling the second grating element and a second portion of the grating elements within the first grating elements to be opaque, so as to form the dark fringes of the grating element group, thereby to provide a first state of the liquid crystal grating, wherein the first grating elements consist of the first portion of grating elements and the second portion of grating elements; and

    controlling a third portion of neighboring grating elements within the first grating elements to be transparent, so as to form the transparent fringes of the grating element group, and controlling the second grating element and a fourth portion of grating elements within the first grating elements to be opaque, so as to form the dark fringes of the grating element group, thereby to provide a second state of the liquid crystal grating, wherein the first grating elements consist of the third portion of grating elements and the fourth portion of grating elements, and the first portion of grating elements is different from the third portion of grating elements.



    [0051] By taking the second embodiment shown in Fig.4 as an example, when the control voltages are applied so as to enable the grating elements 2, 3 and 4 to form the transparent fringes and enable the grating elements 1 and 5 to form the dark fringes, the slits of the grating element group are located at positions corresponding to the grating elements 2, 3 and 4. At this time, the liquid crystal grating is in the first state, the grating elements 2, 3 and 4 constitute the first portion of grating elements, and the grating elements 1 and 5 constitute the second portion of grating elements.

    [0052] When the control voltages are applied so as to enable the grating elements 1, 2 and 3 to form the transparent fringes and enable the grating elements 4 and 5 to form the dark fringes, the slits of the grating element group are located at positions corresponding to the grating elements 1, 2 and 3. At this time, the liquid crystal grating is in the second state, the grating elements 1, 2 and 3 constitute the third portion of grating elements, and the grating elements 4 and 5 constitute the fourth portion of grating elements.

    [0053] According to the driving method of the present disclosure, when a driving mode is changed by different control voltage signals, the slit position will be changed so as to change the states of the liquid crystal grating. In different states, the positions of the grating elements for forming the transparent fringes are different for different states, and the positions of the grating elements for forming the dark fringes are different for different states. These positions will be changed along with a change in the driving mode. The first portion of grating elements and the second portion of grating elements indicate the grating elements for forming the transparent fringes and the dark fringes in the first state, respectively, and the third portion of grating elements and the fourth portion of grating elements indicate the grating elements for forming the transparent fringes and the dark fringes in the second state, respectively. The first portion of grating elements is different from the third portion of grating elements, and the second portion of grating elements is different from the fourth portion of grating elements. These portions of grating elements are differentiated from each other so as to illustrate the changes in the grating elements for forming the transparent fringes and the dark fringes when the liquid crystal grating is in two different states.

    [0054] According to the above-mentioned driving method, the slit position of the liquid crystal grating may be adjusted within a predetermined range of the first grating elements. Different portions of grating elements are enabled to be transparent, so as to change the slit position, thereby to form the liquid crystal grating with movable slits. As compared with the prior art, it is able to reduce the number of the electrodes in the liquid crystal grating, thereby to prevent a short circuit and a line defect due to an excessive number of the electrodes.

    [0055] The above are merely the preferred embodiments of the present disclosure. It should be appreciated that, a person skilled in the art may make further modifications and improvements without departing from the principle of the present disclosure, and these modifications and improvements shall also fall within the scope of the present disclosure.


    Claims

    1. A grating element, which is applied in a liquid crystal display device,

    a) the grating element comprising a plurality of grating element groups (Fig. 3: 1,2,3,4,5; Fig. 4: 1,2,3,4,5,6; Fig. 5: 1,2,3,4,5,6,7,8) for forming dark fringes and transparent fringes, each grating element group comprising dark fringes and transparent fringes, the dark fringe of each grating element group being arranged adjacent to a transparent fringe of a neighboring grating element group, wherein

    b) each grating element group comprises a plurality of first grating elements (Fig. 3: 1,2,3,4; Fig. 4: 1,2,3,4,5; Fig. 5: 1,2,3,4,5,6,7) and at least one second grating element (Fig. 3: 5; Fig. 4: 6; Fig. 5: 8) arranged parallel to each other,

    c) at least one of the first grating elements is transparent so as to form the transparent fringe of the grating element group, and different first grating elements are enabled to be transparent so as to change positions of the transparent fringes,

    d) the second grating element is opaque, and the first grating elements and the second grating element that are opaque are used to form the dark fringes of the grating element group,

    e) the second grating element has a width greater than that of each of the first grating elements,

    f) both the transparent fringes and the dark fringes are formed upon orientation of liquid crystal molecules disposed in a liquid crystal layer (50) of the liquid crystal device under the effect of the electric fields created between opposing electrodes (30, 40) of the liquid crystal display device,

    g) wherein, when there are M first grating elements, each of the first grating elements has a width equal to one Nth of the total width of the transparent fringes of the grating element group, where N is an integer less than M and greater than or equal to 2,

    h) wherein all the first grating elements have an identical width.


     
    2. The grating element according to claim 1, wherein there is one second grating element (8), and the second grating element (8) has a width greater than or equal to a total width of the transparent fringes of the grating element group.
     
    3. The grating element according to claim 1 or claim 2, wherein there are four first grating elements (Fig. 3: 1,2,3,4), two neighboring first grating elements are transparent so as to form the transparent fringes of the grating element group, and each of the first grating elements (Fig. 3: 1,2,3,4) has a width equal to a half of the total width of the transparent fringes of the grating element group (Fig. 3: 1,2,3,4,5).
     
    4. The grating element according to claim 1 or claim 2, wherein there are five first grating elements (Fig. 4: 1,2,3,4,5), three neighboring first grating elements are transparent so as to form the transparent fringes of the grating element group, and each of the first grating elements (Fig. 4: 1,2,3,4,5) has a width equal to one third of the total width of the transparent fringes of the grating element group (Fig. 4: 1,2,3,4,5,6).
     
    5. The grating element according to claim 1 or claim 2, wherein there are seven first grating elements (Fig. 5: 1,2,3,4,5,6,7), three neighboring first grating elements are transparent so as to form the transparent fringes of the grating element group, and each of the first grating elements (Fig. 5: 1,2,3,4,5,6,7) has a width equal to one third of the total width of the transparent fringes of the grating element group (Fig. 5: 1,2,3,4,5,6,7,8).
     
    6. The grating element according to any one of claims 1 through 5, wherein the grating element group (Fig.3: 1,2,3,4,5; Fig. 4: 1,2,3,4,5,6; Fig. 5: 1,2,3,4,5,6,7,8) is arranged on the first transparent electrode (30) and consists of a plurality of stripe electrode units (31) arranged parallel to each other, each of the first grating elements corresponds to one electrode unit, and the second grating element (8) also corresponds to one electrode unit.
     
    7. The grating element according to any one of claims 1 through 6, wherein the grating element group (Fig. 3: 1,2,3,4,5; Fig. 4: 1,2,3,4,5,6; Fig. 5: 1,2,3,4,5,6,7,8) is defined as one grating pitch.
     
    8. A liquid crystal display device, comprising:

    i) a display panel; and

    ii) the display device further comprising the grating element according to any one of claims 1 through 7.


     
    9. A method for driving the grating element according to any one of claims 1 through 7, the method comprising the steps of:

    a) controlling a first portion of neighboring grating elements within the first grating elements (Fig. 3: 1,2,3,4; Fig. 4: 1,2,3,4,5; Fig. 5: 1,2,3,4,5,6,7) to be transparent, so as to form the transparent fringes of the grating element group (Fig. 3: 1,2,3,4,5; Fig. 4: 1,2,3,4,5,6; Fig. 5: 1,2,3,4,5,6,7,8), and controlling the second grating element (8) and a second portion of grating elements within the first grating elements to be opaque, so as to form the dark fringes of the grating element group, thereby to provide a first state of the grating element, wherein the first grating elements consist of the first portion of grating elements and the second portion of grating elements; and

    b) controlling a third portion of neighboring grating elements within the first grating elements to be transparent, so as to form the transparent fringes of the grating element group (Fig. 3: 1,2,3,4,5; Fig. 4: 1,2,3,4,5,6; Fig. 5: 1,2,3,4,5,6,7,8), and controlling the second grating element (8) and a fourth portion of grating elements within the first grating elements to be opaque, so as to form the dark fringes of the grating element group, thereby to provide a second state of the liquid crystal grating, wherein the first grating elements consist of the third portion of grating elements and the fourth portion of grating elements, and the first portion of grating elements is different from the third portion of grating elements.


     


    Ansprüche

    1. Gitterelement, das bei einer Flüssigkristall-Anzeigevorrichtung angewendet wird,

    a) wobei das Gitterelement eine Vielzahl von Gitterelementgruppen (Fig. 3: 1, 2, 3, 4, 5; Fig. 4: 1, 2, 3, 4, 5, 6; Fig. 5: 1, 2, 3, 4, 5, 6, 7, 8) zur Bildung dunkler Ränder und transparenter Ränder umfasst, wobei jede Gitterelementgruppe dunkle Ränder und transparente Ränder umfasst, wobei der dunkle Rand jeder Gitterelementgruppe angrenzend an einen transparenten Rand einer benachbarten Gitterelementgruppe eingerichtet ist, wobei

    b) jede Gitterelementgruppe eine Vielzahl von ersten Gitterelementen (Fig. 3: 1, 2, 3, 4; Fig. 4: 1, 2, 3, 4, 5; Fig. 5: 1, 2, 3, 4, 5, 6, 7) und mindestens ein zweites Gitterelement (Fig. 3: 5; Fig. 4: 6; Fig. 5: 8) umfasst, die parallel zueinander eingerichtet sind,

    c) mindestens eines der ersten Gitterelemente transparent ist, um so den transparenten Rand der Gitterelementgruppe zu bilden, und verschiedene erste Gitterelemente freigegeben werden, um transparent zu sein, um so Positionen der transparenten Ränder zu ändern,

    d) das zweite Gitterelement opak ist, und die ersten Gitterelemente und das zweite Gitterelement, die opak sind, verwendet werden, um die dunklen Ränder der Gitterelementgruppe zu bilden,

    e) das zweite Gitterelement eine Breite aufweist, die größer ist als jene der ersten Gitterelemente,

    f) sowohl die transparenten Ränder als auch die dunklen Ränder bei der Orientierung von Flüssigkristallmolekülen gebildet werden, welche in einer Flüssigkristallschicht (50) der Flüssigkristallvorrichtung unter dem Effekt der elektrischen Felder angeordnet werden, die zwischen gegenüberliegenden (30, 40) der Flüssigkristall-Anzeigevorrichtung erzeugt werden,

    g) wobei, wenn M erste Gitterelemente vorhanden sind, jedes der ersten Gitterelemente eine Breite gleich einem Ntel der gesamten Breite der transparenten Ränder der Gitterelementgruppe aufweist, wobei N eine ganze Zahl kleiner M und größer oder gleich 2 ist,

    h) wobei alle ersten Gitterelemente eine identische Breite aufweisen.


     
    2. Gitterelement nach Anspruch 1, wobei ein zweites Gitterelement (8) vorhanden ist, und das zweite Gitterelement (8) eine Breite größer oder gleich einer gesamten Breite der transparenten Ränder der Gitterelementgruppe aufweist.
     
    3. Gitterelement nach Anspruch 1 oder Anspruch 2, wobei vier erste Gitterelemente (Fig. 3: 1, 2, 3, 4) vorhanden sind, zwei benachbarte erste Gitterelemente transparent sind, um so die transparenten Ränder der Gitterelementgruppe zu bilden, und jedes der ersten Gitterelemente (Fig. 3: 1, 2, 3, 4) eine Breite gleich einer Hälfte der gesamten Breite der transparenten Ränder der Gitterelementgruppe (Fig. 3: 1, 2, 3, 4, 5) aufweist.
     
    4. Gitterelement nach Anspruch 1 oder Anspruch 2, wobei fünf erste Gitterelemente (Fig. 4: 1, 2, 3, 4, 5) vorhanden sind, drei benachbarte erste Gitterelemente transparent sind, um so die transparenten Ränder der Gitterelementgruppe zu bilden, und jedes der ersten Gitterelemente (Fig. 4: 1, 2, 3, 4, 5) eine Breite gleich einem Drittel der gesamten Breite der transparenten Ränder der Gitterelementgruppe (Fig. 4: 1, 2, 3, 4, 5, 6) aufweist.
     
    5. Gitterelement nach Anspruch 1 oder Anspruch 2, wobei sieben erste Gitterelemente (Fig. 5: 1, 2, 3, 4, 5, 6, 7) vorhanden sind, drei benachbarte erste Gitterelemente transparent sind, um so die transparenten Ränder der Gitterelementgruppe zu bilden, und jedes der ersten Gitterelemente (Fig. 5: 1, 2, 3, 4, 5, 6, 7) eine Breite gleich einem Drittel der gesamten Breite der transparenten Ränder der Gitterelementgruppe (Fig. 5: 1, 2, 3, 4, 5, 6, 7, 8) aufweist.
     
    6. Gitterelement nach einem der Ansprüche 1 bis 5, wobei die Gitterelementgruppe (Fig. 3: 1, 2, 3, 4, 5; Fig. 4: 1, 2, 3, 4, 5, 6; Fig. 5: 1, 2, 3, 4, 5, 6, 7, 8) auf der ersten transparenten Elektrode (30) eingerichtet ist und aus einer Vielzahl von Streifenelektrodeneinheiten (31) gebildet ist, die parallel zueinander eingerichtet sind, wobei jedes der ersten Gitterelemente einer Elektrodeneinheit entspricht, und das zweite Gitterelement (8) auch einer Elektrodeneinheit entspricht.
     
    7. Gitterelement nach einem der Ansprüche 1 bis 6, wobei die Gitterelementgruppe (Fig. 3: 1, 2, 3, 4, 5; Fig. 4: 1, 2, 3, 4, 5, 6; Fig. 5: 1, 2, 3, 4, 5, 6, 7, 8) als ein Gitterabstand definiert ist.
     
    8. Flüssigkristall-Anzeigevorrichtung, umfassend:

    i) ein Anzeigefeld; und

    ii) wobei die Anzeigevorrichtung ferner das Gitterelement nach einem der Ansprüche 1 bis 7 umfasst.


     
    9. Verfahren zum Ansteuern des Gitterelements nach einem der Ansprüche 1 bis 7, wobei das Verfahren die Schritte umfasst:

    a) Steuern eines ersten Abschnitts benachbarter Gitterelemente innerhalb der ersten Gitterelemente (Fig. 3: 1, 2, 3, 4; Fig. 4: 1, 2, 3, 4, 5; Fig. 5: 1, 2, 3, 4, 5, 6, 7), um transparent zu sein, um so die transparenten Ränder der Gitterelementgruppe (Fig. 3: 1, 2, 3, 4, 5; Fig. 4: 1, 2, 3, 4, 5, 6; Fig. 5: 1, 2, 3, 4, 5, 6, 7, 8) zu bilden, und Steuern des zweiten Gitterelements (8) und eines zweiten Abschnitts von Gitterelementen innerhalb der ersten Gitterelemente, um opak zu sein, um so die dunklen Ränder der Gitterelementgruppe zu bilden, um dadurch einen ersten Zustand des Gitterelements bereitzustellen, wobei das erste Gitterelement aus dem ersten Abschnitt von Gitterelementen und dem zweiten Abschnitt von Gitterelementen besteht; und

    b) Steuern eines dritten Abschnitts benachbarter Gitterelemente innerhalb der ersten Gitterelemente, um transparent zu sein, um so die transparenten Ränder der Gitterelementgruppe (Fig. 3: 1, 2, 3, 4, 5; Fig. 4: 1, 2, 3, 4, 5, 6; Fig. 5: 1, 2, 3, 4, 5, 6, 7, 8) zu bilden, und Steuern des zweiten Gitterelements (8) und eines vierten Abschnitts von Gitterelementen innerhalb der ersten Gitterelemente, um opak zu sein, um so die dunklen Ränder der Gitterelementgruppe zu bilden, um dadurch einen zweiten Zustand des Flüssigkristallgitters bereitzustellen, wobei das erste Gitterelement aus dem dritten Abschnitt von Gitterelementen und dem vierten Abschnitt von Gitterelementen besteht, und der erste Abschnitt von Gitterelementen von dem dritten Abschnitt von Gitterelementen verschieden ist.


     


    Revendications

    1. Élément de réseau, qui est appliqué dans un dispositif d'affichage à cristaux liquides,

    a) l'élément de réseau comprenant une pluralité de groupes d'éléments de réseau (Fig. 3 : 1,2,3,4,5 ; Fig. 4 : 1,2,3,4,5,6 ; Fig. 5 : 1,2,3,4,5,6,7,8) pour former des franges sombres et des franges transparentes, chaque groupe d'éléments de réseau comprenant des franges sombres et des franges transparentes, la frange sombre de chaque groupe d'éléments de réseau étant disposée de façon adjacente à une frange transparente d'un groupe d'éléments de réseau voisin, dans lequel

    b) chaque groupe d'éléments de réseau comprend une pluralité de premiers éléments de réseau (Fig. 3 : 1,2,3,4 ; Fig. 4 : 1,2,3,4,5 ; Fig. 5 : 1,2,3,4,5,6,7) et au moins un deuxième élément de réseau (Fig. 3 : 5 ; Fig. 4 : 6 ; Fig. 5 : 8) disposés parallèlement les uns aux autres,

    c) au moins un des premiers éléments de réseau est transparent de manière à former la frange transparente du groupe d'éléments de réseau, et différents premiers éléments de réseau sont autorisés à être transparents de manière à modifier des positions des franges transparentes,

    d) le deuxième élément de réseau est opaque, et les premiers éléments de réseau et le deuxième élément de réseau qui sont opaques sont utilisés pour former les franges sombres du groupe d'éléments de réseau,

    e) le deuxième élément de réseau a une largeur supérieure à celle de chacun des premiers éléments de réseau,

    f) à la fois les franges transparentes et les franges sombres sont formées lors de l'orientation de molécules de cristaux liquides disposées dans une couche de cristaux liquides (50) du dispositif à cristaux liquides sous l'effet des champs électriques créés entre des électrodes opposées (30, 40) du dispositif d'affichage à cristaux liquides,

    g) dans lequel, quand il y a M premiers éléments de réseau, chacun des premiers éléments de réseau a une largeur égale à un Nième de la largeur totale des franges transparentes du groupe d'éléments de réseau, où N est un entier inférieur à M et supérieur ou égal à 2,

    h) dans lequel tous les premiers éléments de réseau ont une largeur identique.


     
    2. Élément de réseau selon la revendication 1, dans lequel il y a un deuxième élément de réseau (8), et le deuxième élément de réseau (8) a une largeur supérieure ou égale à une largeur totale des franges transparentes du groupe d'éléments de réseau.
     
    3. Élément de réseau selon la revendication 1 ou la revendication 2, dans lequel il y a quatre premiers éléments de réseau (Fig. 3 : 1,2,3,4), deux premiers éléments de réseau voisins sont transparents de manière à former les franges transparentes du groupe d'éléments de réseau, et chacun des premiers éléments de réseau (Fig. 3 : 1,2,3,4) a une largeur égale à une moitié de la largeur totale des franges transparentes du groupe d'éléments de réseau (Fig. 3 : 1,2,3,4,5).
     
    4. Élément de réseau selon la revendication 1 ou la revendication 2, dans lequel il y a cinq premiers éléments de réseau (Fig. 4 : 1,2,3,4,5), trois premiers éléments de réseau voisins sont transparents de manière à former les franges transparentes du groupe d'éléments de réseau, et chacun des premiers éléments de réseau (Fig. 4 : 1,2,3,4,5) a une largeur égale à un tiers de la largeur totale des franges transparentes du groupe d'éléments de réseau (Fig. 4 : 1,2,3,4,5,6).
     
    5. Élément de réseau selon la revendication 1 ou la revendication 2, dans lequel il y a sept premiers éléments de réseau (Fig. 5 : 1,2,3,4,5,6,7), trois premiers éléments de réseau voisins sont transparents de manière à former les franges transparentes du groupe d'éléments de réseau, et chacun des premiers éléments de réseau (Fig. 5 : 1,2,3,4,5,6,7) a une largeur égale à un tiers de la largeur totale des franges transparentes du groupe d'éléments de réseau (Fig. 5 : 1,2,3,4,5,6,7,8).
     
    6. Élément de réseau selon l'une quelconque des revendications 1 à 5,
    dans lequel le groupe d'éléments de réseau (Fig. 3 : 1,2,3,4,5 ; Fig. 4 : 1,2,3,4,5,6 ; Fig. 5 : 1,2,3,4,5,6,7,8) est disposé sur la première électrode transparente (30) et consiste en une pluralité d'unités d'électrode en bandes (31) disposées parallèlement les unes aux autres, chacun des premiers éléments de réseau correspond à une unité d'électrode, et le deuxième élément de réseau (8) correspond également à une unité d'électrode.
     
    7. Élément de réseau selon l'une quelconque des revendications 1 à 6, dans lequel le groupe d'éléments de réseau (Fig. 3 : 1,2,3,4,5 ; Fig. 4 : 1,2,3,4,5,6 ; Fig. 5 : 1,2,3,4,5,6,7,8) est défini comme un pas de réseau.
     
    8. Dispositif d'affichage à cristaux liquides, comprenant :

    i) un panneau d'affichage ; et

    ii) le dispositif d'affichage comprenant en outre l'élément de réseau selon l'une quelconque des revendications 1 à 7.


     
    9. Procédé de commande de l'élément de réseau selon l'une quelconque des revendications 1 à 7, le procédé comprenant les étapes de :

    a) contrôle d'une première partie d'éléments de réseau voisins au sein des premiers éléments de réseau (Fig. 3 : 1,2,3,4 ; Fig. 4 : 1,2,3,4,5 ; Fig. 5 : 1,2,3,4,5,6,7) pour qu'ils soient transparents, de manière à former les franges transparentes du groupe d'éléments de réseau (Fig. 3 : 1,2,3,4,5 ; Fig. 4 : 1,2,3,4,5,6 ; Fig. 5 : 1,2,3,4,5,6,7,8), et contrôle du deuxième élément de réseau (8) et d'une deuxième partie d'éléments de réseau au sein des premiers éléments de réseau pour qu'ils soient opaques, de manière à former les franges sombres du groupe d'éléments de réseau, pour obtenir ainsi un premier état de l'élément de réseau, les premiers éléments de réseau consistant en la première partie d'éléments de réseau et la deuxième partie d'éléments de réseau ; et

    b) contrôle d'une troisième partie d'éléments de réseau voisins au sein des premiers éléments de réseau pour qu'ils soient transparents, de manière à former les franges transparentes du groupe d'éléments de réseau (Fig. 3 : 1,2,3,4,5 ; Fig. 4 : 1,2,3,4,5,6 ; Fig. 5 : 1,2,3,4,5,6,7,8), et contrôle du deuxième élément de réseau (8) et d'une quatrième partie d'éléments de réseau au sein des premiers éléments de réseau pour qu'ils soient opaques, de manière à former les franges sombres du groupe d'éléments de réseau, pour obtenir ainsi un deuxième état du réseau à cristaux liquides, les premiers éléments de réseau consistant en la troisième partie d'éléments de réseau et la quatrième partie d'éléments de réseau, et la première partie d'éléments de réseau étant différente de la troisième partie d'éléments de réseau.


     




    Drawing











    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description