BACKGROUND
[0001] As scaling continues to ever smaller feature sizes, integrated circuit (IC) reliability
is an increasing concern in IC fabrication technology. The impact of trace interconnect
failure mechanisms on device performance and reliability demand much more from integration
schemes, interconnect materials, and processes. An optimal low-k dielectric material
and its related deposition, pattern lithography, etching and cleaning are required
to form dual-damascene interconnect patterns. A hard-mask scheme approach of interconnects-patterning
wafer fabrication is the ability to transfer patterns into under layers with tightest
optimal dimension control.
[0002] As technology nodes advance to nanotechnology, metal hard-mask materials such as
TiN are used to gain better etching / removal selectivity, better pattern retention
and profile control to the low-k materials during the pattern etching process.
[0003] Compositions have been developed to pullback or remove these types of metal hard-masks
from substrates. The following patents are representative.
[0004] US 2006/0226122 discloses a wet etching composition including hydrogen peroxide; an organic onium
hydroxide; and an acid. In another embodiment, the invention relates to a method of
wet etching metal nitride selectively to surrounding structures comprising one or
more of silicon, silicon oxides, glass, PSG, BPSG, BSG, silicon oxynitride, silicon
nitride and silicon oxycarbide and combinations and mixtures thereof and/or photoresist
materials, including steps of providing a wet etching composition including hydrogen
peroxide, an organic onium hydroxide, and an organic acid; and exposing a metal nitride
to be etched with the wet etching composition for a time and at a temperature effective
to etch the metal nitride selectively to the surrounding structures.
[0005] US 2011/0147341 discloses an etching solution for titanium-based metals, tungsten- based metals,
titanium/tungsten-based metals or their nitrides. The etching solution contains 10-40
mass% hydrogen peroxide, 0.1-15 mass % of an organic acid salt, and water.
[0006] US 7,922,824 discloses an oxidizing aqueous cleaning composition and process for cleaning post-plasma
etch residue and/or hardmask material from a microelectronic device having said residue
thereon. The oxidizing aqueous cleaning composition includes at least one oxidizing
agent, at least one oxidizing agent stabilizer comprising an amine species selected
from the group consisting of primary amines, secondary amines, tertiary amines and
amine-N-oxides, optionally at least one co-solvent, optionally at least one metal-chelating
agent, optionally at least one buffering species, and water. The composition achieves
highly efficacious cleaning of the residue material from the microelectronic device
while simultaneously not damaging the interlevel dielectric and metal interconnect
material also present thereon.
[0007] US 7,928,046 discloses an aqueous, silicate free, cleaning compositions of about pH 9 or below
and method of using the cleaning compositions for cleaning microelectronic substrates,
which compositions are able to essentially completely clean such substrates and produce
essentially no metal corrosion of the metal elements of such substrates. The aqueous
cleaning compositions of present invention have (a) water, (b) at least one of ammonium
and quaternary ammonium ions and (c) at least one of hypophosphite (H
2PO
2-) and/or phosphite (HPO
3 2-) ions. The cleaning compositions also may contain fluoride ions. Optionally, the
composition may contain other components such as organic solvents, oxidizing agent,
surfactants, corrosion inhibitors and metal complexing agents.
[0008] US 2013/0045908 discloses a semiconductor processing composition and method for removing photoresist,
polymeric materials, etching residues and copper oxide from a substrate comprising
copper, low-k dielectric material and TiN, TiNxOy or W wherein the composition includes
water, a Cu corrosion inhibitor, at least one halide anion selected from Cl
- or Br
-, and, where the metal hard mask comprises TiN or TiNxOy, at least one hydroxide source.
[0009] WO 2013/101907 A1 discloses compositions comprising etchants including hexafluorosilicic acid and hexafluorotitanate,
at least one oxidant including high valent metals, peroxide or high oxidation state
species and at least one solvent.
[0010] US 2013/0157472 discloses a semiconductor processing composition and method for removing photoresist,
polymeric materials, etching residues and copper oxide from a substrate comprising
copper, low-k dielectric material and TiN, TiNxOy or W wherein the composition includes
water, at least one halide anion selected from Cl
- or Br
-, and, where the metal hard mask comprises only TiN or TiNxOy, optionally at least
one hydroxide source.
[0011] US 2012/0058644 A1(BASF) discloses a liquid composition free from N-alkylpyrrolidones and hydroxyl amine
and its derivatives, having a dynamic shear viscosity at 50 °C of from 1 to 10 mPas
as measured by rotational viscometry and comprising based on the complete weight of
the composition, (A) of from 40 to 99.95% by weight of a polar organic solvent exhibiting
in the presence of dissolved tetramethylammonium hydroxide (B) a constant removal
rate at 50 °C for a 30 nm thick polymeric barrier anti-reflective layer containing
deep UV absorbing chromophoric groups, (B) offrom 0.05 to <0.5% of a quaternary anunonium
hydroxide, and (C) <5% by weight of water; method for its preparation, a method for
manufacturing electrical devices and its use for removing negative-tone and positive-tone
photoresists and post etch residues in the manufacture of DD Stacked Integrated Circuits
and 3D Wafer Level Packagings by way of patterning Through Silicon Vias and/or by
plating and bumping.
[0012] US 2009/0131295 A1 discloses compositions for removing and cleaning resist, etching residues, planarization
residues, metal fluorides and/or metal oxides from a substrate are provided, the composition
including a metal ion-free fluoride compound and water. The resist, etching residues,
planarization residues, metal fluorides and/or metal oxides are generated during one
or more patterning processes during which a metal hard mask is used.
[0013] Compositions based on peroxides for TiN removal have been described in the prior
art. These have incorporated alcoholamine bases in aqueous solvent systems and solventrich
systems. A key problem of previous compositions has been the instability of the compositions
once peroxide is added. This appears to be due to the use of oxidizable components
in the composition which lead to the decomposition of hydrogen peroxide in the composition
and its de-activation. This inherent instability has necessitated expensive point
of use mixing of the peroxide with the remaining components of the composition and
has limited the ability to use the prior art chemistries in a recycle-mode.
[0014] In addition to its use as hard mask material, TiN is also often used as a metallic
adhesion or liner layer for metal plugs at the MO level. While PVD TiN is used for
forming a hard mask over large regions of the wafer prior to plasma etching, PVD deposition
methodology does not readily provide the kind of conformal deposition required for
depositing the liner prior to deposition of the high aspect ratio metal plugs. Chemical
Vapor Deposition (CVD) is ideally suited to deposit such conformal coatings, and is
typically used for forming the TiN adhesion layer. Ideally a wet chemistry designed
for removing the TiN hard mask after the plasma etching process, should not etch the
TiN liner. Depending on the type of metal plug, this can pose a difficult challenge,
because the hardmask and adhesion layer TiN are often very similar in chemical composition.
[0015] Compositions of the prior art show no selectivity for etching of PVD TiN used in
a hard mask vs. etching of CVD TiN used in a metal liner or adhesion layer. In those
compositions high TiN hard mask removal will also likely coincide with some liner/adhesion
layer loss. Accordingly, there is a need in the art for a stripper composition that
does not suffer from the above-mentioned drawbacks.
SUMMARY
[0016] The present invention relates to a composition, system and process for selectively
removing/etching a PVD titanium nitride hard mask relative to copper (Cu), cobalt
(Co), CVD titanium nitride used in a metal liner or adhesion layer, dielectric material
such as TEOS, PETEOS, and low-k dielectric layers, wherein PVD titanium nitride has
the formula TiN or TiNxOy, where x = 0 to 1.3 and y = 0 to 2.
[0017] In one aspect, the present invention provides a composition as defined in claim 1.
[0018] In another aspect, the present invention provides a system as defined in claim 17.
[0019] In yet another aspect, the present invention provides a process as defined in claim
18.
DETAILED DESCRIPTION
[0020] The present development discloses a cleaning composition of chemical strippers for
PVD TiN hard mask removal or etching ("removal" and "etching" are interchangeable
as used in the present disclosure) on 28nm wafers and beyond. A PVD TiN hard mask
is used as a hard mask to provide fine feature control during plasma etching at the
28 nm technology node and smaller. Suitable stripper/cleaning chemistries must be
able to pullback or totally remove the PVD TiN hard mask as well as any residues from
the plasma etch process. However, the chemistries have to provide compatibility for
the CVD TiN used as the liner or adhesion layer for the metal plugs.
[0021] The cleaning compositions of the present invention comprise a peroxide, a base, a
weak acid, an ammonium salt, a corrosion inhibitor or a non- corrosion inhibitor type
of chemical additive to prevent copper loss, long chain organic amine or polyalkylamine,
and the rest is substantially solvent.
[0022] The cleaning compositions employ a peroxide such as, for example, hydrogen peroxide,
as an oxidizing agent for TiN hard mask removal with a base, a weak acid and an ammonium
salt buffer system formed between a base and weak acid to maintain the pH of the cleaning
composition at 7 to 11.5, preferably between 7 and 10.5, more preferably between 8
and 10, and most preferably between 8.5 and 9.5.
[0023] The cleaning composition may employ a corrosion inhibitor to minimize copper loss
from the composition and a chelating agent to improve stability of the composition.
[0024] While the compositions can be fully aqueous, an alternative embodiment uses solvents
to enhance TiN etch performance or improve selectivity. Another embodiment employs
a radical inhibitor to improve composition stability.
[0025] The peroxide to be used in the composition may include but is not limited to hydrogen
peroxide, ammonium persulfate, peracidic acid, peroxybenzoic acid, and combinations
thereof.
[0026] The peroxide is employed at a concentration of 1 to 20 wt % in the composition, preferably
3 to 15 wt %, more preferably 6 to 9 wt %. In other embodiments, the peroxide may
be employed at a concentration of 1 to 9 wt % in the composition and, preferably,
from 3 to 9 wt %. In still other embodiments, the concentration of peroxide is from
3 wt% to 15 wt% and preferably 15 wt%.
[0027] The base to be used in the composition is selected from the group consisting of tetraethylammonium
hydroxide(TEAH), trimethylphenylammonium hydroxide(TMPAH), tetramethylammonium hydroxide,
tetrabutylammonium hydroxide, choline hydroxide, ammonium hydroxide, and combinations
thereof.
[0028] The base is employed at a concentration of from 1 to 5 wt%, preferably 2 to 4 wt%,
more preferably 2 to 3 wt%.
[0029] The weak acid to be employed in the composition is selected from the group consisting
of citric acid, oxalic acid, malonic acid, lactic acid, adipic acid, acetic acid,
iminodiacetic acid, and combinations thereof.
[0030] The acid is employed at a concentration of 0.1 to 1 wt%, preferably 0.2 to 0.8 wt%,
more preferably 0.4 to 0.6 wt%.
[0031] The ammonium salt to be employed in the composition is selected from the group consisting
of ammonium citrate, ammonium acetate, ammonium malonate, ammonium adipate, ammonium
lactate, ammonium iminodiacetate, ammonium chloride, ammonium bromide, ammonium fluoride,
ammonium bifluoride, ammonium sulfate, and combinations thereof.
[0032] The ammonium salt buffer is employed at a concentration of 0.5 to 2 wt%, preferably
0.75 to 1.5 wt%, more preferably 1 to 1.5 wt%.
[0033] The buffer salt may be added as the compound mentioned or through combination of
ammonium hydroxide and conjugate acids of the salts mentioned.
[0034] The compositions include a corrosion inhibitor or a non-corrosion inhibitor type
of chemical additive to prevent copper loss.
[0035] The corrosion inhibitors to be used in the composition are selected from the group
consisting of 1,2,4-triazole, benzotriazole, methyl-1H-benzotriazole, 2-aminobenthothiazole,
benzimidazole, 2-mercapto-5-methylbenzimidaole, 8-hydroxyquinoline, 1-thioglycerol,
ascorbic acid, pyrazole, and combinations thereof.
[0036] The corrosion inhibitor is used at a concentration of 25 to 5000 ppm, preferably
100 to 3000 ppm, more preferably 1000 to 3000 ppm.
[0037] The long chain or mixed alkylammonium hydroxide is selected from the group consisting
of trimethylphenylammonium hydroxide (TMPAH), choline hydroxide, tetrabutylammonium
hydroxide and mixed tetraalkylammonium hydroxide, wherein the alkylammonium cation
contains alkyl groups of at least two different chain lengths.
[0038] The concentration of the long chain or mixed alkylammonium hydroxide ranges from
1 to 15 wt %, preferably 1 to 10 wt%, more preferably 1 to 5 wt%.
[0039] The compositions comprise additives to improve the removal/etch selectivity between
PVD TiN used to fabricate the hard mask and CVD TiN used as the liner or adhesion
layer for the metal plugs.
[0040] The removal/etch selectivity for PVD TiN vs. CVD TiN is defined as the ratio of the
etch rate (or removal rate) for PVD TiN vs. the etch rate(or removal rate) for CVD
TiN:
Etch Rate for PVD TiN
Etch Rate for CVD TiN
[0041] The additives are long chain organic amines or polyalkylamines. The long chain organic
amines or polyalkylamines are selected from the group consisting of hexylamine, surfactant
salts of hexylamine, octylamine, surfactant salts of octylamine, dicyclohexylamine,
surfactant salts of dicyclohexylamine, polyethyleneimine (PEI), surfactant salts of
polyethyleneimine, decylamine, surfactant salts of decylamine, dodecylamine, surfactant
salts of dodecylamine, and combinations thereof.
[0042] The additives are used at a concentration of from 10 to 5000 ppm, preferably 25 to
3500 ppm, more preferably 50 to 2500 ppm.
[0043] Without intending to be bound by theory, these compounds are believed to bind more
strongly to the CVD TiN crystal morphology than the PVD TiN crystal morphology, thereby
suppressing etching of the CVD TiN more than the PVD TiN.
[0044] The compositions of the present invention may also include a metal chelating agent.
The metal chelating agent complexes trace metals which may accumulate in the composition
during re-cycled use of the composition and prevent them from decomposing the oxidizer
of the composition. Free trace metal cations, in particular copper ions, catalyze
the disprotionation of hydrogen peroxide into oxygen and water which will accelerate
the reduction of etching and cleaning performance of the composition over time.
[0045] The chelating agents to be used in the composition may include, but are not limited
to glycine, iminodiacetic acid, nitrilotriacetic acid, glutamic acid, picolinic acid,
ethylenediamine tetraacetic acid (EDTA), and combinations thereof. More biodegradeable
chelators of this invention are Ethylenediamine-N,N'-disuccinic acid (EDDS) and Cyclohexanediaminetetraacetic
Acid (CDTA).
[0046] The chelating agent may be used at a concentration of from 0.01 to 1 wt%, preferably
0.1 to 1 wt%, more preferably 0.1 to 0.6 wt%.
[0047] The compositions may also include an additive(s) to improve Co compatibility. Such
additives include, but are not limited to, bulky or long chain organic acids or amines.
[0048] Examples of long chain organic acids include, but are not limited to decanonic acid,
dodecanoic acid, dimer acid; and examples for long chain amines including hexylamine,
surfactant salts of hexylamine, octylamine, surfactant salts of octylamine, dicyclohexylamine,
surfactant salts of dicyclohexylamine, decylamine, surfactant salts of decylamine,
dodecylamine, surfactant salts of dodecylamine, and combinations thereof. Examples
of surfactant salts of the amines include but are not limited to ammonium salts of
the amines.
[0049] The bulky or long chain organic acids or amines may be used at a concentration of
from 10 to 5000 ppm, preferably 25 to 3500 ppm, more preferably 50 to 2500 ppm.
[0050] In another embodiment, the compositions of present invention may include radical
scavengers or radical inhibitors to prevent decomposition of the oxidizer by trace
metals. In the case where hydrogen peroxide is the oxidant, the radical scavengers
is used to prevent the formation of hydroxyl and peroxide radicals typically generated
by trace metal cations leading to formation of oxygen and water.
[0051] The radical scavengers to be used in the composition may include, but are not limited
to manitol, polyalkylamines, (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (TEMPO), diphenylamines,
and combinations thereof.
[0052] The radical scavenger may be used at a concentrations ranging from 100 ppm to 1000
ppm, preferably 100 to 500 ppm, and more preferably 100 to 250 ppm.
[0053] The compositions of present invention may be fully aqueous, i.e., the solvent is
water; or additional non-aqueous solvents may be added. The water may be deionized
water (DI water), purified water, or distilled water.
[0054] The non-aqueous solvents to be used in the composition may include, but are not limited
to dimethyl sulfoxide (DMSO), dimethyl sulfone (DMSO
2), sulfolane ((CH
2)
4SO
2), n-methylpyrrolidone, dipropyleneglycolmethylether, tripropyleneglycolmethyl ether,
and combinations thereof.
[0055] The non-aqueous solvents may be used at a concentration of ranging from 0 to 50 wt%,
preferably 0 to 30 wt%, more preferably 0 to 20 wt%.
[0056] The high pH, hydrogen peroxide compositions described in this invention, are developed
based on blanket and patterned wafer studies. In this platform, there are some distinct
features:
- 1. High rates of PVD TiN etch are observed at moderate temperatures ranging from 35
to 55 °C. Plasma etch residues are readily removed from patterned wafers.
- 2. Cu etch rate is suppressed by adding a novel corrosion inhibitor, such as methylbenzotriazole/
TTL. Alternatively, Cu etch rate may be suppressed by the use of a novel non-corrosion
inhibitor type of chemical additive such as the bulky trimethylphenyl ammonium hydroxide.
- 3. Etch Selectivity of PVD TiN used for the hard mask over CVD TiN used for the liner
or adhesion layer can be significantly improved using bulky organic amines, such as
octylamine or polyethyleneimine.
- 4. Co etch rate can be further suppressed by adding long chain organic acids or amines,
such as decanonic acid.
1. A composition for selectively removing PVD titanium nitride of the formula TiN or
TiNxOy, where x = 0 to 1.3 and y = 0 to 2 from a semiconductor device comprising the
PVD titanium nitride and a second material selected from the group consisting of Cu,
Co, CVD titanium nitride, dielectric material, low-k dielectric material, and combinations
thereof, the composition comprising:
1 to 20 wt % peroxide,
1-5 wt% base, wherein the base is selected from the group consisting of tetraethylammonium
hydroxide, trimethylphenylammonium hydroxide, tetramethylammonium hydroxide, tetrabutylammonium
hydroxide, choline hydroxide, ammonium hydroxide, and combinations thereof,
0.1-1 wt% weak acid, wherein the weak acid is carboxylic acid selected from the group
consisting of citric acid, oxalic acid, malonic acid, lactic acid, adipic acid, acetic
acid, iminodiacetic acid, and combinations thereof,
0.5 to 2 wt% ammonium salt, wherein the ammonium salt is selected from the group consisting
of ammonium citrate, ammonium acetate, ammonium malonate, ammonium adipate, ammonium
lactate, ammonium iminodiacetate, ammonium chloride, ammonium bromide, ammonium fluoride,
ammonium bifluoride, ammonium sulfate, and combinations thereof,
25 to 5000 ppm corrosion inhibitor, wherein the corrosion inhibitor is selected from
the group consisting of 1,2,4-triazole, benzotriazole, methyl-1H-benzotriazole, 2-aminobenthothiazole,
benzimidazole, 2-mercapto-5-methylbenzimidaole, 8-hydroxyquinoline, 1-thioglycerol,
ascorbic acid, pyrazole, and combinations thereof or 1 -15 wt % of a long chain or
mixed alkylammonium hydroxide, wherein the long chain or mixed alkylammonium hydroxide
is selected from the group consisting of trimethylphenylammonium hydroxide, choline
hydroxide, tetrabutylammonium hydroxide and mixed tetraalkylammonium hydroxide, wherein
the alkylammonium cation contains alkyl groups of at least two different chain lengths,
10 to 5000 ppm, long chain organic amine or polyalkylamine, wherein the long chain
organic amine or polyalkylamine is selected from the group consisting of hexylamine,
surfactant salts of hexylamine, octylamine, surfactant salts of octylamine, dicyclohexylamine,
surfactant salts of dicyclohexylamine, polyethyleneimine, surfactant salts of polyethyleneimine,
decylamine, surfactant salts of decylamine, dodecylamine, surfactant salts of dodecylamine,
and combinations thereof,
and
the rest is solvent,
wherein the composition has a pH ranging from 7 to 11.5.
2. The composition of claim 1, wherein the peroxide is selected from the group consisting
of hydrogen peroxide, ammonium persulfate, peracidic acid, peroxybenzoic acid, and
combinations thereof and preferably is hydrogen peroxide.
3. The composition of any of the preceding claims, wherein the base is tetraethylammonium
hydroxide.
4. The composition of any of the preceding claims, wherein the weak acid is citric acid.
5. The composition of any of the preceding claims, wherein the ammonium salt is ammonium
citrate.
6. The composition of any of the preceding claims, wherein the corrosion inhibitor is
methyl-1H-benzotriazole.
7. The composition of any of the preceding claims, wherein the long chain or mixed alkylammonium
hydroxide is trimethylphenylammonium hydroxide.
8. The composition of any of the preceding claims, wherein the long chain organic amine
or polyalkylamine is octylamine or polyethyleneimine.
9. The composition of any of the preceding claims, wherein the solvent is selected from
the group consisting of deionized water, purified water, distilled water, dimethyl
sulfoxide, dimethyl sulfone, sulfolane, n-methylpyrrolidone, dipropyleneglycolmethylether,
tripropyleneglycolmethyl ether, and combinations thereof and preferably is water.
10. The composition of any of the preceding claims further comprises from 0.01 to 1 wt%
of a chelating agent selected from the group consisting of glycine, iminodiacetic
acid, nitrilotriacetic acid, glutamic acid, picolinic acid, ethylenediamine tetraacetic
acid, and combinations thereof.
11. The composition of any of the preceding claims further comprises from 100 ppm to 1000
ppm radical scavengers selected from the group consisting of manitol, polyalkylamines,
(2,2,6,6-Tetramethylpiperidin-1-yl)oxyl, diphenylamines, and combinations thereof.
12. The composition of any of the preceding claims further comprises from 10 to 5000 ppm
of long chain organic acids, wherein the long chain organic acid is selected from
the group consisting of decanonic acid, dodecanoic acid, dimer acid and combinations
thereof.
13. The composition of claim 12, wherein the long chain organic acid is decanonic acid.
14. The composition of any of the preceding claims, wherein the composition comprises
hydrogen peroxide, tetraethylammonium hydroxide, citric acid, ammonium citrate, methyl-1H-benzotriazole
or trimethylphenylammonium hydroxide, polyethyleneimine or octylamine, and water.
15. The composition of any of the preceding claims wherein the peroxide is present at
from 3 wt% to 15 wt% or from 1 to 9 wt% or at 15 wt%.
16. The composition of any of the preceding claims wherein the pH ranges from 8 to 10.5
and preferably from 8.5 to 9.5.
17. A system for selectively removing PVD titanium nitride of the formula TiN or TiNxOy,
where x = 0 to 1.3 and y = 0 to 2 from a surface of a microelectronic device, comprising:
the semiconductor device comprising the PVD titanium nitride and a second material
selected from Cu, Co, CVD titanium nitride dielectric material, low-k dielectric material
and combinations thereof,
the composition of claim 1 for selectively removing the PVD titanium nitride, wherein
the PVD titanium nitride and the second material are in direct contact with the composition.
18. A process of selectively removing PVD titanium nitride of the formula TiN or TiNxOy,
where x = 0 to 1.3 and y = 0 to 2 comprising:
providing a semiconductor device comprising the PVD titanium nitride and a second
material selected from Cu, Co, CVD titanium nitride dielectric material, low-k dielectric
material;
contacting the semiconductor device with the composition of claim 1; and
selectively removing the PVD titanium nitride,
wherein the PVD titanium nitride and the second material are in direct contact with
the composition, and the composition offers a removal selectivity of PVD titanium
nitride vs. CVD titanium nitride > 2, when the second material is CVD titanium nitride.
19. The system of claim 17 or the process of claim 18, wherein the PVD titanium nitride
is of the formula TiN.
1. Zusammensetzung zum selektiven Beseitigen von PVD-Titannitrid der Formel TiN oder
TiNxOy, wobei x = 0 bis 1,3 und y = 0 bis 2, von einer Halbleitervorrichtung, umfassend
das PVD-Titannitrid und ein zweites Material, ausgewählt aus der Gruppe, welche aus
Cu, Co, CVD-Titannitrid, dielektrischem Material, dielektrischem Material mit niedrigem
k-Wert und Kombinationen davon besteht, wobei die Zusammensetzung umfasst:
1 bis 20 Gew.-% Peroxid,
1-5 Gew.-% Base, wobei die Base aus der Gruppe ausgewählt ist, welche aus Tetraethylammoniumhydroxid,
Trimethylphenylammoniumhydroxid, Tetramethylammoniumhydroxid, Tetrabutylammoniumhydroxid,
Cholinhydroxid, Ammoniumhydroxid und Kombinationen davon besteht,
0,1-1 Gew.-% schwache Säure, wobei die schwache Säure Carbonsäure, ausgewählt aus
der Gruppe, welche aus Citronensäure, Oxalsäure, Malonsäure, Milchsäure, Adipinsäure,
Essigsäure, Iminodiessigsäure und Kombinationen davon besteht, ist,
0,5 bis 2 Gew.-% Ammoniumsalz, wobei das Ammoniumsalz aus der Gruppe ausgewählt ist,
welche aus Ammoniumcitrat, Ammoniumacetat, Ammoniummalonat, Ammoniumadipat, Ammoniumlactat,
Ammoniumiminodiacetat, Ammoniumchlorid, Ammoniumbromid, Ammoniumfluorid, Ammoniumbifluorid,
Ammoniumsulfat und Kombinationen davon besteht,
25 bis 5000 ppm Korrosionsinhibitor, wobei der Korrosionsinhibitor aus der Gruppe
ausgewählt ist, welche besteht aus 1,2,4-Triazol, Benzotriazol, Methyl-IHbenzotriazol,
2-Aminobenthothiazol, Benzimidazol, 2-Mercapto-5-methylbenzimidaol, 8-Hydroxychinolin,
1-Thioglycerol, Ascorbinsäure, Pyrazol und Kombinationen davon oder 1-15 Gew.-% von
einem langkettigen oder gemischten Alkylammoniumhydroxid, wobei das langkettige oder
gemischte Alkylammoniumhydroxid aus der Gruppe ausgewählt ist, welche aus Trimethylphenylammoniumhydroxid,
Cholinhydroxid, Tetrabutylammoniumhydroxid und gemischtem Tetraalkylammoniumhydroxid
besteht, wobei das Alkylammoniumkation Alkylreste mit mindestens zwei unterschiedlichen
Kettenlängen enthält,
10 bis 5000 ppm langkettiges organisches Amin oder Polyalkylamin, wobei das langkettige
organische Amin oder Polyalkylamin aus der Gruppe ausgewählt ist, welche aus Hexylamin,
grenzflächenaktiven Salzen von Hexylamin, Octylamin, grenzflächenaktiven Salzen von
Octylamin, Dicyclohexylamin, grenzflächenaktiven Salzen von Dicyclohexylamin, Polyethylenimin,
grenzflächenaktiven Salzen von Polyethylenimin, Decylamin, grenzflächenaktiven Salzen
von Decylamin, Dodecylamin, grenzflächenaktiven Salzen von Dodecylamin und Kombinationen
davon besteht,
und
wobei der Rest Lösungsmittel ist,
wobei die Zusammensetzung einen pH-Wert in einem Bereich von 7 bis 11,5 aufweist.
2. Zusammensetzung nach Anspruch 1, wobei das Peroxid aus der Gruppe ausgewählt ist,
welche aus Wasserstoffperoxid, Ammoniumpersulfat, Persäure, Peroxybenzoesäure und
Kombinationen davon besteht, und bevorzugt Wasserstoffperoxid ist.
3. Zusammensetzung nach einem der vorhergehenden Ansprüche, wobei die Base Tetraethylammoniumhydroxid
ist.
4. Zusammensetzung nach einem der vorhergehenden Ansprüche, wobei die schwache Säure
Citronensäure ist.
5. Zusammensetzung nach einem der vorhergehenden Ansprüche, wobei das Ammoniumsalz Ammoniumcitrat
ist.
6. Zusammensetzung nach einem der vorhergehenden Ansprüche, wobei der Korrosionsinhibitor
Methyl-1R-benzotriazol ist.
7. Zusammensetzung nach einem der vorhergehenden Ansprüche, wobei das langkettige oder
gemischte Alkylammoniumhydroxid Trimethylphenylammoniumhydroxid ist.
8. Zusammensetzung nach einem der vorhergehenden Ansprüche, wobei das langkettige organische
Amin oder Polyalkylamin Octylamin oder Polyethylenimin ist.
9. Zusammensetzung nach einem der vorhergehenden Ansprüche, wobei das Lösungsmittel aus
der Gruppe ausgewählt ist, welche aus deionisiertem Wasser, gereinigtem Wasser, destilliertem
Wasser, Dimethylsulfoxid, Dimethylsulfon, Sulfolan, n-Methylpyrrolidon, Dipropylenglycolmethylether,
Tripropylenglycolmethylether und Kombinationen davon besteht, und bevorzugt Wasser
ist.
10. Zusammensetzung nach einem der vorhergehenden Ansprüche, ferner umfassend 0,01 bis
1 Gew.-% von einem chelatbildenden Mittel, ausgewählt aus der Gruppe, welche aus Glycin,
Iminodiessigsäure, Nitrilotriessigsäure, Glutaminsäure, Picolinsäure, Ethylendiamintetraessigsäure
und Kombinationen davon besteht.
11. Zusammensetzung nach einem der vorhergehenden Ansprüche, ferner umfassend 100 ppm
bis 1000 ppm Radikalfänger, ausgewählt aus der Gruppe, welche aus Manitol, Polyalkylaminen,
(2,2,6,6-Tetramethylpiperidin-1-yl)oxyl, Diphenylaminen und Kombinationen davon besteht.
12. Zusammensetzung nach einem der vorhergehenden Ansprüche, ferner umfassend 10 bis 5000
ppm von langkettigen organischen Säuren, wobei die langkettige organische Säure aus
der Gruppe ausgewählt ist, welche aus Decansäure, Dodecansäure, Dimersäure und Kombinationen
davon besteht.
13. Zusammensetzung nach Anspruch 12, wobei die langkettige organische Säure Decansäure
ist.
14. Zusammensetzung nach einem der vorhergehenden Ansprüche, wobei die Zusammensetzung
Wasserstoffperoxid, Tetraethylammoniumhydroxid, Citronensäure, Ammoniumcitrat, Methyl-1H-benzotriazol
oder Trimethylphenylammoniumhydroxid, Polyethylenimin oder Octylamin, und Wasser umfasst.
15. Zusammensetzung nach einem der vorhergehenden Ansprüche, wobei das Peroxid von 3 Gew.-%
bis 15 Gew.-% oder von 1 bis 9 Gew.-% oder zu 15 Gew.-% vorhanden ist.
16. Zusammensetzung nach einem der vorhergehenden Ansprüche, wobei der pH-Wert in einem
Bereich von 8 bis 10,5 und bevorzugt von 8,5 bis 9,5 liegt.
17. System zum selektiven Beseitigen von PVD-Titannitrid der Formel TiN oder TiNxOy, wobei
x = 0 bis 1,3 und y = 0 bis 2, von einer Oberfläche einer mikroelektronischen Vorrichtung,
umfassend:
die Halbleitervorrichtung, umfassend das PVD-Titannitrid und ein zweites Material,
ausgewählt aus Cu, Co, CVD-Titannitrid dielektrischem Material, dielektrischem Material
mit niedrigem k-Wert und Kombinationen davon,
die Zusammensetzung nach Anspruch 1 zum selektiven Beseitigen des PVD-Titannitrids,
wobei das PVD-Titannitrid und das zweite Material mit der Zusammensetzung in direktem
Kontakt sind.
18. Verfahren von selektivem Beseitigen von PVD-Titannitrid der Formel TiN oder TiNxOy,
wobei x = 0 bis 1,3 und y = 0 bis 2, umfassend:
Bereitstellen einer Halbleitervorrichtung, umfassend das PVD-Titannitrid und ein zweites
Material, ausgewählt aus Cu, Co, CVD-Titannitrid dielektrischem Material, dielektrischem
Material mit niedrigem k-Wert;
Inkontaktbringen der Halbleitervorrichtung mit der Zusammensetzung nach Anspruch 1;
und
selektiv Beseitigen des PVD-Titannitrids,
wobei das PVD-Titannitrid und das zweite Material mit der Zusammensetzung in direktem
Kontakt sind, und die Zusammensetzung eine Selektivität bei der Beseitigung von PVD-Titannitrid
vs. CVD-Titannitrid von > 2 bereitstellt, wenn das zweite Material CVD-Titannitrid
ist.
19. System nach Anspruch 17 oder Verfahren nach Anspruch 18, wobei das PVD-Titannitrid
die Formel TiN aufweist.
1. Composition pour éliminer sélectivement le nitrure de titane PVD de formule TiN ou
TiNxOy, où x = 0 à 1,3 et y = 0 à 2 d'un dispositif à semi-conducteur comprenant le
nitrure de titane PVD et un deuxième matériau choisi dans le groupe constitué de Cu,
Co, nitrure de titane CVD, un matériau diélectrique, un matériau diélectrique à k
faible, et des combinaisons de ceux-ci, la composition comprenant :
1 à 20 % en poids de peroxyde,
1 à 5 % en poids de base, dans laquelle la base est choisie dans le groupe constitué
des hydroxyde de tétraéthylammonium, hydroxyde de triméthylphénylammonium, hydroxyde
de tétraméthylammonium, hydroxyde de tétrabutylammonium, hydroxyde de choline, hydroxyde
d'ammonium, et des combinaisons de ceux-ci,
0,1 à 1 % en poids d'acide faible, dans laquelle l'acide faible est un acide carboxylique
choisi dans le groupe constitué des acide citrique, acide oxalique, acide malonique,
acide lactique, acide adipique, acide acétique, acide iminodiacétique, et des combinaisons
de ceux-ci,
0,5 à 2 % en poids de sel d'ammonium, dans laquelle le sel d'ammonium est choisi dans
le groupe constitué des citrate d'ammonium, acétate d'ammonium, malonate d'ammonium,
adipate d'ammonium, lactate d'ammonium, iminodiacétate d'ammonium, chlorure d'ammonium,
bromure d'ammonium, fluorure d'ammonium, bifluorure d'ammonium, sulfate d'ammonium,
et des combinaisons de ceux-ci,
25 à 5000 ppm d'inhibiteur de corrosion, dans laquelle l'inhibiteur de corrosion est
choisi dans le groupe constitué des 1,2,4-triazole, benzotriazole, méthyl-1H-benzotriazole,
2-aminobenthothiazole, benzimidazole, 2-mercapto-5-méthylbenzimidazole, 8-hydroxyquinoléine,
1-thioglycérol, acide ascorbique, pyrazole, et des combinaisons de ceux-ci ou 1 à
15 % en poids d'un hydroxyde d'alkylammonium à chaîne longue ou mixte, dans laquelle
l'hydroxyde d'alkylammonium à chaîne longue ou mixte est choisi dans le groupe constitué
des hydroxyde de triméthylphénylammonium, hydroxyde de choline, hydroxyde de tétrabutylammonium
et hydroxyde de tétraalkylammonium mixte, dans laquelle le cation alkylammonium contient
des groupes alkyle d'au moins deux longueurs de chaîne différentes,
10 à 5000 ppm d'amine ou polyalkylamine organique à chaîne longue, dans laquelle l'amine
ou polyalkylamine organique à chaîne longue est choisie dans le groupe constitué des
hexylamine, sels tensioactifs d'hexylamine, octylamine, sels tensioactifs d'octylamine,
dicyclohexylamine, sels tensioactifs de dicyclohexylamine, polyéthylénimine, sels
tensioactifs de polyéthylénimine, décylamine, sels tensioactifs de décylamine, dodécylamine,
sels tensioactifs de dodécylamine, et des combinaisons de ceux-ci,
et
le reste est un solvant,
la composition ayant un pH dans la plage de 7 à 11,5.
2. Composition selon la revendication 1, dans laquelle le peroxyde est choisi dans le
groupe constitué des peroxyde d'hydrogène, persulfate d'ammonium, acide peracidique,
acide peroxybenzoïque, et des combinaisons de ceux-ci et est de préférence le peroxyde
d'hydrogène.
3. Composition selon l'une quelconque des revendications précédentes, dans laquelle la
base est l'hydroxyde de tétraéthylammonium.
4. Composition selon l'une quelconque des revendications précédentes, dans laquelle l'acide
faible est l'acide citrique.
5. Composition selon l'une quelconque des revendications précédentes, dans laquelle le
sel d'ammonium est le citrate d'ammonium.
6. Composition selon l'une quelconque des revendications précédentes, dans laquelle l'inhibiteur
de corrosion est le méthyl-1H-benzotriazole.
7. Composition selon l'une quelconque des revendications précédentes, dans laquelle la
chaîne longue ou un hydroxyde d'alkylammonium mixte est l'hydroxyde de triméthylphénylammonium.
8. Composition selon l'une quelconque des revendications précédentes, dans laquelle l'amine
ou polyalkylamine organique à chaîne longue est l'octylamine ou la polyéthylénimine.
9. Composition selon l'une quelconque des revendications précédentes, dans laquelle le
solvant est choisi dans le groupe constitué des eau désionisée, eau purifiée, eau
distillée, diméthylsulfoxyde, diméthylsulfone, sulfolane, n-méthylpyrrolidone, éther
méthylique de dipropylèneglycol, éther méthylique de tripropylèneglycol, et des combinaisons
de ceux-ci et est de préférence l'eau.
10. Composition selon l'une quelconque des revendications précédentes, qui comprend en
outre de 0,01 à 1 % en poids d'un agent chélateur choisi dans le groupe constitué
des glycine, acide iminodiacétique, acide nitrilotriacétique, acide glutamique, acide
picolinique, acide éthylènediaminetétraacétique, et des combinaisons de ceux-ci.
11. Composition selon l'une quelconque des revendications précédentes, qui comprend en
outre de 100 ppm à 1000 ppm de piégeurs de radicaux choisis dans le groupe constitué
des mannitol, polyalkylamines, (2,2,6,6-tétraméthylpipéridin-1-yl)oxyle, diphénylamines,
et des combinaisons de ceux-ci.
12. Composition selon l'une quelconque des revendications précédentes, qui comprend en
outre de 10 à 5000 ppm d'acides organiques à chaîne longue, dans laquelle l'acide
organique à chaîne longue est choisi dans le groupe constitué de l'acide décanoïque,
l'acide dodécanoïque, un acide dimère et des combinaisons de ceux-ci.
13. Composition selon la revendication 12, dans laquelle l'acide organique à chaîne longue
est l'acide décanoïque.
14. Composition selon l'une quelconque des revendications précédentes, la composition
comprenant du peroxyde d'hydrogène, de l'hydroxyde de tétraéthylammonium, de l'acide
citrique, du citrate d'ammonium, du méthyl-1H-benzotriazole ou de l'hydroxyde de triméthylphénylammonium,
de la polyéthylénimine ou de l'octylamine, et de l'eau.
15. Composition selon l'une quelconque des revendications précédentes, dans laquelle le
peroxyde est présent de 3 % en poids à 15 % en poids ou de 1 à 9 % en poids ou à 15
% en poids.
16. Composition selon l'une quelconque des revendications précédentes, dans laquelle le
pH est dans la plage de 8 à 10,5 et de préférence de 8,5 à 9,5.
17. Système pour éliminer sélectivement le nitrure de titane PVD de formule TiN ou TiNxOy,
où x = 0 à 1,3 et y = 0 à 2 d'une surface d'un dispositif microélectronique, comprenant
:
le dispositif à semi-conducteur comprenant le nitrure de titane PVD et un deuxième
matériau choisi parmi Cu, Co, nitrure de titane CVD, un matériau diélectrique, un
matériau diélectrique à k faible, et des combinaisons de ceux-ci, la composition comprenant
:
la composition selon la revendication 1 pour éliminer sélectivement le nitrure de
titane PVD, dans lequel le nitrure de titane PVD et le deuxième matériau sont en contact
direct avec la composition.
18. Procédé d'élimination sélective du nitrure de titane PVD de formule TiN ou TiNxOy,
où x = 0 à 1,3 et y = 0 à 2 comprenant :
la fourniture d'un dispositif à semi-conducteur comprenant le nitrure de titane PVD
et un deuxième matériau choisi parmi Cu, Co, nitrure de titane CVD, un matériau diélectrique,
un matériau diélectrique à k faible ;
la mise en contact du dispositif à semi-conducteur avec la composition selon la revendication
1 ; et
l'élimination sélective du nitrure de titane PVD,
dans lequel le nitrure de titane PVD et le deuxième matériau sont en contact direct
avec la composition, et la composition présente une sélectivité d'élimination du nitrure
de titane PVD vs. nitrure de titane CVD > 2, lorsque le deuxième matériau est le nitrure
de titane CVD.
19. Système selon la revendication 17 ou procédé selon la revendication 18, dans lequel
le nitrure de titane PVD est de formule TiN.