(19)
(11) EP 3 439 328 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
06.05.2020 Bulletin 2020/19

(21) Application number: 17184094.5

(22) Date of filing: 31.07.2017
(51) International Patent Classification (IPC): 
H04R 5/04(2006.01)

(54)

AUDIO PLAYBACK SYSTEM AND AUDIO PLAYBACK METHOD

AUDIOABSPIELSYSTEM UND AUDIOABSPIELVERFAHREN

SYSTÈME DE LECTURE AUDIO ET PROCÉDÉ DE LECTURE AUDIO


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43) Date of publication of application:
06.02.2019 Bulletin 2019/06

(73) Proprietor: Vestel Elektronik Sanayi ve Ticaret A.S.
45030 Manisa (TR)

(72) Inventor:
  • KIRAZ, Alp
    45030 Manisa (TR)

(74) Representative: Ascherl, Andreas et al
KEHL, ASCHERL, LIEBHOFF & ETTMAYR Patentanwälte - Partnerschaft Emil-Riedel-Strasse 18
80538 München
80538 München (DE)


(56) References cited: : 
EP-A1- 2 816 823
US-A- 5 631 850
JP-A- H0 652 664
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The invention relates to an audio playback system. Further, the invention relates to a respective audio playback method.

    BACKGROUND



    [0002] Although applicable to any audio system, the present invention will mainly be described in conjunction with a two-tier audio system, where an audio source is connected via multiple channels to an audio sink.

    [0003] Modern audio equipment usually comprises a plurality of channel, e.g. two channels for stereo audio or more channels for multi-channel audio, like e.g. in a home cinema setup with 5 or more channels.

    [0004] Depending on the type of audio equipment, single cables may be provided from an audio source to an audio sink for the single channels. This means that with a 5 channel system, the user needs to connect 5 cables when installing the audio equipment. With stereo setup two cables need to be connected by the user.

    [0005] If the user is inexperienced or is in a hurry, he may switch some of the cables when connecting the audio source to the audio sink. Inexperienced users will probably not notice this and simply feel that the audio equipment sounds strange or has a poor quality.

    [0006] Document EP 2 816 823 A1 discloses an audio system with a channel mapping method, where test signals are provided to the single sound output apparatuses. Document US 5,631,850 discloses a method for detecting an erroneous connection of a VCR and a laser disc player to a receiver. Document JP H06 52664 A discloses a method for initializing audio/video equipment by supplying stored control codes to the equipment from a control device.

    [0007] There is a need for handling switched audio channels in audio equipment.

    SUMMARY OF THE INVENTION



    [0008] The above mentioned problem is solved with the features of the independent claims.

    [0009] The present invention is based on the finding that it may be difficult for a user to notice that in the connection of an audio source to an audio sink audio channels may be switched. Therefore, the present invention provides an automatic detection and handling of switched channels in audio equipment with discrete connections for the single channels.

    [0010] An audio source may be any kind of device that is capable of providing low power audio signals. "Low power" in this regard refers to the audio signals comprising signal levels that may represent the audio content but are not sufficiently high to directly drive high power speakers. Such audio sources may e.g. comprise DVD players, Bluray players, CD players, vinyl record players or the like.

    [0011] The audio sink in contrast may be any type of device that receives the audio signals provided by the audio source. Such devices may typically be pre-amplifiers or amplifiers, or any type of recording device.

    [0012] The audio sink may comprise e.g. two or more audio input channels, e.g. represented by dedicated connectors like RCA connectors or the like. These dedicated audio input channels may be connected by respective cables to the audio output channels of the audio source.

    [0013] If the user confounds the connectors of the audio output channels or the audio input channels, the sound may be played by the audio sink over the wrong speakers.

    [0014] The present invention therefore provides the audio source and the audio sink with the ability to automatically assign the output channels to the correct input channels.

    [0015] To this end the audio source may output individual channel test signals on every one of the audio output channels. The individual channel test signals are uniquely assigned to every one of the audio output channels and therefore allow uniquely identifying the single audio output channels.

    [0016] The audio sink in contrast may analyze for every audio input channel if one of the individual channel test signals is present on the audio input channel. The audio sink may then verify if the correct individual channel test signal is received on the respective audio input channels. The audio sink may e.g. know individual channel test signals, i.e. the individual channel test signals may be predetermined for the audio source and the audio sink. Based on this analysis the audio sink may then internally map the audio input channels to respective ones of the output channels. This means that the signal received on an audio input channel is output on the respectively mapped output channel.

    [0017] In case of an audio sink that plays the audio to a user, the audio sink may e.g. suppress audio output while analyzing the individual channel test signals. If the audio input channels are correctly connected to the audio source, the signal sink may start playing the audio signals. Otherwise, the audio sink may first map the audio input channels to the output channels and then start playing the audio signal to the user.

    [0018] It is understood, that the output channels may be physical channels, like e.g. high power speaker output channels. The output channels may however also be internal channels of the audio sink. If for example the audio sink is a recording device, the output channels may refer to channels on a recording medium.

    [0019] The audio source may for example be a DVD player that provides a discrete 5.1 signal, with 5 directional speakers and one subwoofer. In this case six cables are required to connect the audio source to the audio sink. The audio source may therefore provide six different individual channel test signals, i.e. one on every channel. The audio sink will then analyze the signals received via the audio input channels and perform the respective mapping.

    [0020] The audio sink may e.g. receive the correct or expected signals on every audio input channel. This means that the audio source and the audio sink are correctly wired. The audio sink may however for example receive the individual channel test signals of the left front speaker on the audio input channel of the right front speaker and vice versa. This means that the cables for the front speakers are switched. Via the internal mapping the audio sink may however correct this wrong cabling and output the signals received via the audio input channel for the left front speaker on the output channel of the right front speaker and vice versa.

    [0021] With the present invention setting up audio equipment is therefore greatly simplified and erroneous cabling between audio sources and audio sinks may not only be detected but maybe automatically corrected without any user interaction.

    [0022] Further embodiments of the present invention are subject of the further subclaims and of the following description, referring to the drawings.

    [0023] In an embodiment, the audio source may comprise a connection detector configured to detect a connection of a cable to the audio output channels based on an electric resistance measurement or based on a switching signal.

    [0024] The connection detector may e.g. comprise a measurement device for measuring a resistance between the single connection elements, e.g. pins, of the connectors of the single audio output channels. Such a device may e.g. be a current source combined with a voltage measurement device, e.g. an output pin of a microcontroller that provides a specific output current and an analog to digital converter of the microcontroller that measures the voltage over the single connection elements to determine the resistance. It is understood, that this microcontroller based implementation is just an example and that other implementations are possible.

    [0025] A switching signal may e.g. be generated in the connector of the respective audio output channel. For example the connector may comprise a mechanical switch. It is however also possible that one connection element comprises two separate conductive sections that are electrically connected to each other when a counterpart is inserted into the connector. This arrangement may especially be used e.g. with the ground connection element. The electrical connection between the two sections may then e.g. be detected simply by connecting one section with a high signal level and evaluating the signal level of the second section. If for example the first section is provided with a 5 V signal, the second section will comprise a 0 V signal level until a counter part is inserted into the connector and the two segments are connected to each other. Then the second segment will also comprise the 5 V signal level.

    [0026] In another embodiment, the audio source may comprise a test signal generator that is coupled to the audio output channels and that is configured to provide the individual channel test signals to the audio output channels after the connection of a cable is detected.

    [0027] The test signal generator may comprise any type of signal generation means. The test signal generator may e.g. be integrated into the output signal chain of the audio source and may e.g. make use of amplifiers, filter and/or attenuators provided in this output signal chain. The test signal generator may e.g. be implemented in a central control device or a signal processor of the audio source. The test signal generator may e.g. be software function implemented on that processor.

    [0028] The signal generator may however also be a dedicated device, like e.g. a microcontroller with a respective programming or even an analogue oscillation device.

    [0029] In an embodiment, the test signal generator may comprise a configurable oscillator configured to output a number of individual channel test signals each individual channel test signal comprising a predetermined frequency, especially a frequency higher than 20 kHz, especially 25 kHz or 30 kHz.

    [0030] The individual channel test signals may e.g. be simple sinusoidal or continuous wave signals like e.g. square wave signals. The signals need not necessarily be sinusoidal, such as e.g. signals that are output by an oscillating pin of a microcontroller that will be square-wave-like.

    [0031] Using frequencies in the frequency range above 20 kHz, like e.g. 25 kHz or 30 kHz is beneficial, since these frequencies are above the frequency range that may be heard by the human ear. This means that the individual channel test signals may be provided to an audio sink that is already driving its speakers, but the user will not hear any fragment of the individual channel test signals.

    [0032] This allows using the audio source with audio sinks that are not adapted according to the present invention without causing the user any annoyance. Any audio sink that is adapted according to the present invention will however be capable of analyzing the provided individual channel test signals and mapping the output channels accordingly.

    [0033] It is understood, that any other form of signals than the above describes may also be provided by the configurable oscillator.

    [0034] In a further embodiment, the configurable oscillator may be configured to output for every audio output channel an individual channel test signal starting with a predetermined one of the audio output channels and increasing or decreasing the frequency for the further audio output channels by a predetermined frequency step clock-wise or counter-clockwise based on the intended position of the audio output channels.

    [0035] One specific audio output channel, i.e. intended speaker, may be selected as the starting speaker. This audio output channel may be assigned the individual channel test signal with the lowest or alternatively the highest frequency. All other speakers may then automatically be identified by the increasing frequencies of the individual channel test signals. As example, the lowest frequency may e.g. be 20 kHz and the steps may increase the frequency by 2 kHz for each step.

    [0036] This means that the audio source and the audio sink only need to agree on the first speaker and the order in which the individual speakers are identified by individual channel test signals with increasing frequencies. This may e.g. be preconfigured in the audio sink and the audio source. The audio sink and the audio source however need not necessarily agree on specific signals or specific frequencies with this scheme.

    [0037] In for example 5.1 audio systems, i.e. with five directional speakers and 1 subwoofer, the front center speaker may be the first speaker. The sequence of the speakers may be defined clock-wise. This means that the front right speaker is the second speaker, the rear right speaker is the third speaker, the rear left speaker is the fourth speaker and the front left speaker is the fifth speaker.

    [0038] The first speaker may then be identified by the individual channel test signal with the lowest frequency. The second speaker by the individual channel test signal with the second lowest frequency. The third speaker by the individual channel test signal with the third lowest frequency. The fourth speaker by the individual channel test signal with the fourth lowest frequency. Finally, the fifth speaker by the individual channel test signal with the fifth lowest or highest frequency.

    [0039] It is understood that the above example may also be used with a counter-clock wise sequence and/or with descending frequencies.

    [0040] In an embodiment, the audio source may be configured to output the individual channel test signals for a first predetermined amount of time after the connection of a cable to the output channels is detected, and especially for a second predetermined amount of time after a connection of the cables on the other ends to the audio sink is detected.

    [0041] As explained above, the audio sink may detect via different methods, if the cables and the audio sink are connected to the audio source. For example, the switching signal may be used to detect connection of a connector only. The resistance measurement may be used to detect the connection of the audio sink on the other end. The audio source may therefore determine if only a cable or a cable and an audio sink are connected to the single audio output channels.

    [0042] The audio source, e.g. the test signal generator, may provide the individual channel test signals only for a first predetermined amount of time after a connection of a cable is detected. This may reduce the interference of the individual channel test signals with any other signal or other elements of the audio source and the audio sink.

    [0043] The audio source may however at least provide the individual channel test signals for a second predetermined amount of time after the audio sink is connected to the cables. If the cables are first connected to the audio sink and then to the audio source, the first predetermined amount of time and the second predetermined amount of time may be the same.

    [0044] The audio source may e.g. delay outputting the audio signal until no individual channel test signals are output any more. It is however also possible for the audio source to overlay the audio signals with the individual channel test signals, especially if these are in the non-audible frequency range.

    [0045] In another embodiment, the audio sink may comprise a signal analyzer that is configured to analyze signals received on the audio input channels for the presence of the individual channel test signals.

    [0046] The signal analyzer may e.g. comprise a counter that counts the time intervals between zero-crossings of the received individual channel test signals. Any other method of determining the respective frequencies is also possible.

    [0047] The signal analyzer may e.g. also comprise filters and attenuators that allow filtering or separating the individual channel test signals from other signals, e.g. audio signals, received on the audio input channels. Especially with individual channel test signals that comprise a frequency range that is higher than the frequency range of the audio signals, this allows clearly separating audio signals and individual channel test signals.

    [0048] It is understood, that the signal analyzer may be implemented in hardware, e.g. with a counter, as explained above. As alternative, the signal analyzer may also be implemented at least in part in software. For example, a timer unit with e.g. a capture compare function of a microcontroller may also be used.

    [0049] In an embodiment, the audio sink may comprise a switching matrix that is configured to controllably couple individual audio input channels to specific ones of the output channels.

    [0050] The switching matrix may be a hardware based switching matrix, e.g. comprising transistors, like e.g. MOSFETs or the like, as switches. A single switch may be provided from every audio input channel to every output channel. Further, safety elements may be provided that allow driving only one switch per audio input channel at a time. This prevents one audio input channel from being coupled to a plurality of output channels at the same time.

    [0051] It is understood, that the switching matrix may also be digitally implemented. The signals on the audio input channels may e.g. be converted into digital data, e.g. via analog-to-digital converters. A processor, e.g. a digital signal processor, may then perform the mapping of the digital data streams of the single audio input channels to the different output channels.

    [0052] It is understood, that a processor may also perform general control of the functions of the audio sink, like e.g. analyzing the frequencies of the individual channel test signals, suppressing audio output, controlling the switching matrix and starting the audio output.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0053] For a more complete understanding of the present invention and advantages thereof, reference is now made to the following description taken in conjunction with the accompanying drawings. The invention is explained in more detail below using exemplary embodiments, which are specified in the schematic figures of the drawings, in which:

    Fig. 1 shows a block diagram of an embodiment of an audio playback system according to the present invention;

    Fig. 2 shows a block diagram of another embodiment of an audio playback system according to the present invention; and

    Fig. 3 shows a flow diagram of an embodiment of an audio playback method according to the present invention.



    [0054] In the figures like reference signs denote like elements unless stated otherwise.

    DETAILED DESCRIPTION OF THE DRAWINGS



    [0055] Fig. 1 shows a block diagram of an audio playback system 100. The audio playback system 100 comprises an audio source 103 and an audio sink 106. The audio source 103 comprises a number of audio output channels 104, 105, wherein only two are explicitly shown and more are hinted at by three dots. It is understood, that the audio source 103 may comprise any number of audio output channels 104, 105, but will at least comprise two audio output channels 104, 105. In Fig. 1 audio content 101, 102 is shown for the two audio output channels 104, 105.

    [0056] The audio sink 106 comprises a number of audio input channels 107, 108, wherein only two are explicitly shown and more are hinted at by three dots. It is understood, that the audio sink 106 may comprise any number of audio input channels 107, 108, but will at least comprise two audio input channels 107, 108. It is further understood, that the number of audio output channels 104, 105 need no necessarily be the same as the number of audio input channels 107, 108. The audio input channels 107, 108 may be coupled to output channels 109, 110 that serve to output the audio content 101, 102.

    [0057] The audio output channels 104, 105 may be coupled to the audio input channels 107, 108 via cables 113, 114 that each comprise a connector 115, 116 on their first end and a connector 117, 118 on their second end.

    [0058] The connectors 115, 116 may be connected to the audio output channels 104, 105. When the connectors 115, 116 are inserted into the respective receptacles of the audio output channels 104, 105, this may be detected in the audio source 103. The audio source 103 may then start providing individual channel test signals 111, 112 to the audio output channels 104, 105.

    [0059] If the connectors 117, 118 are connected to the audio input channels 107, 108, the individual channel test signals 111, 112 will be transmitted to the audio input channels 107, 108 and the audio sink 106 may analyze the signals received on the audio input channels 107, 108 to detect the individual channel test signals 111, 112.

    [0060] Since the individual channel test signals 111, 112 uniquely identify the respective audio output channels 104, 105, the audio sink 106 may determine, if the cables 113, 114, i.e. the connectors 117, 118, are correctly connected, e.g. by comparing the received individual channel test signals 111, 112 with signals stored in the audio sink or at least with parameters, like e.g. a frequency. If they are e.g. interchanged or swapped, the audio sink 106 may map the audio input channels 107, 108 to the correct output channels 109, 110. The audio content 101, 102 will therefore still be played through the correct output channels 109, 110.

    [0061] It is understood, that the audio source 103 may e.g. suppress playback or output of the audio content 101, 102. The audio source 103 may e.g. output the individual channel test signals 111, 112 for a first predetermined amount of time, e.g. 1 s - 10s, after the connection of a cable 113, 114 to the output channels 109, 110 is detected. The audio source 103 may further output the individual channel test signals 111, 112 for a second predetermined amount of time, e.g. 1 s, 2 s, 3 s, 5 s or more after a connection of the cables 113, 114 on the other ends to the audio sink 106 is detected.

    [0062] Fig. 2 shows a block diagram of another audio playback system 200. The audio playback system 200 is based on the audio playback system 100 and therefore also comprises the audio source 203 with a plurality of audio output channels 204, 205, and the audio sink 206 with a plurality of audio input channels 207, 208 and output channels 209, 210.

    [0063] In addition, the audio source 203 comprises a connection detector 220 that evaluates a switching signal 221 to detect if the connectors 215, 216 are inserted into the receptacles of the audio output channels 204, 205. Although only shown for the audio output channel 204, it is understood, that the connection detector 220 may evaluate switching signals 221 for all audio output channels 204, 205. The switching signal 221 may be generated by two conductive segments or sections in the receptacle of the audio output channel 204 that are electrically isolated from each other. When the connector 115 is inserted into the receptacle, the two sections are bridged and current may flow. This current flow may be detected as the switching signal 221.

    [0064] The audio source 203 further comprises a test signal generator 222 that is coupled to the audio output channels 204, 205. The test signal generator 222 generates and provides the individual channel test signals 211, 212 to the audio output channels 204, 205 after the connection of a cable 213, 214 is detected. The test signal generator 222 comprises a configurable oscillator 223 for generating the individual channel test signals 211, 212. The configurable oscillator 223 then outputs the individual channel test signals 211, 212 to the audio output channels 204, 205.

    [0065] The configurable oscillator 223 may generate the individual channel test signals 211, 212 comprising a predetermined frequency, especially a frequency higher than 20 kHz, especially 25 kHz or 30 kHz. The configurable oscillator 223 may e.g. output for every audio output channel 204, 205 an individual channel test signal 211, 212 starting with a predetermined frequency for a predetermined one of the audio output channels 204, 205 and increasing or decreasing the frequency for the further audio output channels 204, 205 by a predetermined frequency step clock-wise or counter-clockwise based on the intended position of the audio output channels 204, 205.

    [0066] The audio sink 206 comprises a signal analyzer 225 that analyzes the signals received on the audio input channels 207, 208 for the presence of the individual channel test signals 211, 212. The signal analyzer 225 is coupled to a switching matrix 226 that controllably couples individual audio input channels 207, 208 to specific ones of the output channels 209, 210. Based on the analysis results of the signals received on the audio input channels 207, 208, the signal analyzer 225 may control the switching matrix 226 to individually couple in each case one of the audio input channels 207, 208 to the respective output channel 209, 210.

    [0067] For sake of clarity in the following description of the method based Fig. 3 the reference signs used above in the description of apparatus based Figs. 1 and 2 will be maintained.

    [0068] Fig. 3 shows a flow diagram of an audio playback method for playing back audio content 101, 102 with an audio source 103, 203 comprising a number of audio output channels 104, 105, 204, 205, and an audio sink 106, 206 comprising a number of audio input channels 107, 108, 207, 208 and a corresponding number of output channels 109, 110, 209, 210.

    [0069] The audio playback method comprises outputting S1 individual channel test signals 111, 112, 211, 212 on every audio output channel 104, 105, 204, 205 upon connection of a cable 113, 114, 213, 214 to the audio output channels 104, 105, 204, 205, analyzing S2 signals received on the audio input channels 107, 108, 207, 208 for the presence of the individual channel test signals 111, 112, 211, 212, and mapping S3 the audio input channels 107, 108, 207, 208 to respective ones of the output channels 109, 110, 209, 210 based on the analysis of the individual channel test signals 111, 112, 211, 212.

    [0070] The audio playback method may comprise detecting a connection of a cable 113, 114, 213, 214 to the audio output channels 104, 105, 204, 205 based on an electric resistance measurement or based on a switching signal 221. The method may further comprise providing the individual channel test signals 111, 112, 211, 212 to the audio output channels 104, 105, 204, 205 after the connection of a cable 113, 114, 213, 214 is detected.

    [0071] Providing the individual channel test signals 111, 112, 211, 212 may comprise outputting a number of individual channel test signals 111, 112, 211, 212, each individual channel test signal 111, 112, 211, 212 comprising a predetermined frequency, especially a frequency higher than 20 kHz, especially 25 kHz or 30 kHz. The individual channel test signal 111, 112, 211, 212 of a starting audio output channel 104, 105, 204, 205 may comprise a predetermined frequency and the frequency of the individual channel test signals 111, 112, 211, 212 for the further audio output channels 104, 105, 204, 205 may increase or decrease by a predetermined frequency step clock-wise or counter-clockwise based on the intended position of the audio output channels 104, 105, 204, 205.

    [0072] The audio playback method may comprise outputting the individual channel test signals 111, 112, 211, 212 for a first predetermined amount of time after the connection of a cable 113, 114, 213, 214 to the output channels 109, 110, 209, 210 is detected, and especially for a second predetermined amount of time after a connection of the cables 113, 114, 213, 214 on the other ends to the audio sink 106, 206 is detected.

    [0073] On the receiver or audio sink 106, 206 side, the method may comprise analyzing signals received on the audio input channels 107, 108, 207, 208 for the presence of the individual channel test signals 111, 112, 211, 212, and controllably coupling, i.e. mapping, individual audio input channels 107, 108, 207, 208 to specific ones of the output channels 109, 110, 209, 210 based on the analysis result.

    [0074] Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that a variety of alternate and/ or equivalent implementations exist. It should be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration in any way. Rather, the foregoing summary and detailed description will provide those skilled in the art with a convenient road map for implementing at least one exemplary embodiment, it being understood that various changes may be made in the function and arrangement of elements described in an exemplary embodiment without departing from the scope as set forth in the appended claims. Further, the present invention provides a respective audio playback method.

    List of reference signs



    [0075] 
    100, 200
    audio playback system
    101, 102
    audio content
    103, 203
    audio source
    104, 105, 204, 205
    audio output channel
    106, 206
    audio sink
    107, 108, 207, 208
    audio input channel
    109, 110, 209, 210
    output channel
    111, 112, 211, 212
    individual channel test signal
    113, 114, 213, 214
    cable
    115, 116, 117, 118, 215, 216, 217, 218
    connector
    220
    connection detector
    221
    switching signal
    222
    test signal generator
    223
    oscillator
    225
    signal analyzer
    226
    switching matrix
    S1 - S3
    method steps



    Claims

    1. Audio playback system (100, 200) for audio content (101, 102), the audio playback system (100, 200) comprising:

    an audio source (103, 203) comprising a number of audio output channels (104, 105, 204, 205), and

    an audio sink (106, 206) comprising a number of audio input channels (107, 108, 207, 208) and a corresponding number of output channels (109, 110, 209, 210),

    a cable (113, 114) that comprises a first connector (115, 116, 215, 216) on a first end and a second connector (117, 118, 217, 218) on a second end for each one of the audio output channels (104, 105, 204, 205) and that couples the respective one of the audio output channels (104, 105, 204, 205) with one of the audio input channels (107, 108, 207, 208),

    wherein that audio source (103, 203) is configured to output individual channel test signals (111, 112, 211, 212) on every audio output channel (104, 105, 204, 205) upon connection of a cable (113, 114, 213, 214) to the audio output channels (104, 105, 204, 205), and

    wherein the audio sink (106, 206) is configured to analyze signals received on the audio input channels (107, 108, 207, 208) for the presence of the individual channel test signals (111, 112, 211, 212) and map the audio input channels (107, 108, 207, 208) to respective ones of the output channels (109, 110, 209, 210) based on the analysis of the individual channel test signals (111, 112, 211, 212).


     
    2. Audio playback system (100, 200) according to claim 1, wherein the audio source (103, 203) comprises a connection detector (220) configured to detect a connection of a cable (113, 114, 213, 214) to the audio output channels (104, 105, 204, 205) based on an electric resistance measurement or based on a switching signal (221).
     
    3. Audio playback system (100, 200) according to any one of the preceding claims, wherein the audio source (103, 203) comprises a test signal generator (222) that is coupled to the audio output channels (104, 105, 204, 205) and that is configured to provide the individual channel test signals (111, 112, 211, 212) to the audio output channels (104, 105, 204, 205) after the connection of a cable (113, 114, 213, 214) is detected.
     
    4. Audio playback system (100, 200) according to claim 3, wherein the test signal generator (222) comprises a configurable oscillator (223) configured to output a number of individual channel test signals (111, 112, 211, 212) each individual channel test signal (111, 112, 211, 212) comprising a predetermined frequency, especially a frequency higher than 20 kHz, especially 25 kHz or 30 kHz.
     
    5. Audio playback system (100, 200) according to claim 4, wherein the configurable oscillator (223) is configured to sequentially output for every audio output channel (104, 105, 204, 205) an individual channel test signal (111, 112, 211, 212) starting with a predetermined one of the audio output channels (104, 105, 204, 205) clock-wise or counter-clockwise based on the intended position of the audio output channels (104, 105, 204, 205), wherein the configurable oscillator (223) is configured to increase or decrease the frequency by a predetermined frequency step for each one of the audio output channels (104, 105, 204, 205) in the sequence.
     
    6. Audio playback system (100, 200) according to any one of the preceding claims, wherein the audio source (103, 203) is configured to output the individual channel test signals (111, 112, 211, 212) for a first predetermined amount of time after the connection of a cable (113, 114, 213, 214) to the output channels (109, 110, 209, 210) is detected, and especially for a second predetermined amount of time after a connection of the cables (113, 114, 213, 214) on the other ends to the audio sink (106, 206) is detected.
     
    7. Audio playback system (100, 200) according to any one of the preceding claims, wherein the audio sink (106, 206) comprises a signal analyzer (225) that is configured to analyze signals received on the audio input channels (107, 108, 207, 208) for the presence of the individual channel test signals (111, 112, 211, 212).
     
    8. Audio playback system (100, 200) according to any one of the preceding claims, wherein the audio sink (106, 206) comprises a switching matrix (226) that is configured to controllably couple individual audio input channels (107, 108, 207, 208) to specific ones of the output channels (109, 110, 209, 210).
     
    9. Audio playback method for audio content (101, 102) with an audio source (103, 203) comprising a number of audio output channels (104, 105, 204, 205), and an audio sink (106, 206) comprising a number of audio input channels (107, 108, 207, 208) and a corresponding number of output channels (109, 110, 209, 210), the audio playback method comprising:

    coupling each one of the audio output channels (104, 105, 204, 205) with one of the audio input channels (107, 108, 207, 208) via a cable (113, 114) that comprises a first connector (115, 116, 215, 216) on a first end and a second connector (117, 118, 217, 218) on a second end for each one of the audio output channels (104, 105, 204, 205),

    outputting (S1) individual channel test signals (111, 112, 211, 212) on every audio output channel (104, 105, 204, 205) upon connection of a cable (113, 114, 213, 214) to the audio output channels (104, 105, 204, 205),

    analyzing (S2) signals received on the audio input channels (107, 108, 207, 208) for the presence of the individual channel test signals (111, 112, 211, 212), and

    mapping (S3) the audio input channels (107, 108, 207, 208) to respective ones of the output channels (109, 110, 209, 210) based on the analysis of the individual channel test signals (111, 112, 211, 212).


     
    10. Audio playback method according to claim 9, comprising detecting a connection of a cable (113, 114, 213, 214) to the audio output channels (104, 105, 204, 205) based on an electric resistance measurement or based on a switching signal (221).
     
    11. Audio playback method according to any one of the preceding claims 9 and 10, comprising providing the individual channel test signals (111, 112, 211, 212) to the audio output channels (104, 105, 204, 205) after the connection of a cable (113, 114, 213, 214) is detected.
     
    12. Audio playback method according to claim 11, wherein providing the individual channel test signals (111, 112, 211, 212) comprises outputting a number of individual channel test signals (111, 112, 211, 212) each individual channel test signal (111, 112, 211, 212) comprising a predetermined frequency, especially a frequency higher than 20 kHz, especially 25 kHz or 30 kHz.
     
    13. Audio playback method according to claim 12, wherein providing the individual channel test signals (111, 112, 211, 212) comprises sequentially outputting for every audio output channel (104, 105, 204, 205) an individual channel test signal (111, 112, 211, 212) starting with a predetermined one of the audio output channels (104, 105, 204, 205) clock-wise or counter-clockwise based on the intended position of the audio output channels (104, 105, 204, 205), wherein the frequency is increased or decreased by a predetermined frequency step for each one of the audio output channels (104, 105, 204, 205) in the sequence.
     
    14. Audio playback method according to any one of the preceding claims 9 to 13, comprising outputting the individual channel test signals (111, 112, 211, 212) for a first predetermined amount of time after the connection of a cable (113, 114, 213, 214) to the output channels (109, 110, 209, 210) is detected, and especially for a second predetermined amount of time after a connection of the cables (113, 114, 213, 214) on the other ends to the audio sink (106, 206) is detected.
     
    15. Audio playback method according to any one of the preceding claims 9 to 14, comprising analyzing signals received on the audio input channels (107, 108, 207, 208) for the presence of the individual channel test signals (111, 112, 211, 212), and controllably coupling individual audio input channels (107, 108, 207, 208) to specific ones of the output channels (109, 110, 209, 210) based on the analysis result.
     


    Ansprüche

    1. Audio-Wiedergabesystem (100, 200) für Audio-Inhalte (101, 102), wobei das Audio-Wiedergabesystem (100, 200) umfasst:

    eine Audio-Quelle (103, 203), die eine Anzahl von Audio-Ausgangskanälen (104, 105, 204, 205) umfasst, und

    eine Audiosenke (106, 206) mit einer Anzahl von Audio-Eingangskanälen (107, 108, 207, 208) und einer entsprechenden Anzahl von Ausgangskanälen (109, 110, 209, 210),

    ein Kabel (113, 114), das einen ersten Verbinder (115, 116, 215, 216) an einem ersten Ende und einen zweiten Verbinder (117, 118, 217, 218) an einem zweiten Ende für jeden der Audioausgangskanäle (104, 105, 204, 205) umfasst und das den jeweiligen der Audioausgangskanäle (104, 105, 204, 205) mit einem der Audioeingangskanäle (107, 108, 207, 208) koppelt,

    wobei diese Audioquelle (103, 203) so konfiguriert ist, dass sie bei Anschluss eines Kabels (113, 114, 213, 214) an die Audioausgangskanäle (104, 105, 204, 205) auf jedem Audioausgangskanal (104, 105, 204, 205) individuelle Kanaltestsignale (111, 112, 211, 212) ausgibt, und

    wobei die Audiosenke (106, 206) so konfiguriert ist, dass sie auf den Audioeingangskanälen (107, 108, 207, 208) empfangene Signale auf das Vorhandensein der einzelnen Kanaltestsignale (111, 112, 211, 212) analysiert und die Audioeingangskanäle (107, 108, 207, 208) auf der Grundlage der Analyse der einzelnen Kanaltestsignale (111, 112, 211, 212) entsprechenden Ausgangskanälen (109, 110, 209, 210) zuordnet.


     
    2. Audiowiedergabesystem (100, 200) nach Anspruch 1, wobei die Audioquelle (103, 203) einen Verbindungsdetektor (220) umfasst, der so konfiguriert ist, dass er eine Verbindung eines Kabels (113, 114, 213, 214) mit den Audioausgangskanälen (104, 105, 204, 205) auf der Grundlage einer elektrischen Widerstandsmessung oder auf der Grundlage eines Schaltsignals (221) erkennt.
     
    3. Audiowiedergabesystem (100, 200) nach einem der vorstehenden Ansprüche, wobei die Audioquelle (103, 203) einen Testsignalgenerator (222) umfasst, der mit den Audioausgangskanälen (104, 105, 204, 205) gekoppelt ist und der so konfiguriert ist, dass er die einzelnen Kanaltestsignale (111, 112, 211, 212) an die Audioausgangskanäle (104, 105, 204, 205) liefert, nachdem ein Verbinden eines Kabels (113, 114, 213, 214) erkannt wurde.
     
    4. Audiowiedergabesystem (100, 200) nach Anspruch 3, wobei der Testsignalgenerator (222) einen konfigurierbaren Oszillator (223) umfasst, der so konfiguriert ist, dass er eine Anzahl von individuellen Kanaltestsignalen (111, 112, 211, 212) ausgibt, wobei jedes individuelle Kanaltestsignal (111, 112, 211, 212) eine vorbestimmte Frequenz, insbesondere eine Frequenz höher als 20 kHz, insbesondere 25 kHz oder 30 kHz, umfasst.
     
    5. Audiowiedergabesystem (100, 200) nach Anspruch 4, wobei der konfigurierbare Oszillator (223) so konfiguriert ist, dass er für jeden Audioausgangskanal (104, 105, 204, 205) ein individuelles Kanaltestsignal (111, 112, 211, 212) sequentiell ausgibt, beginnend mit einem vorbestimmten der Audioausgangskanäle (104, 105, 204), 205) im oder gegen den Uhrzeigersinn auf der Grundlage der beabsichtigten Position der Audioausgangskanäle (104, 105, 204, 205), wobei der konfigurierbare Oszillator (223) so konfiguriert ist, dass er die Frequenz um einen vorbestimmten Frequenzschritt für jeden der Audioausgangskanäle (104, 105, 204, 205) in der Sequenz erhöht oder verringert.
     
    6. Audiowiedergabesystem (100, 200) nach einem der vorstehenden Ansprüche, wobei die Audioquelle (103, 203) so konfiguriert ist, dass sie die einzelnen Kanaltestsignale (111, 112, 211, 212) für eine erste vorbestimmte Zeitdauer ausgibt, nachdem die Verbindung eines Kabels (113, 114, 213, 214) mit den Ausgangskanälen (109, 110, 209, 210) erfasst wurde, und insbesondere für eine zweite vorbestimmte Zeitdauer, nachdem eine Verbindung der Kabel (113, 114, 213, 214) an den anderen Enden mit der Audiosenke (106, 206) erfasst wurde.
     
    7. Audiowiedergabesystem (100, 200) nach einem der vorstehenden Ansprüche, wobei die Audiosenke (106, 206) einen Signalanalysator (225) umfasst, der so konfiguriert ist, dass er auf den Audioeingangskanälen (107, 108, 207, 208) empfangene Signale auf das Vorhandensein der einzelnen Kanaltestsignale (111, 112, 211, 212) analysiert.
     
    8. Audiowiedergabesystem (100, 200) nach einem der vorstehenden Ansprüche, wobei die Audiosenke (106, 206) eine Schaltmatrix (226) umfasst, die so konfiguriert ist, dass sie einzelne Audioeingangskanäle (107, 108, 207, 208) steuerbar mit bestimmten der Ausgangskanäle (109, 110, 209, 210) koppelt.
     
    9. Audiowiedergabeverfahren für Audioinhalte (101, 102) mit einer Audioquelle (103, 203), die eine Anzahl von Audioausgangskanälen (104, 105, 204, 205) umfasst, und einer Audiosenke (106, 206), die eine Anzahl von Audioeingangskanälen (107, 108, 207, 208) und eine entsprechende Anzahl von Ausgangskanälen (109, 110, 209, 210) umfasst, wobei das Audiowiedergabeverfahren umfasst:

    Koppeln jedes der Audioausgangskanäle (104, 105, 204, 205) mit einem der Audioeingangskanäle (107, 108, 207, 208) über ein Kabel (113, 114), das einen ersten Verbinder (115, 116, 215, 216) an einem ersten Ende und einen zweiten Verbinder (117, 118, 217, 218) an einem zweiten Ende für jeden der Audioausgangskanäle (104, 105, 204, 205) umfasst,

    Ausgeben (S1) einzelner Kanaltestsignale (111, 112, 211, 212) auf jedem Audioausgangskanal (104, 105, 204, 205) beim Anschluss eines Kabels (113, 114, 213, 214) an die Audioausgangskanäle (104, 105, 204, 205),

    Analysieren (S2) der auf den Audio-Eingangskanälen (107, 108, 207, 208) empfangenen Signale auf das Vorhandensein der einzelnen Kanal-Testsignale (111, 112, 211, 212), und

    Zuweisen (S3) der Audio-Eingangskanäle (107, 108, 207, 208) auf die jeweiligen Ausgangskanäle (109, 110, 209, 210) auf der Grundlage der Analyse der einzelnen Kanal-Testsignale (111, 112, 211, 212).


     
    10. Audiowiedergabeverfahren nach Anspruch 9, umfassend das Erfassen einer Verbindung eines Kabels (113, 114, 213, 214) mit den Audioausgangskanälen (104, 105, 204, 205) auf der Grundlage einer elektrischen Widerstandsmessung oder auf der Grundlage eines Schaltsignals (221).
     
    11. Audiowiedergabeverfahren nach einem der vorstehenden Ansprüche 9 und 10, umfassend das Bereitstellen der einzelnen Kanaltestsignale (111, 112, 211, 212) an die Audioausgangskanäle (104, 105, 204, 205), nachdem die Verbindung eines Kabels (113, 114, 213, 214) erkannt wurde.
     
    12. Audiowiedergabeverfahren nach Anspruch 11, wobei das Bereitstellen der individuellen Kanal-Testsignale (111, 112, 211, 212) das Ausgeben einer Anzahl von individuellen Kanal-Testsignale (111, 112, 211, 212) umfasst, wobei jedes individuelle Kanal-Testsignale (111, 112, 211, 212) eine vorbestimmte Frequenz, insbesondere eine Frequenz höher als 20 kHz, insbesondere 25 kHz oder 30 kHz, umfasst.
     
    13. Audiowiedergabeverfahren nach Anspruch 12, wobei das Bereitstellen der individuellen Kanaltestsignale (111, 112, 211, 212) das sequentielle Ausgeben eines individuellen Kanaltestsignals (111, 112, 211, 212)für jeden Audioausgangskanal (104, 105, 204, 205) beginnend mit einem vorbestimmten der Audioausgangskanäle (104, 105, 204, 205) im oder gegen den Uhrzeigersinn, basierend auf der beabsichtigten Position der Audioausgangskanäle (104, 105, 204, 205) aufweist, wobei die Frequenz um einen vorbestimmten Frequenzschritt für jeden der Audioausgangskanäle (104, 105, 204, 205) in der Sequenz erhöht oder verringert wird.
     
    14. Audiowiedergabeverfahren nach einem der vorstehenden Ansprüche 9 bis 13, umfassend die Ausgabe der individuellen Kanaltestsignale (111, 112, 211, 212) für eine erste vorbestimmte Zeitdauer, nachdem die Verbindung eines Kabels (113, 114, 213, 214) mit den Ausgangskanälen (109, 110, 209, 210) erfasst wurde, und insbesondere für eine zweite vorbestimmte Zeitdauer, nachdem eine Verbindung der Kabel (113, 114, 213, 214) an den anderen Enden mit der Audiosenke (106, 206) erfasst wurde.
     
    15. Audiowiedergabeverfahren nach einem der vorstehenden Ansprüche 9 bis 14, umfassend das Analysieren der auf den Audioeingangskanälen (107, 108, 207, 208) empfangenen Signale auf das Vorhandensein der individuellen Kanaltestsignale (111, 112, 211, 212), und
    das gesteuerte Koppeln einzelner Audio-Eingangskanäle (107, 108, 207, 208) an bestimmte der Ausgangskanäle (109, 110, 209, 210) auf der Grundlage des Analyseergebnisses.
     


    Revendications

    1. Système de lecture audio (100, 200) pour le contenu audio (101, 102), le système de lecture audio (100, 200) comprenant :

    une source audio (103, 203) comprenant un certain nombre de canaux de sortie audio (104, 105, 204, 205), et

    un puits audio (106, 206) comprenant un certain nombre de canaux d'entrée audio (107, 108, 207, 208) et un nombre correspondant de canaux de sortie (109, 110, 209, 210),

    un câble (113, 114) qui comprend un premier connecteur (115, 116, 215, 216) à une première extrémité et un second connecteur (117, 118, 217, 218) à une seconde extrémité pour chacun des canaux de sortie audio (104, 105, 204, 205) et qui couple le canal de sortie audio respectif (104, 105, 204, 205) avec l'un des canaux d'entrée audio (107, 108, 207, 208),

    dans lequel cette source audio (103, 203) est configurée pour émettre des signaux de test de canal individuel (111, 112, 211, 212) sur chaque canal de sortie audio (104, 105, 204, 205) lors de la connexion d'un câble (113, 114, 213, 214) aux canaux de sortie audio (104, 105, 204, 205), et

    dans lequel le collecteur audio (106, 206) est configuré pour analyser les signaux reçus sur les canaux d'entrée audio (107, 108, 207, 208) pour la présence des signaux de test des canaux individuels (111, 112, 211, 212) et pour mapper les canaux d'entrée audio (107, 108, 207, 208) sur les canaux de sortie respectifs (109, 110, 209, 210) sur la base de l'analyse des signaux de test des canaux individuels (111, 112, 211, 212).


     
    2. Système de lecture audio (100, 200) selon la revendication 1, dans lequel la source audio (103, 203) comprend un détecteur de connexion (220) configuré pour détecter une connexion d'un câble (113, 114, 213, 214) aux canaux de sortie audio (104, 105, 204, 205) sur la base d'une mesure de résistance électrique ou sur la base d'un signal de commutation (221).
     
    3. Système de lecture audio (100, 200) selon l'une quelconque des revendications précédentes, dans lequel la source audio (103, 203) comprend un générateur de signaux de test (222) qui est couplé aux canaux de sortie audio (104, 105, 204, 205) et qui est configuré pour fournir les signaux de test de canal individuel (111, 112, 211, 212) aux canaux de sortie audio (104, 105, 204, 205) après que la connexion d'un câble (113, 114, 213, 214) a été détectée.
     
    4. Système de lecture audio (100, 200) selon la revendication 3, dans lequel le générateur de signaux de test (222) comprend un oscillateur configurable (223) configuré pour délivrer un certain nombre de signaux de test de canal individuel (111, 112, 211, 212), chaque signal de test de canal individuel (111, 112, 211, 212) comprenant une fréquence prédéterminée, en particulier une fréquence supérieure à 20 kHz, notamment 25 kHz ou 30 kHz.
     
    5. Système de lecture audio (100, 200) selon la revendication 4, dans lequel l'oscillateur configurable (223) est configuré pour émettre séquentiellement pour chaque canal de sortie audio (104, 105, 204, 205) un signal de test de canal individuel (111, 112, 211, 212) commençant par un canal prédéterminé des canaux de sortie audio (104, 105, 204), 205) dans le sens des aiguilles d'une montre ou dans le sens inverse, en fonction de la position prévue des canaux de sortie audio (104, 105, 204, 205), dans lequel l'oscillateur configurable (223) est configuré pour augmenter ou diminuer la fréquence d'un pas de fréquence prédéterminé pour chacun des canaux de sortie audio (104, 105, 204, 205) dans la séquence.
     
    6. Système de lecture audio (100, 200) selon l'une quelconque des revendications précédentes, dans lequel la source audio (103, 203) est configurée pour émettre les signaux de test de canal individuel (111, 112, 211, 212) pendant une première durée prédéterminée après que la connexion d'un câble (113, 114, 213, 214) aux canaux de sortie (109, 110, 209, 210) a été détectée, et en particulier pendant une deuxième durée prédéterminée après qu'une connexion des câbles (113, 114, 213, 214) aux autres extrémités au puits audio (106, 206) a été détectée.
     
    7. Système de lecture audio (100, 200) selon l'une quelconque des revendications précédentes, dans lequel le puits audio (106, 206) comprend un analyseur de signaux (225) qui est configuré pour analyser les signaux reçus sur les canaux d'entrée audio (107, 108, 207, 208) pour la présence des signaux de test des canaux individuels (111, 112, 211, 212).
     
    8. Système de lecture audio (100, 200) selon l'une quelconque des revendications précédentes, dans lequel le puits audio (106, 206) comprend une matrice de commutation (226) qui est configurée pour coupler de manière contrôlable des canaux d'entrée audio individuels (107, 108, 207, 208) à des canaux de sortie spécifiques (109, 110, 209, 210).
     
    9. Procédé de lecture audio pour un contenu audio (101, 102) avec une source audio (103, 203) comprenant un certain nombre de canaux de sortie audio (104, 105, 204, 205), et un puits audio (106, 206) comprenant un certain nombre de canaux d'entrée audio (107, 108, 207, 208) et un nombre correspondant de canaux de sortie (109, 110, 209, 210), le procédé de lecture audio comprenant :

    le couplage de chacun des canaux de sortie audio (104, 105, 204, 205) avec un des canaux d'entrée audio (107, 108, 207, 208) par l'intermédiaire d'un câble (113, 114) qui comprend un premier connecteur (115, 116, 215, 216) à une première extrémité et un second connecteur (117, 118, 217, 218) à une seconde extrémité pour chacun des canaux de sortie audio (104, 105, 204, 205),

    la sortie (S1) de signaux de test de canaux individuels (111, 112, 211, 212) sur chaque canal de sortie audio (104, 105, 204, 205) lors de la connexion d'un câble (113, 114, 213, 214) aux canaux de sortie audio (104, 105, 204, 205),

    l'analyse des signaux (S2) reçus sur les canaux d'entrée audio (107, 108, 207, 208) pour détecter la présence des signaux de test des canaux individuels (111, 112, 211, 212), et

    la mise en correspondance (S3) des canaux d'entrée audio (107, 108, 207, 208) avec les canaux de sortie respectifs (109, 110, 209, 210) sur la base de l'analyse des signaux de test des canaux individuels (111, 112, 211, 212).


     
    10. Procédé de lecture audio selon la revendication 9, comprenant la détection d'une connexion d'un câble (113, 114, 213, 214) aux canaux de sortie audio (104, 105, 204, 205) basée sur une mesure de résistance électrique ou basée sur un signal de commutation (221).
     
    11. Procédé de lecture audio selon l'une quelconque des revendications 9 et 10 précédentes, comprenant la fourniture des signaux de test de canal individuel (111, 112, 211, 212) aux canaux de sortie audio (104, 105, 204, 205) après que la connexion d'un câble (113, 114, 213, 214) a été détectée.
     
    12. Procédé de lecture audio selon la revendication 11, dans lequel la fourniture des signaux de test de canal individuel (111, 112, 211, 212) comprend la sortie d'un certain nombre de signaux de test de canal individuel (111, 112, 211, 212), chaque signal de test de canal individuel (111, 112, 211, 212) comprenant une fréquence prédéterminée, en particulier une fréquence supérieure à 20 kHz, notamment 25 kHz ou 30 kHz.
     
    13. Procédé de lecture audio selon la revendication 12, dans lequel la fourniture des signaux de test de canal individuel (111, 112, 211, 212) comprend la sortie séquentielle pour chaque canal de sortie audio (104, 105, 204, 205) d'un signal de test de canal individuel (111, 112, 211, 212) commençant par un canal prédéterminé des canaux de sortie audio (104, 105, 204, 205) dans le sens des aiguilles d'une montre ou dans le sens inverse, en fonction de la position prévue des canaux de sortie audio (104, 105, 204, 205), dans lequel la fréquence est augmentée ou diminuée d'un pas de fréquence prédéterminé pour chacun des canaux de sortie audio (104, 105, 204, 205) dans la séquence.
     
    14. Procédé de lecture audio selon l'une quelconque des revendications précédentes 9 à 13, comprenant la sortie des signaux de test de canal individuel (111, 112, 211, 212) pendant une première durée prédéterminée après que la connexion d'un câble (113, 114, 213, 214) aux canaux de sortie (109, 110, 209, 210) a été détectée, et en particulier pendant une seconde durée prédéterminée après qu'une connexion des câbles (113, 114, 213, 214) aux autres extrémités au puits audio (106, 206) a été détectée.
     
    15. Procédé de lecture audio selon l'une quelconque des revendications précédentes 9 à 14, comprenant l'analyse des signaux reçus sur les canaux d'entrée audio (107, 108, 207, 208) pour la présence des signaux de test des canaux individuels (111, 112, 211, 212), et
    coupler de manière contrôlable des canaux d'entrée audio individuels (107, 108, 207, 208) à des canaux de sortie spécifiques (109, 110, 209, 210) en fonction du résultat de l'analyse.
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description