(19)
(11) EP 3 152 536 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
13.05.2020 Bulletin 2020/20

(21) Application number: 15803319.1

(22) Date of filing: 20.01.2015
(51) International Patent Classification (IPC): 
G01J 4/00(2006.01)
(86) International application number:
PCT/US2015/000009
(87) International publication number:
WO 2015/187202 (10.12.2015 Gazette 2015/49)

(54)

BEAM FOCUSING AND BEAM COLLECTING OPTICS

STRAHLENFOKUSSIERUNG UND STRAHLBÜNDELUNGSOPTIK

OPTIQUE DE FOCALISATION DE FAISCEAU ET DE CAPTAGE DE FAISCEAU


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 06.06.2014 US 201461997589 P
04.11.2014 US 201414121915

(43) Date of publication of application:
12.04.2017 Bulletin 2017/15

(73) Proprietor: J.A. Woollam Co., Inc.
Lincoln, NE 68508 (US)

(72) Inventors:
  • LIPHARDT, Martin, M.
    Lincoln, NE 68523 (US)
  • HALE, Jeffrey, S.
    Lincoln, NE 68521 (US)
  • HE, Ping
    Lincoln, NE 68512 (US)
  • PFEIFFER, Galen, L.
    Roca, NE 68430 (US)

(74) Representative: Beck Greener LLP 
Fulwood House 12 Fulwood Place
London WC1V 6HR
London WC1V 6HR (GB)


(56) References cited: : 
US-A- 5 969 818
US-A1- 2006 268 272
US-A1- 2013 070 234
US-B1- 7 304 792
US-B2- 7 095 498
US-A1- 2004 125 369
US-A1- 2008 037 015
US-A1- 2013 321 810
US-B1- 8 339 602
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] This Application Claims Benefit of Provisional Application Serial No. 61/997,589, publication number US-A-2015/0355029, Filed 06/06/2014.

    TECHNICAL FIELD



    [0002] The present invention relates to focusing beams of electromagnetic radiation onto samples, and more particularly to a reflective optics system that requires the presence of both convex and a concave mirrors that have beam reflecting surfaces. Application thereof achieves focusing of a beam of electromagnetic radiation with minimized effects on a polarization state of an input beam state of polarization that results from adjustment of angles of incidence and reflections from the various mirrors involved.

    BACKGROUND



    [0003] It is known to focus beams of electromagnetic radiation onto samples, such as in the practice of ellipsometry, and said focusing can be achieved using refractive or reflective optics. Numerous Patents provide insight this in general, but a particularly relevant one is Patent No. 5,969,818 to Johs et al. This Patent is specifically disclosed as it describes a "Beam Folding Optics", (best shown in Fig. 5 thereof), that comprises four similar mirrors oriented such that reflections from the first and second thereof define a plane of incidence that is substantially orthogonal to a plane of incidence formed by reflections for the third and fourth thereof. The result of applying said Beam directing Optics is to direct a beam of electromagnetic radiation in a desired direction that is other than along a locus of a beam input to said system, but because of polarization state change cancellation effects of reflections from the first two mirrors, and reflections from the last two mirrors, the system has essentially no effect on the polarization state of a beam exiting said Beam Folding Optics, as compared to that of a beam input thereto. Other Patents that describe the "Beam Folding Optics" are: 7,746,472; 7,746,471; 7,633,625; 7,616,319; 7,505,134; 7,336,361; 7,265,838; 7,277,171; 7,265,838; 7,215,424; 7,158,231; 6,859,278; 6,822,738; 6,804,004; and 6,549,282. Another, very recent Patent to Li et al., No. 8,767,209, is disclosed as it describes forming angles between incoming and reflected beams of electromagnetic radiation. This is very different from forming angles between planes formed by two sets of incoming and reflected beams, however, as is done in the Present Invention. Additional Patents are further disclosed primarily as they describe beam focusing using mirrors. Said additional Patents are: 4,790,659; 5,048,970; 5,608,526; 5,798,837; 5,917,594; 6,600,560; 6,734,967; 6,795,185; 6,819,423; 6,829,049; 6,943,880; 7,095,498; 7,130,039; 7,184,145; 7,248,364; 7,289,219; 7,359,052; 7,369,233; 7,505,133; 7,860,040 and 8,030,632.

    [0004] The present invention builds on the insight provided primarily by the 818 Patent, but adds focusing capability to the system by providing both convex and concave mirrors in a system that also utilizes the effect of substantially orthogonal planes, but does not require that four primary mirrors involved to be of similar construction.

    DISCLOSURE OF THE INVENTION



    [0005] The present invention is a system for providing a focused beam (FB) of electromagnetic radiation onto a location on a sample (SAM), and in particular the present invention is a reflective optics system (RFO) sequentially comprising first (M1), second (M2), third (M3) and fourth (M4) mirrors. Each of said four mirrors (M1) (M2) (M3 (M4) provides a reflective surface, with said third (M3) and fourth (M4) mirrors providing convex and concave reflective surfaces, respectively.

    [0006] In use an input beam (IB) of electromagnetic radiation having a specific polarization state is directed toward said first (M1) mirror and reflects from said reflective surface thereof, such that a first plane of incidence (P1) is formed between said incident beam (IB) and said beam which is reflected from said reflective surface of said first (M1) mirror. The beam reflected from the reflective surface of said first (M1) mirror is directed toward said second mirror (M2) and reflects from said reflective surface thereof toward said convex third (M3) mirror, from which it reflects at an off-center location thereon toward said concave fourth (M4) mirror, wherefrom it is reflected by the reflective surface thereof toward said sample (SAM) as a focused (FB) outgoing beam (OB). Said beam reflected from the reflective surface of said convex third (M3) mirror and that reflected from said reflective surface of said concave fourth (M4) mirror forming a second plane of incidence (P2), said first (P1) and second (P2) planes of incidence being orthogonal to one another.

    [0007] The effect of said four reflections from said reflective surfaces of said four (M1) (M2) (M3) (M4) mirrors is to substantially minimize the effects of all said reflections on the specific polarization state of said input beam, and to direct said output beam (OB) and provide it as a focused beam (FB) onto said sample (SAM) at the point it impinges thereupon.

    [0008] Said system involves the first (M1) and (M2) mirrors both having flat reflecting surfaces.

    [0009] The input beam (IB), all reflected beams and the output beam (OB) can be monochromatic or spectroscopic.

    [0010] The first (P1) and second (P2) planes of incidence are defined by central rays in the reflected beams involved.

    [0011] The input (IB), and the various reflected and output (OB) beams can each be considered to consist of multiple, (typically at least 16), cross-sectional areas, and in which the calculated overall effect on polarization state of the various reflections from mirrors (M1) (M2) (M3) and (M4) is arrived at by an averaging thereof.

    [0012] The angles of incidence of the electromagnetic beams approaching said third (M3) and fourth (M4) mirrors can be set to twelve (12) and twenty-four (24) degrees respectively, and the angles of incidence of the electromagnetic beams approaching said first (M1) and second (M2) mirrors can be each selected from the group consisting of:
    1. a) less than eighteen degrees;
    2. b) eighteen degrees; and
    3. c) greater that eighteen degrees.
    Of course the recitation of twelve (12) and twenty-four (24) degrees are only relevant examples and other angle combinations can be used, (ie. generalized O1 and O2), and the angles of incidence of the electromagnetic beams approaching said first (M1) and second (M2) mirrors can be each selected from the group consisting of:
    1. a) less than (θ1+θ2)/2;
    2. b) (θ1+θ2)/2 degrees; and
    3. c) greater that (θ1+θ2)/2 degrees.


    [0013] Said system can also further comprise additional fifth (M1'), sixth (M2'), seventh (M3') and eighth (M4') mirrors arranged in substantially mirror image locations with respect to mirrors (M1), (M2), (M3) and (M4), about a vertical plane extending from the location on the sample where the electromagnetic beam impinges thereupon, said mirrors (M1'), (M2'), (M3') ad (M4') serving to collimate and direct said beam that reflects from said sample (SAM), into a polarization state detector (PSD).

    [0014] It is noted that in the above, mirrors (M3) and (M3') are convex and the beam of electromagnetic radiation reflecting therefrom be from an off-center location thereupon.

    [0015] The present invention will be better understood by reference to the Detailed Description Section of this Specification, in combination with the Drawings.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0016] 

    Fig. 1a shows a system for providing a focused beam (FB) of electromagnetic radiation onto a location on a sample (SAM) with minimal change of polarization state therein.

    Fig. 1b shows a system for receiving a reflected beam (FB) of electromagnetic radiation a sample (SAM) and directing it toward a Polarization State Detector (PSD).

    Fig. 2a shows that the off-center reflection from the third convex mirror (M3) provides a "spread-out" beam incident onto the concave fourth (M4) mirror, which fourth (M4) concave mirror serves to focus the spread-out beam onto a sample (SAM) as focused beam (FB).

    Fig. 2b shows an arrangement for use on the Detector (DET) side of the Sample which compliments that arrangement on the Source (S) side.

    Figs. 2c and 2d show variations on Figs. 2a and 2b, but where the convex mirrors (M3) (M3') are replaced with a concave mirrors.

    Figs. 2e and 2f show variations on Figs. 2a and 2b, but where the convex mirrors (M3) (M3') are replaced with planar mirrors.

    Figs. 2g and 2h show variations on Figs. 2a and 2b, but where the convex mirrors (M3) (M3') are replaced with concave mirrors, and concave mirrors (M4) (M4') are replaced with planar mirrors.

    Fig. 3a shows an ellipsometer system of the present invention which includes the reflective focusing optics (RFO) (RFO').

    Fig. 3b demonstrates typical components of a Polarization State Generator (PSG) as a Polarizer (P), and optionally a Compensator (C).

    Fig. 3c demonstrates typical components of a Polarization State Detector (PSD) as an Analyzer (A), and optionally a Compensator (C) and a multi-element Detector (DET).


    DETAILED DESCRIPTION



    [0017] Turning now to Fig. la, there is shown a system for providing a focused beam (FB) of electromagnetic radiation onto a location on a sample (SAM), and in particular the present invention is a reflective optics system (RFO) sequentially comprising first (M1), second (M2), third (M3) and fourth (M4) mirrors. Each of said four mirrors (M1) (M2) (M3 (M4) provides reflective surfaces, with said third (M3) and fourth (M4) mirrors providing convex and concave reflective surfaces, respectively.

    [0018] Shown is an input beam (IB) of electromagnetic radiation, (having a specific polarization state), which is directed toward said first (M1) mirror and reflects from said reflective surface thereof, such that a first plane of incidence (P1) is formed between said incident beam (IB) and said beam which is reflected from said reflective surface of said first (M1) mirror. The beam reflected from the reflective surface of said first (M1) mirror is directed toward said second mirror (M2) and reflects from said reflective surface thereof toward said convex third (M3) mirror, from which it reflects at an off-center location thereon toward said concave fourth (M4) mirror, wherefrom it is reflected by the reflective surface thereof toward said sample (SAM) as a focused (FB) outgoing beam (OB). Said beam reflected from the reflective surface of said convex third (M3) mirror and that reflected from said reflective surface of said concave fourth (M4) mirror forming a second plane of incidence (P2), said first (P1) and second (P2) planes of incidence being orthogonal to one another. It is noted that in use each of said mirrors (M1), (M2), (M3) and (M4) receives a beam approaching it at an angle of incidence to a surface thereof, and in conjunction with a perpendicular to each said mirror at the point where the beam impinges thereupon, a plane of incidence is defined. The same Planes are defined by paired mirrors (M1) and (M2), (ie. Plane (P1)), and by paired mirrors (M3) and (M4), (ie. Plane (P2)).

    [0019] The effect of said four reflections from said reflective surfaces of said four (M1) (M2) (M3) (M4) mirrors is to substantially minimize the effects of all said reflections on the specific polarization state of said input beam, and to direct said output beam (OB) and provide it as a focused beam (PB) onto said sample (SAM) at the point it impinges thereupon.

    [0020] Said system involves the first (M1) and (M2) mirrors both having flat reflecting surfaces.

    [0021] Fig. 1b shows a system (RFO') for receiving a reflected beam (FB) of electromagnetic radiation a sample (SAM) and directing it toward a Polarization State Detector (PSD) as a collimated beam. Note that Fig. 1b is mirror-image of Fig. 1a as viewed along a vertical line above the location on said Sample (SAM) whereat the Outgoing Beam (OB) impinges thereupon. Also note that identifiers in Fig. 1b are much the same as in Fig. 1a with Primes "'" added. That is, for instance, Mirrors (M1), (M2), (M3) and (M4) in Fig. 1a correspond to Mirrors (M1'), (M2'), (M3') and (M4') in Fig 1b. Also identified in Fig. 1b is a Reflected Beam (RB), which is Output Beam (OB) after it reflects from the Sample (SAM). Note that Fig. 1b Planes (P1') and (P2') are orthogonal, as are Planes (P1) and (P2) in Fig. 1a.

    [0022] Fig. 2a shows that the off-center reflection from the third convex mirror (M3) provides a "spread-out" beam incident onto the concave fourth (M4) mirror, which fourth (M4) concave mirror serves to focus the spread-out beam onto a sample (SAM) as focused beam (FB). Fig. 2b shows an arrangement for use on the Detector (DET) side of the Sample which compliments that Fig. 2a arrangement on the Source (S) side. The presence of Mirrors (M3') and (M4') direct the beam reflecting from the Sample (SAM) into a Detector (DET) in a manner which compliments that used on the Source (S) side via Mirrors (M3) and (M4). (Note that Figs. 2a and 2b show very small angles of incidence and reflection and are demonstrative of the present invention system geometry, rather than representative of actual angles of incidence and reflection that might be realized in use. Also, Fig. 2b shows a collimated beam exiting Mirror (M3'), however this is not limiting and a converging or diverging beam can also be present. It is to be understood that Fig. 2b, like Fig. 2a is only partial and shown to identify how a beam reflecting from the Sample (SAM) is reflected and sent to the Detector (DET). In use there will be additional mirrors, ((M1') (M2')) present that are like mirrors (M1) and (M2) in Fig. 1, and there will be planes (P1') and (P2') formed similar to planes (P1) and (P2) between beam reflections from the various mirrors similar to those in Fig. 1a.

    [0023] As shown in Figs. 2a - 2h, an example device can comprise a system as in Figs, 1a and 1b wherein there are, in addition to two planar mirrors, (eg. (M1) (M1') and (M2) (M2') in Figs, 1a and 1b), there are one convex (M3) and one concave mirror (M4) present, (as per the preferred embodiment), or there are two concave mirrors ((M4) (M4') and (M3) and (M3')) present or wherein there are three planar mirrors (M1) (M1') (M2) (M2') (M3) (M3') present and one concave mirror (M4) (M4'), or three planar mirrors (MI) (MI<1>) (M2) (M2') (M4) (M4') present and one concave mirror (M3) (M3'). In particular, Figs. 2c and 2d show variations on Figs. 2a and 2b, but where the convex mirrors (M3) (M3') are replaced with a concave mirrors. Figs. 2e and 2f show variations on Figs. 2a and 2b, but where the convex mirrors (M3) (M3') are replaced with planar mirrors. Figs. 2g and 2h show variations on Figs. 2a and 2b, but where the convex mirrors (M3) (M3') are replaced with concave mirrors, and concave mirrors (M4) (M4') are replaced with planar mirrors. Note that said system can provide that the reflective properties of each of the mirrors (M1), (M2), (M3) and (M4) are substantially the same, and/or that there are reflective coatings on each of the mirrors (M1), (M2), (M3) and (M4) which are substantially the same based on coating material involved and thickness thereof.

    [0024] Fig. 3a shows, in a more straight forward manner, an ellipsometer system which includes the present invention reflective focusing optics (RFO) and (RFO'), described above, in conjunction with Polarization State Generator (PSG) and Polarization State Detector (PSD) elements. Note that Fig. 3b demonstrates the a Polarization State Generator (PSG) typically comprises a Polarizer (P) and can include a Compensator (C). And, Fig. 3c demonstrates that the (PSD) is to be understood to include a Detector (DET) per se. for use in generating Sample (SAM) describing data from an electromagnetic beam entered thereinto from (RFO'). The (PSD) typically comprises an Analyzer (A), and can include an optional Compensator (C). In general a Polarization State Generator (PSG) comprises a Source (S) of an Input Beam (IB) of electromagnetic radiation and a polarizer, and a Polarization State Detector comprises an Analyzer (A) and multi-element Detector (DET).

    [0025] Finally, it is to be understood that a "central ray" of electromagnetic radiation is the center-most ray in a beam thereof, wherein a beam is beneficially considered as a mathematical ensemble of rays, each being infinitely small. Further "collimation" refers to changing a beam in which rays are converging or diverging to one in which rays are substantially paralllel.

    [0026] Having hereby disclosed the subject matter of the present invention, it should be obvious that many modifications, substitutions, and variations of the present invention are possible in view of the teachings. It is therefore to be understood that the invention may be practiced other than as specifically described, and should be limited in its breadth and scope only by the Claims.


    Claims

    1. A system for providing a focused beam (FB) of electromagnetic radiation onto a location on a sample (SAM), said system being a reflective optics system (RFO) sequentially comprising first (M1), second (M2), third (M3) and fourth (M4) mirrors, each of said four mirrors (M1) (M2) (M3) (M4) providing reflective surfaces, with said first (M1) and second (M2) mirrors comprising flat reflecting surfaces and said third (M3) and fourth (M4) mirrors providing convex and concave reflective surfaces, respectively;
    such that in use an input beam (IB) of electromagnetic radiation having a specific polarization state is directed toward said first (M1) mirror and reflects from said reflective surface thereof onto the reflective surface of said second mirror (M2), from which it reflects, such that a first plane of incidence (P1) is formed between said incident beam (IB), said beam which is reflected from said reflective surface of said first (M1) mirror, and said beam which is reflected from the reflective surface of said second mirror (M2);
    and such that said beam reflected from the reflective surface of said first (M1) mirror is directed toward said second mirror (M2) and reflects from said reflective surface thereof toward said convex third (M3) mirror, from which it reflects at an off-center location thereon which provides a "spread-out" beam incident onto said concave fourth (M4) mirror, wherefrom it is reflected by the reflective surface thereof toward said sample (SAM) as a focused (FB) outgoing beam (OB); said beam reflected from the reflective surface of said convex third (M3) mirror and that reflected from said reflective surface of said concave fourth (M4) mirror forming a second plane of incidence (P2), said first (P1) and second (P2) planes of incidence being substantially orthogonal to one another, said first and second planes of incidence being defined by central rays in the reflected beams involved;
    the effect of said four reflections from said reflective surfaces of said four (M1) (M2) (M3) (M4) mirrors being to substantially cancel the effects of all said reflections on the specific polarization state of said input beam, and to direct said output beam (OB) and provide it as a focused beam (FB) onto said sample (SAM) at the point it impinges thereupon.
     
    2. A system as in claim 1, comprising the input beam (IB), all reflected beams and the output beam (OB), wherein the input beam, all reflected beams, and the output beam are spectroscopic.
     
    3. A system as in claim 1, comprising the input, and the various reflected and output beams, in which the input (IB), and the various reflected and output (OB) beams are each considered to consist of at least sixteen cross-sectional areas, and in which the calculated overall effect on polarization state of the various reflections from mirrors (M1) (M2) (M3) and (M4) is arrived at by an averaging thereof.
     
    4. A system as in claim 1, in which the angles of incidence of the electromagnetic beams approaching said third (M3) and fourth (M4) mirrors are set to θ1 and θ2 degrees respectively, and in which the angles of incidence of the electromagnetic beams approaching said first (M1) and second (M2) mirrors are each selected from the group consisting of:

    a) less than (θ1+θ2)/2;

    b) (θ1+θ2)/2 degrees; and

    c) greater that (θ1+θ2)/2 degrees.


     
    5. A system comprising:

    a) a source of a beam of electromagnetic radiation;

    b) a polarization state generator;

    c) a reflective focusing optics system according to any of claims 1 to 4.

    d) a stage (STG) for supporting a sample (SAM); and

    e) a polarization state detector (PSD).


     
    6. A system as in any of claims 1 to 5, in which each of the mirrors (M1), (M2), (M3) and (M4) comprises substrate of one material and a coating thereupon of at least one different material.
     
    7. A system as in claim 5, which further comprises additional fifth (M1'), sixth (M2'), seventh (M3') and eighth (M4') mirrors arranged in a substantially mirror image with respect to mirrors (M1), (M2), (M3) and (M4), said mirrors (M1'). (M2'), (M3') and (M4') being present between the stage for supporting a sample and said polarization state detector and serving to and direct said beam into a polarization state detector (PSD).
     


    Ansprüche

    1. System zum Bereitstellen eines fokussierten Strahls (FB) elektromagnetischer Strahlung auf eine Position einer Probe (SAM), wobei das System ein Spiegeloptiksystem (RFO) ist, das sequenziell einen ersten (M1), einen zweiten (M2), einen dritten (M3) und einen vierten Spiegel (M4) umfasst, wobei jeder der vier Spiegel (M1) (M2) (M3) (M4) reflektierende Oberflächen bereitstellt, wobei der erste (M1) und der zweite (M2) Spiegel flache reflektierende Oberflächen umfassen und der dritte (M3) und der vierte (M4) Spiegel eine konvexe bzw. eine konkave reflektierende Oberfläche bereitstellen;

    sodass bei Verwendung ein Eingangsstrahl (IB) von elektromagnetischer Strahlung mit einem bestimmten Polarisationszustand zum ersten (M1) Spiegel gelenkt wird und von der reflektierenden Oberfläche davon auf die reflektierende Oberfläche des zweiten Spiegels (M2) reflektiert, von der er reflektiert, sodass eine erste Einfallsebene (P1) zwischen dem einfallenden Strahl (IB), dem Strahl, der von der reflektierenden Oberfläche des ersten (M1) Spiegels reflektiert wird, und dem Strahl gebildet wird, der von der reflektierenden Oberfläche des zweiten Spiegels (M2) reflektiert wird;

    und sodass der von der reflektierenden Oberfläche des ersten (M1) Spiegels reflektierte Strahl zum zweiten Spiegel (M2) gelenkt wird und von der reflektierenden Oberfläche davon zum konvexen dritten (M3) Spiegel reflektiert, von dem er an einer außermittigen Position davon reflektiert, die einen "ausgebreiteten" Strahl bereitstellt, der auf den konkaven vierten (M4) Spiegel einfällt, von dem er durch die reflektierende Oberfläche davon auf die Probe (SAM) als ein fokussierter (FB) Ausgangsstrahl (OB) reflektiert wird; wobei der von der reflektierenden Oberfläche des konvexen dritten (M3) Spiegels reflektierte Strahl und der von der reflektierenden Oberfläche des konkaven vierten (M4) Spiegels reflektierte Strahl eine zweite Einfallsebene (P2) bilden, wobei die erste (P1) und die zweite (P2) Einfallsebene im Wesentlichen orthogonal aufeinander stehen, wobei die erste und die zweite Einfallsebene durch Zentralstrahlen in den involvierten reflektierten Strahlen definiert sind;

    wobei die Wirkung der vier Reflexionen von den reflektierenden Oberflächen der vier (M1) (M2) (M3) (M4) Spiegeln ist, die Wirkungen aller Reflexionen auf den bestimmten Polarisationszustand des Eingangsstrahls im Wesentlichen aufzuheben und den Ausgangsstrahl (OB) zu lenken und ihn als einen fokussierten Strahl (FB) auf die Probe an dem Punkt bereitzustellen, auf den er einfällt.


     
    2. System nach Anspruch 1, das den Eingangsstrahl (IB), alle reflektierten Strahlen und den Ausgangsstrahl (OB) umfasst, wobei der Eingangsstrahl, alle reflektierten Strahlen und der Ausgangsstrahl spektroskopisch sind.
     
    3. System nach Anspruch 1, das den Eingangs- und die verschiedenen reflektierten und Ausgangsstrahlen umfasst, wobei der Eingangs- (IB) und die verschiedenen reflektierten und Ausgangsstrahlen (OB) jeweils als aus mindestens sechzehn Querschnittsflächen bestehend betrachtet werden und wobei die berechnete Gesamtwirkung auf den Polarisationszustand der verschiedenen Reflexionen von den Spiegeln (M1) (M2) (M3) und (M4) durch ein Mitteln davon erhalten wird.
     
    4. System nach Anspruch 1, wobei die Einfallswinkel der elektromagnetischen Strahlen, die sich dem dritten (M3) und dem vierten (M4) Spiegel nähern, auf θ1 bzw. θ2 Grad festgelegt sind, und wobei die Einfallswinkel der elektromagnetischen Strahlen, die sich dem ersten (M1) und dem zweiten (M2) Spiegel nähern, jeweils aus der Gruppe ausgewählt sind, die besteht aus:

    a) kleiner als (θ1+θ2)/2;

    b) (θ1+θ2)/2 Grad; und

    c) größer als (θ1+θ2)/2 Grad.


     
    5. System, umfassend:

    a) eine Quelle eines Strahls elektromagnetischer Strahlung;

    b) einen Polarisationszustandsgenerator;

    c) ein reflektierendes fokussierendes Optiksystem nach einem der Ansprüche 1 bis 4,

    d) ein Gestell (STG) zum Tragen einer Probe (SAM); und

    e) einen Polarisationszustandsdetektor (PSD).


     
    6. System nach einem der Ansprüche 1 bis 5, wobei jeder der Spiegel (M1), (M2), (M3) und (M4) ein Substrat eines Materials und einer Beschichtung darauf aus mindestens einem unterschiedlichen Material umfasst.
     
    7. System nach Anspruch 5, das ferner einen zusätzlichen fünften (M1'), sechsten (M2'), siebenten (M3') und achten (M4') Spiegel umfasst, die im Wesentlichen in einem Spiegelbild in Bezug auf die Spiegel (M1), (M2), (M3) und (M4) angeordnet sind, wobei die Spiegel (M1'), (M2'), (M3') und (M4') zwischen dem Gestell zum Tragen einer Probe und dem Polarisationszustandsdetektor vorhanden sind und dazu dienen, den Strahl in den Polarisationszustandsdetektor (PSD) zu lenken.
     


    Revendications

    1. Système destiné à fournir un faisceau focalisé (FB) de rayonnement électromagnétique sur un emplacement d'un échantillon (SAM), ledit système étant un système optique réfléchissant (RFO) comprenant, dans l'ordre, un premier (M1), un deuxième (M2), un troisième (M3) et un quatrième (M4) miroirs, chacun desdits quatre miroirs (M1) (M2) (M3) (M4) présentant des surfaces réfléchissantes, lesdits premier (M1) et deuxième (M2) miroirs comprenant des surfaces réfléchissantes plates et lesdits troisième (M3) et quatrième (M4) miroirs présentant des surfaces réfléchissantes convexe et concave, respectivement ;

    de sorte que lors de l'utilisation, un faisceau d'entrée (IB) de rayonnement électromagnétique ayant un état de polarisation spécifique est dirigé vers ledit premier miroir (M1) et est réfléchi par ladite surface réfléchissante de celui-ci sur la surface réfléchissante dudit deuxième miroir (M2), à partir duquel il est réfléchi, de sorte qu'un premier plan d'incidence (P1) est formé entre ledit faisceau incident (IB), ledit faisceau qui est réfléchi par ladite surface réfléchissante dudit premier miroir (M1), et ledit faisceau qui est réfléchi par la surface réfléchissante dudit deuxième miroir (M2) ;

    et de sorte que ledit faisceau réfléchi par la surface réfléchissante dudit premier miroir (M1) est dirigé vers ledit deuxième miroir (M2) et est réfléchi par ladite surface réfléchissante de celui-ci vers ledit troisième miroir (M3) convexe, à partir duquel il est réfléchi au niveau d'un emplacement décentré sur celui-ci fournissant ainsi un faisceau « étalé » incident sur ledit quatrième miroir concave (M4), d'où il est réfléchi par sa surface réfléchissante vers ledit échantillon (SAM) comme faisceau sortant (OB) focalisé (FB) ; ledit faisceau réfléchi par la surface réfléchissante dudit troisième miroir convexe (M3) et celui réfléchi par ladite surface réfléchissante dudit quatrième miroir concave (M4) formant un second plan d'incidence (P2), lesdits premier (P1) et second plans d'incidence (P2) étant sensiblement orthogonaux l'un par rapport à l'autre, lesdits premier et second plans d'incidence étant définis par des rayons centraux dans les faisceaux réfléchis impliqués ;

    l'effet desdites quatre réflexions provenant desdites surfaces réfléchissantes desdits quatre miroirs (M1) (M2) (M3) (M4) consistant à annuler sensiblement les effets de toutes lesdites réflexions sur l'état de polarisation spécifique dudit faisceau d'entrée, et à diriger ledit faisceau de sortie (OB) et à l'envoyer comme faisceau focalisé (FB) sur ledit échantillon (SAM) au niveau de son point d'incidence.


     
    2. Système selon la revendication 1, comprenant le faisceau d'entrée (IB), tous les faisceaux réfléchis et le faisceau de sortie (OB), dans lequel le faisceau d'entrée, tous les faisceaux réfléchis et le faisceau de sortie sont spectroscopiques.
     
    3. Système selon la revendication 1, comprenant le faisceau d'entrée et les divers faisceaux réfléchis et de sortie, le faisceau d'entrée (IB) et les divers faisceaux réfléchis et de sortie (OB) étant chacun considérés comme consistant en au moins seize zones de section transversale, et l'effet global calculé sur l'état de polarisation des diverses réflexions des miroirs (M1) (M2) (M3) et (M4) étant obtenu par une moyenne de celles-ci.
     
    4. Système selon la revendication 1, dans lequel les angles d'incidence des faisceaux électromagnétiques se rapprochant desdits troisième (M3) et quatrième miroirs (M4) sont réglés sur θ1 et θ2 degrés respectivement, et les angles d'incidence des faisceaux électromagnétiques se rapprochant desdits premier (M1) et deuxième miroirs (M2) étant chacun choisis dans le groupe constitué de :

    a) moins de (θ1 + θ2)/2 ;

    b) (θ1 + θ2)/2 degrés ; et

    c) plus de (θ1 + θ2)/2 degrés.


     
    5. Système comprenant :

    a) une source d'un faisceau de rayonnement électromagnétique ;

    b) un générateur d'état de polarisation ;

    c) un système optique de focalisation réfléchissant selon l'une quelconque des revendications 1 à 4.

    d) un étage (STG) destiné à supporter un échantillon (SAM) ; et

    e) un détecteur d'état de polarisation (PSD).


     
    6. Système selon l'une quelconque des revendications 1 à 5, dans lequel chacun des miroirs (M1), (M2), (M3) et (M4) comprend un substrat d'un matériau et un revêtement sur celui-ci d'au moins un matériau différent.
     
    7. Système selon la revendication 5, qui comprend en outre des cinquième (M1'), sixième (M2'), septième (M3') et huitième (M4') miroirs supplémentaires disposés dans une image sensiblement inversée par rapport aux miroirs (M1), (M2), (M3) et (M4), lesdits miroirs (M1'), (M2'), (M3') et (M4') étant présents entre l'étage destiné à supporter un échantillon et ledit détecteur d'état de polarisation et permettant de diriger ledit faisceau dans un détecteur d'état de polarisation (PSD).
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description