(19)
(11) EP 3 112 315 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
13.05.2020 Bulletin 2020/20

(21) Application number: 14884030.9

(22) Date of filing: 02.09.2014
(51) International Patent Classification (IPC): 
B81C 1/00(2006.01)
G04F 5/14(2006.01)
(86) International application number:
PCT/CN2014/000816
(87) International publication number:
WO 2015/127577 (03.09.2015 Gazette 2015/35)

(54)

METHOD FOR FILLING CSAC ABSORPTION CELLS WITH HIGH-PURITY ALKALI METAL

VERFAHREN ZUM FÜLLEN VON ABSORPTIONSZELLEN EINER CHIP-SKALIERTEN ATOMUHR MIT HOCHREINEM ALKALIMETALL

PROCÉDÉ DE REMPLISSAGE DE CELLULES D'ABSORPTION D' UN CSAC AVEC UN MÉTAL ALCALIN À HAUTE PURETÉ


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 27.02.2014 CN 201410067976

(43) Date of publication of application:
04.01.2017 Bulletin 2017/01

(73) Proprietor: The Fifty-Fifth Research Institute of China Electronic Technology Group Corporation
Nanjing Jiangsu 210016 (CN)

(72) Inventors:
  • ZHU, Jian
    Nanjing Jiangsu 210016 (CN)
  • HELL, Erwin
    Nanjing Jiangsu 210016 (CN)

(74) Representative: Hryszkiewicz, Danuta et al
Matthias Scholl, Inc. Friedrichstrasse 123
10117 Berlin
10117 Berlin (DE)


(56) References cited: : 
EP-A2- 2 362 281
CN-A- 103 864 007
US-A1- 2005 007 118
US-A1- 2012 243 088
CN-A- 102 515 083
JP-A- 2013 125 907
US-A1- 2007 034 809
US-B2- 7 893 780
   
  • M. HASEGAWA ET AL: "Microfabrication of cesium vapor cells with buffer gas for MEMS atomic clocks", SENSORS AND ACTUATORS A: PHYSICAL, vol. 167, no. 2, 1 June 2011 (2011-06-01), pages 594-601, XP055006155, ISSN: 0924-4247, DOI: 10.1016/j.sna.2011.02.039
  • LI-ANNE LIEW ET AL.: 'Microfabricated alkali atom vapor cells' APPLIED PHYSICS LETTERS vol. 84, no. ISSUE, May 2004, ISSN 0003-6951 pages 2694 - 2696, XP012061039
  • JING, YANFENG ET AL.: 'A REVIEW OF PROCESSING TECHNICS ON CPT CLOCK'S MINIATURE CELL' JOURNAL OF TIME AND FREQUENCY vol. 33, June 2010, pages 47 - 53, XP008182683
   
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

FIELD OF THE INVENTION



[0001] The present invention relates to a method for filling wafer-based chip-scale atomic clock absorption cells with a high-purity alkali metal.

BACKGROUND OF THE INVENTION



[0002] All our daily life, scientific research, navigation, surveying and mapping and other work can't be separated from time. Time measurement relates to two quantities-epochs and time intervals. Any natural phenomena with periodical changes can be used to measure time. As timing instruments have also constantly developed with humans' progress over 3,500 years, people's demand for timing accuracy is becoming higher and higher. As for timing instruments, people developed sundials which take advantage of the periodic change law of earth rotation to identify time changes, then sand clocks, astronomical clock towers, mechanical pendulum clocks, quartz clocks, atomic clocks and optical clocks. It is clear that all of them use the natural phenomena with periodic changes to measure time.

[0003] As one of the most accurate timing instruments at present, the theory of the atomic clocks was first put forward in the 1930s and then the atomic clocks were produced. Gradually, more and more atomic clocks have been used in national defense and scientific research. In recent years, miniature chip-scale atomic clocks produced by using MEMS (Micro-Electro-Mechanical Systems) technology have begun to develop. The development of clocks will make breakthroughs in receivers' clock performance, be more widely applied to timing frequency standards of all kinds and have a revolutionary social impact.

[0004] An atomic clock is an instrument which realizes accurate time measurement by using atomic transition radiation frequency between hyperfine energy levels in the atomic ground state. The miniature atomic clock based on the CPT (Coherent Population Trapping) phenomenon is an inexorable development trend of atomic clock miniaturization. And the miniaturization of its core chip alkalis metal vapor cavity plays a critical role in the miniaturization of the atomic clock.

[0005] At present, the technical methods for filling micro absorption cells with an alkali metal can mainly be divided into two categories. One category is to directly inject a pure alkali metal (such as rubidium and cesium) into the absorption cell. This category needs an sophisticated large vacuum equipment and a strict vacuum environment. A trace of residual oxygen in the cavity may lead to the oxidization of the alkali metal and then reduce the service life of the atomic clocks. The second category is to directly inject alkali metal compounds into the absorption cell cavity to produce the corresponding alkali metal through chemical reactions. This category needs to strictly control the amount of the compounds which are injected into the absorption cell while the residual impurities of the reactions may remain in the absorption cell and then affect the atomic clock performance. In addition, the two categories share the same disadvantage: absorption cells need to be filled one by one so it is difficult to realize production on a large scale.

SUMMARY OF THE INVENTION



[0006] The present invention puts forward a method for filling wafer-based chip-scale atomic clock absorption cells with a high-purity alkali metal. The present invention aims at overcoming the problem of the prior art that alkali metals are extremely prone to oxidization during the production of atomic clock absorption cells. Through the method of wafer level filling and partial reactions,

[0007] An atomic clock is an instrument which realizes accurate time measurement by using atomic transition radiation frequency between hyperfine energy levels in the atomic ground state. The miniature atomic clock based on the CPT (Coherent Population Trapping) phenomenon is an inexorable development trend of atomic clock miniaturization. And the miniaturization of its core chip alkalis metal vapor cavity plays a critical role in the miniaturization of the atomic clock.

[0008] JP 2013 125907 A discloses a method of manufacturing a gas cell of an atomic oscillator. The gas cell consists of a first substrate made of glass, a second substrate made of silicon, and a third substrate. In one embodiment of JP 2013125907 A, the method includes: forming a connecting groove, a first through hole, and a second through hole on the silicon substrate, wherein the first through hole and the second through hole penetrate the silicon substrate, and are connected to each other through the connecting groove; bonding the first substrate to one surface of the second substrate, placing an alkali metal generating agent in the second through hole, and bonding the third substrate to the other surface of the second substrate; irradiating the alkali metal generating agent by using a laser light to generate alkali metal gas, and filling the first through hole with the alkali metal gas; deforming the first substrate in the region where the connecting groove is formed and to eliminate the space between the first through hole and the second through hole, and enclosing the alkali metal gas in the first through hole. In addition, US 2012/243088 A1 recites a gas cell manufacturing method. The method includes: arranging solid substances at a plurality of holes each of which is provided on each of a plurality of cells; accommodating gas in inner spaces of the cells through an air flow path connected to the holes; and sealing the spaces by melting the solid substances to close the holes. In addition, US 7 893 780 B2 discloses an alkali beam cell system including a reversible alkali beam cell. The reversible alkali beam cell includes: a first chamber configured as a reservoir chamber to evaporate an alkali metal during a first time period and as a detection chamber to collect the evaporated alkali metal during a second time period; a second chamber configured as the detection chamber during the first time period and as the reservoir chamber during the second time period; and an aperture interconnecting the first and the second chambers.

[0009] At present, the technical methods for filling micro absorption cells with an alkali metal can mainly be divided into two categories. One category is to directly inject a pure alkali metal (such as rubidium and cesium) into the absorption cell. This category needs a sophisticated large vacuum equipment and a strict vacuum environment. A trace of residual oxygen in the cavity may lead to the oxidization of the alkali metal and then reduce the service life of the atomic clocks. The second category is to directly inject alkali metal compounds into the absorption cell cavity to produce the corresponding alkali metal through chemical reactions. This category needs to strictly control the amount of the compounds which are injected into the absorption cell while the residual impurities of the reactions may remain in the absorption cell and then affect the atomic clock performance. In addition, the two categories share the same disadvantage: absorption cells need to be filled one by one so it is difficult to realize production on a large scale.

SUMMARY OF THE INVENTION



[0010] The present invention puts forward a method for filling wafer-based chip-scale atomic clock absorption cells with a high-purity alkali metal. The present invention aims at overcoming the problem of the prior art that alkali metals are extremely prone to oxidization during the production of atomic clock absorption cells. Through the method of wafer level filling and partial reactions, the present invention realizes the filling of all absorption cells on the wafer at the same time to meet the demand for large-scale production of atomic clocks. The present invention is characterized by low cost and high efficiency.

[0011] Accordingly, the present invention defines a method according to claim 1. A preferred embodiment of the present invention is defined in claim 2.

[0012] The invention has the advantages of easy processes and rapid, low-cost, large-scale production of atomic clock alkali metal absorption cells.

BRIEF DESCRIPTION OF THE DRAWINGS



[0013] 

FIG. 1a is a schematic representation of using the MEMS ICP etching technique to form micro grooves 102, alkali metal placement cavity grooves 103 and absorption cell cavity grooves 104 on the double-side polished silicon wafer 101.

FIG. 1b is a schematic representation of using the three-layer wafer level anodic bonding technique to form prefabricated temporary micro flow channels 108, absorption cell cavities 104 and alkali metal placement cavities 103.

FIG. 1c is a schematic representation of making the alkali metal compound decompose by adjusting the temperature of the alkalis metal placement cavities 103 to produce alkali metal gas which passes through the prefabricated temporary micro flow channel and cooling part of the absorption cell cavity to make the alkali metal gas congeal in the absorption cell cavities.

FIG. 1d is a schematic representation of sealing all the alkali metal absorption cell cavities.

FIG. 2 is a schematic representation of a single alkali metal absorption cell of an atomic clock.



[0014] In the drawings, the following reference numbers are used: 101. double-side polished silicon wafers; 102. shallow micro grooves; 103. alkali metal compound placement cavities; 104. alkali metal absorption cell cavities; 105. sheet glass A; 106. alkali metal compounds; 107. sheet glass B; 108. temporary micro flow channels; 109. alkali metal vapor; 110. equipment for partial cooling; 111. high-purity solid alkali metal; 201. high-purity alkali metal; 202. silicon alkali metal absorption cell cavities; 203. upper-layer glass; and 204. lower-layer glass.

DETAILED DESCRIPTION OF THE EMBODIMENTS



[0015] A method for filling wafer-based chip-scale atomic clock absorption cells with a high-purity alkali metal comprising at least one of rubidium and cesium, wherein the method comprises:
  1. (1) using an MEMS ICP etching technique to carve a shallow microgroove (102) on the first side of a polished double-sided silicon wafer, to carve an array of absorption cell cavities within the scope of said microgroove, to carve a placement cavity within said scope of said microgroove at the center of said polished double-sided silicon wafer, wherein said absorption cell cavities and said placement cavity have a through hole structure running through both sides of said polished double sided silicon wafer;
  2. (2) bonding the second side of the polished double-sided silicon wafer with a first sheet glass through a a silicon-glass wafer level anodic bonding process, putting a precomputed amount of an alkali metal compound into the placement cavity and bonding the first side of the polished double-sided silicon wafer with a second sheet glass through a glass-silicon wafer level anodic bonding process, so that the shallow microgroove and said second sheet glass define a temporary flow channel for an alkali metal vapour;
  3. (3) controlling the intensity of a decomposition reaction of the alkali metal compound by separately adjusting the temperature of the placement cavity to decompose the alkali metal compound and to produce a needed amount of the alkali metal and vaporizing the alkali metal to produce said alkali metal vapour;
  4. (4) diffusing the alkali metal vapour through the temporary flow channel, and cooling the absorption cavities to condense the alkali metal vapour in the absorption cavities; and
  5. (5) re-bonding the first side of the polished double-sided silicon wafer with the first glass sheet with glass-silicon wafer level anodic bonding while applying an electrostatic force to make said first glass sheet bending under the influence of said force, in such a way that the temporary flow channel is eliminated so that the absorption cells are sealed at the same time.


[0016] The glass-silicon-glass three-layer wafer level anodic bonding technique which is used in the present invention is carried out in two steps: the first step is to form temporary micro flow channels for alkali metal vapor; and the second step is to reuse the anodic bonding technique to realize the sealing of the alkali metal compound.

[0017] Make the alkali metal compound in the placement cavities react chemically by separately adjusting the temperature of the placement cavities to produce high-purity alkali metal through decomposition. The intensity of decomposition reactions can be controlled by adjusting the temperature of the alkali metal placement cavities.

[0018] The flow channel of the alkali metal vapor is that the alkali metal vapor diffuses into the absorption cell through silicon-glass temporary micro flow channel and congeals in the absorption cell through partial cooling.

[0019] Make the silicon wafer with the temporary micro flow channels re-bond with the sheet glass. During the re-bonding process, increase pressure or voltage to make the sheet glass bend under the influence of electrostatic force to eliminate prefabricated temporary micro channels and realize the sealing of all alkali metal absorption cell cavities.

EMBODIMENTS



[0020] Carve a shallow micro groove 102 which is 1-2 µm in depth and 80-90 mm in diameter on one side of a 4-cun double-side polished silicon wafer 101, and an alkali metal compound placement cavity 103 which is 20 mm in diameter at the center of the double-side polished silicon wafer 101. Carve an array of alkali metal absorption cell cavities 104 in square which is 2 mm in length within the scope of the shallow micro groove 102 on the double-side polished silicon wafer 101. The alkali metal compound placement cavity 103 and the alkali metal absorption cell cavity 104 both have a through-hole structure, running through the double-side polished silicon wafer 101, as shown in FIG. 1a.

[0021] Bond the side of the double-side polished silicon wafer 101 without the shallow micro groove 102 with a sheet glass A 105 through the silicon-glass wafer level anodic bonding. Put a well-computed amount of alkali metal compound 106 in the alkali metal compound cavity 103, and bond the side of the double-side polished silicon wafer 101 with the shallow micro groove 102 with a sheet glass B 107 through the silicon-glass wafer level anodic bonding. The shallow micro groove 102 and the sheet glass B 107 constitute the micro flow channel of the alkali metal vapor together to form a small vacuum environment, as shown in FIG. 1b.

[0022] Separately adjust the temperature of the alkali metal compound placement cavity 103 by a reaction device to make the alkali metal compound 106 decompose to separate out alkali metal vapor 109. The alkali metal vapor 109 diffuses in the whole cavity including the alkali metal absorption cell cavity 104 through the temporary micro flow channel 108. An equipment for partial cooling 110 can adjust the temperature of the double-side polished silicon wafer 101 excluding the alkali metal compound placement cavity 103. The alkali metal vapor 109 congeals at the bottom of the alkali metal absorption cell cavity 104 to become a high-purity solid alkali metal 111 used to fill the alkali metal absorption cell cavity 104, as shown in FIG. 1c.

[0023] Re-bond the double-side polished silicon wafer 101 with the sheet glass B 107 through the silicon-glass wafer level anodic bonding. During the bonding process, increase pressure (1800 mbar-2000 mbar) or voltage (-800 V- -1000 V) to make the sheet glass B 107 bend under the influence of electrostatic force to eliminate the prefabricated temporary micro flow channel 108 and realize the sealing of all the alkali metal absorption cell cavities 104, as shown in FIG. 1d.

[0024] As shown in FIGS. 1a to 1d, the atomic clock alkali metal absorption cells made by the wafer level technique can be cut into individual atomic clock alkali metal absorption cells by slicing the wafer. As shown in FIG. 2, a high-purity alkali metal 201 is placed in a silicon alkali metal absorption cell cavity 202 which is sealed by an upper-layer glass 203 and a lower glass 204.


Claims

1. A method for filling wafer-based chip-scale atomic clock absorption cells with a high-purity alkali metal (201) comprising at least one of rubidium and cesium, wherein the method comprises:

(1) using an MEMS ICP etching technique to carve a shallow microgroove (102) on the first side of a polished double-sided silicon wafer (101),
to carve an array of absorption cell cavities (104) within the scope of said microgroove (102),
to carve a placement cavity (103) within said scope of said microgroove (102) at the center of said polished double-sided silicon wafer (101),
wherein said absorption cell cavities (104) and said placement cavity (103) have a through hole structure running through both sides of said polished double-sided silicon wafer (101);

(2) bonding the second side of the polished double-sided silicon wafer (101) with a first sheet glass (105) through a glass-silicon wafer level anodic bonding process,
putting a precomputed amount of an alkali metal compound (106) into the placement cavity (103),
and bonding the first side of the polished double-sided silicon wafer (101) with a second sheet glass (107) through a glass-silicon wafer level anodic bonding process, so that the shallow microgroove (102) and said second sheet glass (107) define a temporary flow channel (108) for an alkali metal vapour (109);

(3) controlling the intensity of a decomposition reaction of the alkali metal compound (106) by separately adjusting the temperature of the placement cavity to decompose the alkali metal compound (106) and to produce a needed amount of the alkali metal (201), and vaporizing the alkali metal to produce said alkali metal vapour (109);

(4) diffusing the alkali metal vapour (109) through the temporary flow channel (108),
and cooling the absorption cavities (104) to condense the alkali metal vapour (109) in the absorption cavities (104); and

(5) re-bonding the first side of the polished double-sided silicon wafer (101) with the first glass sheet (107) with glass-silicon wafer level anodic bonding while applying an electrostatic force to make said first glass sheet (107) bending under the influence of said force, in such a way that the temporary flow channel (108) is eliminated so that the absorption cells (104) are sealed at the same time.


 
2. The method of claim 1, characterized in that in (5), a pressure or a voltage is applied on the first sheet glass (107) to bend the first sheet glass under the influence of said electrostatic force and to eliminate the temporary flow channel (108).
 


Ansprüche

1. Verfahren zum Füllen von Wafer-basierten Chip-Scale-Atomuhr-Absorptionszellen mit einem Alkalimetall (201) mit hoher Reinheit, umfassend mindestens eines von Rubidium und Cäsium, wobei das Verfahren umfasst:

(1) Verwenden einer MEMS ICP-Ätztechnik, um eine seichte Mikrorille (102) auf der ersten Seite eines polierten doppelseitigen Silicium-Wafers (101) einzuritzen; um ein Array von Absorptionszellhohlräumen (104) innerhalb des Umfangs der genannten Mikrorille (102) einzuritzen, um einen Platzierungshohlraum (103) innerhalb des Umfangs der genannten Mikrorille (102) im Zentrum des genannten polierten doppelseitigen Silicium-Wafers (101) einzuritzen, wobei die genannten Absorptionszellhohlräume (104) und der genannte Platzierungshohlraum (103) eine Durchgangslochstruktur aufweisen, die durch beide Seiten des genannten polierten doppelseitigen Silicium-Wafers (101) verläuft;

(2) Bonden der zweiten Seite des polierten doppelseitigen Silicium-Wafers (101) mit einer ersten Glasplatte (105) durch ein anodisches Bondverfahren auf Glas-Silicium-Wafer-Ebene, Einführen einer vorberechneten Menge einer Alkalimetallverbindung (106) in den Platzierungshohlraum (103), und Bonden der ersten Seite des polierten doppelseitigen Silicium-Wafers (101) mit einer zweiten Glasplatte (107) durch ein anodisches Bondverfahren auf Glas-Silicium-Wafer-Ebene, so dass die seichte Mikrorille (102) und die genannte zweite Glasplatte (107) einen temporären Strömungskanal (108) für einen Alkalimetalldampf (109) definieren;

(3) Steuern der Intensität einer Zersetzungsreaktion der Alkalimetallverbindung (106) durch getrenntes Einstellen der Temperatur des Platzierungshohlraums, um die Alkalimetallverbindung (106) zu zersetzen, und um eine benötigte Menge des Alkalimetalls (201) zu erzeugen, und Verdampfen des Alkalimetalls, um den genannten Alkalimetalldampf (109) zu erzeugen;

(4) Diffundieren des Alkalimetalldampfs (109) durch den temporären Strömungskanal (108), und Kühlen der Absorptionshohlräume (104), um den Alkalimetalldampf (109) in den Absorptionshohlräumen (104) zu kondensieren; und

(5) erneutes Bonden der ersten Seite des polierten doppelseitigen Silicium-Wafers (101) mit der ersten Glasplatte (107) mit anodischem Bonden auf Glas-Silicium-Wafer-Ebene, während eine elektrostatische Kraft ausgeübt wird, um zu bewirken, dass sich die genannte erste Glasplatte (107) unter dem Einfluss der genannten Kraft in einer solchen Weise biegt, dass der temporäre Strömungskanal (108) eliminiert wird, so dass die Absorptionszellen (104) gleichzeitig versiegelt werden.


 
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass in (5) ein Druck oder eine Spannung an die erste Glasplatte (107) angelegt wird, um die erste Glasplatte unter dem Einfluss der genannten elektrostatischen Kraft zu biegen, und um den temporären Strömungskanal (108) zu eliminieren.
 


Revendications

1. Procédé de remplissage de cellules d'absorption d'horloge atomique à l'échelle de la puce à base de plaquette avec un métal à haute pureté (201) comprenant au moins un élément parmi le rubidium et le césium, ce procédé comprenant :

(1) l'utilisation d'une technique de gravure MEMS ICP pour graver une micro-gorge superficielle (102) sur la première face d'une plaquette de silicone à double face polie (101), pour graver un réseau de cavités de cellules d'absorption (104) dans la portée de la dite micro-gorge (102), pour graver une cavité de placement (103) dans ladite portée de la dite micro-gorge (102) au centre de ladite plaquette de silicone à double face polie (101), lesdites cavités de cellules d'absorption (104) et ladite cavité de placement (103) ayant une structure de trou traversant passant à travers les deux faces de ladite plaquette de silicone à double face polie (101) ;

(2) le liage de la seconde face de la plaquette de silicone à double face polie (101) avec une première feuille de verre (105) par un procédé de liage anodique au niveau de la plaquette en verre-silicone, mise d'un volume précalculé de composé métallique alcalin (106) dans la cavité de placement (103), et liage de la plaquette de silicone à double face polie (101) avec une seconde feuille de verre (107) par un procédé de liage anodique au niveau de la plaquette en verre-silicone, de sorte que la micro-gorge superficielle (102) et ladite seconde feuille de verre (107) définissent un canal d'écoulement temporaire (108) pour une vapeur métallique alcaline (109) ;

(3) le contrôle de l'intensité d'une réaction de décomposition du composé métallique alcalin (106) en réglant séparément la température de la cavité de placement pour décomposer le composé métallique alcalin (106) et pour produire un volume nécessaire de métal alcalin (201), et vaporisation du métal alcalin pour produire ladite vapeur métallique alcaline (109) ;

(4) diffusion de la vapeur métallique alcaline (109) par le canal d'écoulement temporaire (108), et refroidissement des cavités d'absorption (104) pour condenser la vapeur métallique alcaline (109) dans les cavités d'absorption (104) ; et

(5) reliage de la première face de la plaquette en silicone à double face polie (101) avec la première feuille de verre (107) par liage anodique au niveau de la plaquette verre-silicone tout en appliquant une force électrostatique afin de faire se recourber ladite première feuille de verre (107) sous l'influence de ladite force, de sorte que le canal d'écoulement temporaire (108) est éliminé de manière à ce que les cellules d'absorption (104) soient scellées en même temps.


 
2. Procédé selon la revendication 1, caractérisé en ce que, en (5), une pression ou une tension est appliquée sur la première feuille de verre (107) pour recourber la première feuille de verre sous l'influence de ladite force électrostatique et pour éliminer le canal d'écoulement temporaire (108).
 




Drawing








Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description