[0001] The present invention relates to a compatibilizing and stabilizing composition for
fuel oils (FO) and to a process for stabilizing said oils.
State of art
[0002] Under fuel oils generally mixtures of oils of various nature and/or coming from different
origins are designated, generally mixtures of residues from distillation columns (so-called
TAR) and hydrocarbon cuts (so-called fluxes) coming from several refinery and petrochemical
plants. The Fuel Oils are made by blending different heavy hydrocarbon cuts, which
however are not always perfectly compatible therebetween. Some cuts cause a certain
instability, that is they include poorely soluble substances in the oilseed matrix,
which can precipitate during storage. The evaluation of the instability of an oil
is performed by determining the HFT parameter (ASTM D 4870 method) and/or by means
of ISO 8217:2012 standard. The specification value allowed for selling Fuel Oil is
0.1% (0.5% for the Oils intended for civil and industrial thermal uses): above these
values the FO is considered too instable and that potentially can give problems during
storage or to the burners themselves. The fuel oils are used singularly or, preferentially,
in mixture for producing heat for industry (furnaces and boilers) and for the domestic
heating or for the energy production (engines). The so-called "heavy" fuel oil (Bunker
Oil, Fuel oil) is particularly used for ship propulsion.
[0003] Exactly thanks to the fact that they are hydrocarbon-based mixtures such as: paraffins,
naphthenes, aromatic and olefins that the fuel oils, for example under the action
of the heat, can polymerise and combine with other oil components by forming solid
compounds of asphaltene type, which together with possible other solid matter, generate
instability to the storage involving negative applicative features. The objective
drawbacks which are found due to the fuel oil instability upon use (combustion) are
the following:
- Abundant formation of carbon in preheaters, due to the coking of heavy carbonaceous
materials
- Abundant formation of soot produced by the incomplete combustion of insoluble heavy
compounds, precipitates
- Sediments, paraffins and substances similar to rubber found on the lines of the combustion
system
[0004] As reported previously, the evaluation of an oil instability is performed by determining
the HFT parameter (method ASTM D 4870) and/or by means of ISO 8217:2012 standard.
Hereinafter (Table A) the specifications established by CTI ("Comitato Termotecnico
Italiano") (Italian Thermotechnical Committee) for the liquid fuel oils for civil
and industrial thermal uses are shown, based upon a classification of oils which depends
upon viscosity (for ex. fluid, heavy, heavy ATZ or BTZ- High or (Low Sulphur Content)
and sulphur content which, in Italy, according to "antismog law" and BTZ heavy oil
is 1%. (F.O.=fuel oil)
TABLE A
|
Fluid F.O.a |
Heavy F.O.a |
BTZ Heavy F.O.a |
Analysis Method |
Appearance |
Completely opaque |
Completely opaque |
Completely opaque |
Customs Standards |
Flash point |
65°C min |
65°C min |
65°C min |
ASTM D 93 |
Viscosity |
21.2-37.4 cst |
> 53 cst |
> 53 cst |
ASTM D 455 |
Water and sediments |
Max 1 % mass |
- |
- |
ASTM D 1796 |
Water |
- |
Max 1.5 % mass |
Max 1.5 % mass |
ASTM D 95 |
Sediments |
- |
Max 0.5 % mass |
Max 0.5 % mass |
ASTM D 473 |
Sulphur |
Max 3 % mass |
- |
Max 1% mass |
EN 41 |
Ashes |
Max0.10%mass |
Max 0.20%mass |
Max 0.20% mass |
ASTM D 482 |
Distilled at 250°C |
Min 65% vol. |
Min 65% vol. |
Min 65% vol. |
ASTM D 86 |
Distilled at 300°C |
Max 60% vol. |
Max 60% vol. |
Max 60% vol. |
ASTM D 86 |
Distilled at 350°C |
Min 85% vol. |
Min 85% vol. |
Min 85% vol. |
ASTM D 86 |
[0005] Table B shows an example of specifications related to a Bunker oil, specifically
Fuel Oil 380 for Bunkering (ISO 8217:2012 standard).
TABLE B
Features |
Value min.-max. |
ASTM D/IP Method |
Density °C (kg7m) |
991.0 |
1298 |
Flash point P.M. (°C) |
61 |
93 |
Viscosity at 50°C (mm2/s) |
380.0 |
455 |
Viscosity at 100°C (mm2/s) |
35.0 |
455 |
Recovered at 350°C (%v/v) |
<85 |
86 |
Total sulphur (%m/m) |
4.5 |
1552 |
Pour point (°C) |
30 |
613 |
Water (%v/v) |
1.0 |
97 |
Sediments per extractions (%m/m) |
0.5 |
95 |
Ashes (%m/m) |
0.15 |
473 |
Compatibility |
Spot 2 |
4740 |
Conradson Residue (%m/m) |
18 |
482 |
Vanadium (ppm) |
300 |
189. 4530 |
Aluminium + Silicon (ppm) |
80 |
1548. IP 288 |
existing HFT (5m/m) |
0.1. |
IP 375 |
potential HFT (%m/m) |
0.1 |
IP 390B |
[0006] The tendency of refineries is to maximize the use of poorly precious oils when preparing
fuel oils, considering that the fuel oil constitutes the commercial product with lower
added value, deriving from petroleum refining.
[0007] From what said above the need results evident to develop an additive capable of compatibilizing
and stabilizing fuel oils with the purpose of reducing the tendency to precipitate
of particles poorly soluble in the oil hydrocarbon matrix and, furthermore to make
them compatible with less precious products.
[0008] Stabilizing compositions and additives used in the same technological field, described
in the following patent publications in the name of the present applicant, belong
to the state of art:
WO 2004/033602 wherein the additive to improve the FO stability belonged to the class of alkyl benzen
sulfonic acids and related Salts.
WO 2003/099969 wherein the FO instability is improved by adding a mixture of organic phosphite,
sterically hindered phenols and formate esters.
WO 2008/049887 wherein the FOs coming from a thermal cracking (Visbreaking) are stabilized by adding
a radical stopper of nitroxide family.
[0009] Now it has been surprisingly found that a composition comprising
- at least a compound belonging to the class of the polyalkylsuccinimides
- at least an alkylbenzenesulfonic acid
- at least a compound belonging to the class of imidazolines from fatty acids wherein
said compound is selected from the class formed by condensation products among natural,
vegetable or animal fatty acids coming from sebum, talloil, coconut, various oils
and polyamines, in ratios variable from 0.5 : 2 to 2 : 0.5. has stabilizing/compatibilizing
effect on the fuel oils and it allows the mixing thereof with poorly precious oils.
[0010] Therefore the present invention relates to the composition of claim 1 and the process
of claim 11; additional embodiments are described in the other claims.
Brief description of the figures:
[0011] Two figures are enclosed to the present description, showing an image of the filters
after HFT tests related to a sample not mixed with additive (Figure 1) and one mixed
with additive (Figure 2). From these images, it can be noted that the filter of the
sample not mixed with additive appears much darker than the one mixed with additive.
Description of the invention
[0012] The stabilizing/compatibilizing composition for fuel oil of the present invention
has the effect of making oils stable in storage and opposing the formation of solids
thereof, it is added to oils which, by their nature, are not compatible, but which
are mixed therebetween for commercial reasons. Said composition comprises as active
principle:
- 1. at least a compound belonging to the class of the polyalkylsuccinimides (compound
A);
- 2. at least a compound belonging to the class of the alkylbenzensulfonic acids (compound
B) and
- 3. at least a compound belonging to the class of imidazolines from fatty acids (compound
C) wherein said at least a compound C is selected from the class formed by condensation
products among natural, vegetable or animal fatty acids coming from sebum, talloil,
coconut, various oils and polyamines, in ratios variable from 0.5 : 2 to 2 : 0.5.
[0013] The amount of composition according to the invention to be added to the fuel oil
can vary with respect to the amount of oil to be treated and it is a function of the
stabilization value which the oil final user has set himself/herself. Preferably the
amount of composition according to the invention is higher than 10 ppm (weight/weight)
with respect to the amount of fuel oil, more preferably it varies in the range 100-1000
ppm, still more preferably 150-700 ppm.
[0014] In the composition according to the invention, at least a compound belonging to the
class of the polyalkylsuccinimides is selected from the class formed by polyalkylsuccinimides
with molecular weight comprised between 500 and 5000 Dalton, having a basicity value
comprised between 30 and 80 mg KOH/g and a nitrogen content comprised between 2.0
and 5.0% by weight. Preferred compounds are poly-isobutenyl succinimides, particularly
a poly-isobutenilsuccinimide with medium MW between 2000 and 3000 Dalton.
[0015] In the composition according to the invention, at least an alkylbenzensulfonic acid
is selected from the class formed by sulfonic acids or salts thereof of alkaline and
alkaline-earth metals; mono-alkyl or di-alkyl benzen sulfonic acids and salts thereof
of alkaline and alkaline-earth metals; mono-alkyl and di-alkyl naphtalene sulfonic
acids and salts thereof of alkaline and alkaline-earth metals. Dodecyl or lauryl benzene
sulfonic acid and salts thereof of Sodium, Potassium, Calcium and Magnesium, didodecylbenzenesulfonic
acid and salts thereof of Sodium, Potassium, Calcium and Magnesium; dinonylnaphthalene
sulfonic acid and salts thereof of Sodium, Potassium, Calcium and Magnesium are preferred.
Dodecylbenzene sulfonic acid or calcium salt thereof are particularly preferred compounds.
[0016] In the composition according to the invention, the at least a compound belonging
to the class of imidazolines from fatty acids is selected from the class formed by
condensation products among natural, vegetable or animal fatty acids (coming from
sebum, talloil, coconut, various oils) and polyamines, in ratios variable from 0.5
: 2 to 2 . 0.5. There are preferred: imidazoline from talloil acids, reacted with
diethylenetriamine, in variable ratios from 0.5 : 2 to 2 : 0.5, preferably from 1
: 1 to 1 1.2. Imidazolines synthetized by talloil acids and diethylenetriamine in
weight/weight ratio 1 : 1.1 are particularly preferred compounds.
[0017] According to the invention the weight ratio between the three components is comprised
in the following ratio ranges compound A 1 - 1.5, compound B 0.25 - 1, compound C
0.06 - 0.24. Preferred ratios between compound A, compound B and compound C are 1
: 0.5 : 0.12 / 1. 5 : 0.5 : 0.12 / 1.5 : 1 : 0.12 / 1.5 : 0.5 : 0.24 or from 1 : 0.5
: 0.12 to 1.5 : 0.25 : 0.12 and 1.5 : 0.5 : 0.06. The ratio 1 : 0.5 : 0.12 is particularly
preferred. A particularly preferred composition according to the invention has a ratio
by weight 1 : 0.5 : 0.12. between Compound A, Compound B and Compound C (MIX 1), wherein
the compound A is a poly-isobutenilsuccinimide with medium MW between 2000 and 3000
Dalton, the compound B is dodecylbenzene sulfonic acid or calcium salt thereof, the
compound C is an imidazoline synthetized by talloil acids and diethylenetriamine in
weight/weight ratio 1 : 1.1.
[0018] Preferably the composition according to the invention is pre-mixed with heavy aromatic
naphta (distillation range (187 - 300°C). Under naphtas in the general meaning the
products are meant which distil in the temperature range comprised between 30°C and
310°C, these can be obtained directly from raw material or semimanufactured products
of the petrochemical industry or from distillates coming from carbon coke distillation.
[0019] The solvent (heavy aromatic naphta) is added in amounts so as to constitute by 10
to 90% the formulation of the compounds A, B and C together, being present from 90
to 10% by weight.
[0020] By way of example the following ratios can be used: ratio 30 : 70 between solvent
and other active principles which is preferred in the best formulation with 60 : 40
% of solvent (40 % of the compounds A, B and C together) or ratio 10 - 90.
[0021] The composition according to the present invention can be added to the off-specification
fuel oil or to the legal standard fuel oil, which subsequently is mixed with hydrocarbon
cuts which bring it off-specification, such as for example CLO (Cyclic Liquid Oil),
FOK, Gas oils). In some refineries FO is formulated by using as main component the
residue obtained from the unit LC-Finer (RV LCF) and, as additional components, two
cuts of the FCC unit: the residue (HCO, sometimes called "slurry oil") and the heavy
naphta (HCN: Heavy Catalytic Naphta). Advantageously the composition of the invention
is used for:
bringing back to specification the fuel oils, both those for civil and industrial thermal uses and for bunkering,
that is for bringing them back within the established HFT values,
maximizing the absorption, in legal standard fuel oils, of fractions of residues from cracking
with low added value and poor compatibility, by keeping the qualitative features requested
by the market specifications or by the end user.
increasing the oil stability with the related decrease in the fouling problems in the lines, in the pre-heating
trains, in exchangers, in reboilers and other civil and/or industrial plants; economic
gain, as the possibility of mixing a product having low added value with others having
higher added value is maximized, by controlling the making-dirty capability of the
resulting mixture.
[0022] In addition the invention relates to the method for stabilizing the fuel oils, characterized
in that the addition of the additive according to the invention is made on the fuel
oil outgoing from the related plant, before being mixed with other hydrocarbon cuts
such as for example CLO, FOK, Gas oils, RV LCF(from plant LC-Finer), HCO (sometimes
called "slurry oil" of the FCC unit), HCN (Heavy Catalytic Naphta, heavy naphta from
FCC).
[0023] HFT method is used to determine in the oil sample the total sediments up to 0.5%
p/p (ASTM D 4870). In a increasing scale the usually accepted legal standard value
is <0.1%. HFT method provides a hot filtration (100°C, kept by means of a thermostatic
jacket heated by vapour), on filters of glass fibre Grade GF/A, with a FO aliquot
(about 10 gr) to be analyzed. The filtration is made under vacuum and the sediments
remained on the filter are washed with a mixture of solvents (85% n-heptane and 15
% toluene). The deposit is weighed and compared to the weight of filtered tar: the
result is expressed as percentage of sediments remained on the filter.
[0024] The composition of the present invention increases the blending stability of the
several cuts therewith the FO is formulated and it allows an off-specification FO
(HFT greater than 0.1/0.5 %) to return easily to the sale specification.
[0025] Some illustrating, but not limiting, examples of the invention are shown hereinafter.
The composition according to the invention (Mix 1) was used compared to other formulations:
Mix 2, Mix 3, Mix 4 and Mix 5.
Mix 1 : Compound A : Compound B : Compound C, ratio by weight 1 : 0.5 : 0.12 wherein
compound A is a poly-isobutenilsuccinimide with medium MW between 2000 and 3000 Dalton,
compound B is dodecylbenzene sulfonic acid or calcium salt thereof, compound C is
a imidazoline synthetized by talloil acids and diethylenetriamine in weight/weight
ratio 1 : 1.1 in heavy aromatic naphta
Mix 2 : Compound A : Compound B ratio by weight 1 : 0.55 wherein compound A is a poly-isobutenilsuccinimide
with medium MW between 2000 and 3000 Dalton, the compound B is dodecylbenzene sulfonic
acid or calcium salt thereof, in heavy aromatic naphta
Mix 3 : Compound A : Compound B ratio by weight 1 : 0.43 wherein compound A is a poly-isobutenilsuccinimide
with medium MW between 2000 and 3000 Dalton, the compound B is dodecylbenzene sulfonic
acid or calcium salt thereof, in ethyl-hexyl nitrate solvent
Mix 4 : propylene diamine from coconut in isobutanol
Mix 5 : mixture of polyvinylpyrrolidones in N-methyl pyrrolidone
Example 1
[0026] The effectiveness test of the various mixtures was performed by mixing two FOs not
compatible therebetween, which then provide a HFT-high end mixture.
[0027] FO mixture nr. 1
Blank |
HFT |
0.32 % |
Mix 1 - 150 ppm |
HFT |
0.08 % |
Mix 1 - 300 ppm |
HFT |
0.07 % |
Mix 2 - 150 ppm |
HFT |
0.28 % |
Mix 2 - 300 ppm |
HFT |
0.11 % |
Mix 5 - 150 ppm |
HFT |
0.11 % |
Mix 5 - 300 ppm |
HFT |
0.09 % |
Mix 4 - 150 ppm |
HFT |
0.10 % |
Mix 4 - 300 ppm |
HFT |
0.10 % |
[0028] FO mixture nr.2
Blank |
HFT |
0.52 % |
Mix 1 - 300 ppm |
HFT |
0.09 % |
Mix 5 - 300 ppm |
HFT |
0.12 % |
Mix 4 - 300 ppm |
HFT |
0.12 % |
[0029] FO mixture nr. 3
Blank |
HFT |
0.15 % |
Mix 1 - 300 ppm |
HFT |
0.07 % |
Mix 2 - 300 ppm |
HFT |
0.12 % |
Mix 4 - 300 ppm |
HFT |
0.08 % |
Mix 5 - 300 ppm |
HFT |
0.08 % |
[0030] FO mixture nr. 4 (Residue Visbreaking 69% + LCGO 17 % + automotive Gas oil 5 % +
Gas oil from cracking 9 %)
Blank |
HFT |
0.06 % |
Potential HFT |
0.10 % |
Mix 1 - 500 ppm |
HFT |
0.06 % |
Potential HFT |
0.09 % |
Mix 1 - 800 ppm |
HFT |
0.05 % |
Potential HFT |
0.04 % |
Mix 3 - 800 ppm |
HFT |
0.06 % |
Potential HFT |
0.09 % |
Mix 4 - 800 ppm |
HFT |
0.05 % |
Potential HFT |
0.05 % |
[0031] FO mixture nr. 5 (Residue Visbreaking + LCGO 86 % + automotive Gas oil 5 % + Gas
oil from cracking 9 %)
Blank |
HFT |
0.12 % |
Potential HFT |
0.63 % |
Mix 1 - 800 ppm |
HFT |
0.07 % |
Potential HFT |
0.17 % |
Mix 4 - 800 ppm |
HFT |
0.07 % |
Potential HFT |
0.17 % |
Mix 3 - 800 ppm |
HFT |
0.08 % |
Potential HFT |
0.21 % |
[0032] Tests performed with mixtures of compounds A, B and C at different ratios with respect
to that used in Mix 1 provided slightly different results, but which from the quality
point of view are not significantly different from the above-illustrated results.
Example 2: Bunker Fuel Oil "RMG 380"
[0033] In this test there has been verified the possibility of producing Bunker Fuel Oil
pursuant to ISO 8217:2012 standard, by using as main component the residue obtained
from the unit LC-Finer (RV LCF) and, as additional components, two cuts of the unit
FCC: the residue (HCO, sometimes called "slurry oil") and the heavy naphta (HCN: Heavy
Catalytic Naphta). The base production scheme provides the preparation of a first
heavy fraction, obtained by mixing in the percentage ratio 77/23 the two residues
RV LCF and HCO directly in line. Subsequently the above-mentioned heavy fraction is
diluted with HCN, generally added between 12 and 14%.
[0034] The added HCN amount has to be so as to reach the viscosity and density limits of
the Bunker Fuel Oil type which one wishes to produce, pursuant to ISO 8217-2012 standard,
respectively equalling to:
- Viscosity @50°C: max. 380 cSt
- Density @15°C: max. 0.991 g/cm3
[0035] The requested HFT limit is max. 0.10 % (m/m), not only on the sample as such, but
even as potential HFT value (ageing at 100°C for 24 hours) of the Bunker Fuel Oil.
Table 1 shows the characterization analysis of all used cuts and the mixtures thereof.

[0036] From the detected values, shown in Table 1, it is noted that the values of current
and potential HFT of Residue LC-Finer are extremely high, whereas the HFT of mixture
RV LCF/HCO (77/23) are lower than the mentioned residue due to high aromatic quality
of HCO (90.5 %).
[0037] By adding the HCN cut, the potential HFT value worsens, most probably due to the
destabilization caused by this slightly aromatic and much more paraffinic cut (saturated
91.7 %).
[0038] The stabilizing/compatibilizing mixture (HFT reducer), later called Mix 1, used in
this test is constituted by:
- 1. a polialkylsuccinimmide (40 - 50 %)
- 2. an alkylbenzensulfonic acid ((20 - 30 %)
- 3. an imidazoline from fatty acids (5 - 10 %)
- 4. heavy aromatic naphta, up to 100 %
[0039] Mix 1 was additioned at the bottom of the column LC-Finer, before mixing with the
flux HCO. The storage temperature of Bunker Fuel Oil in reservoir 63 was 70°C. The
Current and Potential HFT values were evaluated and the finished FO (RV LCF + HCO)
was characterized. The following table show the values of density @15°C, Viscosity
@50°C and Total Sulphur:

[0040] The results of Current and Potential HFT of the samples mixed with additives are
all results below the value of 0.1% (m/m), the additive action was found with an average
50% reduction in the starting HFT value with effectiveness maximum reaching about
70% reduction. The HFT value of the samples mixed with additives was within the HFT
specification even after 3 days at 100°C.
[0041] Example 3: Determination of Current and Potential HFT on finished FO (mixed with
additives) + HCN (added in laboratory):

[0042] As it can be seen the samples of the mixture RV LCF + HCO (mixed with additives)
reaches the specification of density/viscosity by adding 17% of HCN.

[0043] Even in this case, after complete finalization of the blending of Bunker Fuel Oil,
all analyzed samples are within the specification of Current and Potential HFT. Moreover,
the HFT value of the samples mixed with additives are widely within the HFT specification
even after an ageing of 3 days at 100°C.
[0044] Example 4: Determination of Current and Potential HFT of the final Bunker Fuel Oil
finale (with addition of HCN).
[0045] For completing the industrial test, the FO is constituted as follows:
- 63% RV LCF
- 16% HCO
- 21% HCN
1. A composition comprising
- at least a compound A belonging to the class of the polyalkylsuccinimides;
- at least a compound B belonging to the class of the alkylbenzensulfonic acids and
- at least a compound C belonging to the class of imidazolines from fatty acids wherein
said at least a compound C is selected from the class formed by condensation products
among natural, vegetable or animal fatty acids coming from sebum, talloil, coconut,
various oils and polyamines, in ratios variable from 0.5 : 2 to 2 : 0.5.
2. The composition according to claim 1, wherein said at least a compound A is selected
from the class formed by polyalkylsuccinimides with molecular weight comprised between
500 and 5000 Dalton, having a basicity value comprised between 30 and 80 mg KOH/g
and a nitrogen content comprised between 2.0 and 5.0% by weight, preferably poly-isobutenyl
succinimides.
3. The composition according to at least one of the preceding claims, wherein said at
least a compound B is selected from the class formed by sulfonic acids or salts thereof
of alkaline and alkaline-earth metals; mono-alkyl or di-alkyl benzen sulfonic acids
and salts thereof of alkaline and alkaline-earth metals; mono-alkyl and di-alkyl naphtalene
sulfonic acids and salts thereof of alkaline and alkaline-earth metals.
4. The composition according to claim 3 wherein said compound B is selected from the
class formed by dodecyl or lauryl benzene sulfonic acid and salts thereof of Sodium,
Potassium, Calcium and Magnesium, didodecylbenzenesulfonic acid and salts thereof
of Sodium, Potassium, Calcium and Magnesium; dinonylnaphthalene sulfonic acid and
salts thereof of Sodium, Potassium, Calcium and Magnesium.
5. The composition according to claim 4, wherein said compound B is dodecylbenzene sulfonic
acid or calcium salt thereof.
6. The composition according to at least one of the preceding claims, wherein said at
least a compound C is selected from the class formed by imidazoline synthetized by
talloil acids and diethylenetriamine in weight/weight ratio 1 : 1.1
7. The composition according to at least one of the preceding claims, wherein the weight
ratio between said at least a compound A, B and C is comprised in the following ratio
ranges compound A 1 - 1.5, compound B 0.25 - 1, compound C 0.06 - 0.24.
8. The composition according to claim 7, wherein the weight ratio between said at least
a compound A, B and C is 1 /0.5 /0.12.
9. The composition according to at least one of the preceding claims further comprising
heavy aromatic naphta in amounts comprised between 10 and 90% by weight referred to
the weight of the composition as claimed in at least one of claims 1 to 8.
10. Use of the composition as claimed in at least one of claims 1 to 9 as stabilizer/compatibilizer
of fuel oils.
11. A process for stabilizing fuel oils wherein the composition as claimed in at least
one of claims 1 to 9 is added before mixing with the cuts to be normalized in a greater
amount than 10 ppm (weight/weight), preferably in the range 100-1000 ppm, still more
preferably 150-700ppm.
12. Stabilized fuel oils which can be obtained according to the process of claim 11.
1. Zusammensetzung, die umfasst
- mindestens eine Verbindung A, die zu der Klasse der Polyalkylsuccinimide gehört,
- mindestens eine Verbindung B, die zu der Klasse der Alkylbenzolsulfonsäuren gehört
und
- mindestens eine Verbindung C, die zu der Klasse von Imidazolinen von Fettsäuren
gehört, wobei die mindestens eine Verbindung C aus der folgenden Klasse ausgewählt
wird: Kondensationsprodukte unter natürlichen, pflanzlichen oder tierischen Fettsäuren,
die aus Talg, Tallöl, Kokosnuss, verschiedenen Ölen und Polyaminen stammen, in Verhältnissen
von 0,5 : 2 bis 2 : 0,5.
2. Zusammensetzung gemäß Anspruch 1, wobei die mindestens eine Verbindung A aus der folgenden
Klasse ausgewählt wird: Polyalkylsuccinimide mit einem Molekulargewicht zwischen 500
und 5000 Dalton, die über einen Basizitätswert zwischen 30 und 80 mg KOH/g und einem
Stickstoffgehalt zwischen 2,0 und 5,0 Gewichtsprozent verfügen, vorzugsweise Poly-Isobutenylsuccinimide.
3. Zusammensetzung gemäß mindestens einem der vorangehenden Ansprüche, wobei die mindestens
eine Verbindung B aus der folgenden Klasse ausgewählt wird: Sulfonsäuren oder Salze
aus Alkali- und Erdalkalimetallen davon; Monoalkyl- oder Dia-Ikylbenzolsulfonsäuren
und Salze aus Alkali- und Erdalkalimetallen davon; Monoalkyl- und Dialkylnaphthalinsulfonsäuren
und Salze aus Alkali- und Erdalkalimetallen davon.
4. Zusammensetzung gemäß Anspruch 3, wobei die Verbindung B aus der folgenden Klasse
ausgewählt wird: Dodecyl- oder Laurylbenzolsulfonsäure und Salze aus Natrium, Kalium,
Calcium und Magnesium davon, Didodecylbenzolsulfonsäure und Salze aus Natrium, Kalium,
Calcium und Magnesium davon; Dinonylnaphthalinsulfonsäure und Salze aus Natrium, Kalium,
Calcium und Magnesium davon.
5. Zusammensetzung gemäß Anspruch 4, wobei die Verbindung B Dodecylbenzolsulfonsäure
oder ein Calciumsalz davon ist.
6. Zusammensetzung gemäß mindestens einem der vorangehenden Ansprüche, wobei die mindestens
eine Verbindung C aus der folgenden Klasse ausgewählt wird: Imidazolin, das aus Tallölsäuren
und Diethylentriamin in einem Gewichtsverhältnis von 1 : 1,1 synthetisiert wird.
7. Zusammensetzung gemäß mindestens einem der vorangehenden Ansprüche, wobei das Gewichtsverhältnis
zwischen den mindestens einen Verbindungen A, B und C umfasst: Verbindung A 1 - 1,5,
Verbindung B 0,25 - 1, Verbindung C 0,06 - 0,24.
8. Zusammensetzung gemäß Anspruch 7, wobei das Gewichtsverhältnis zwischen den mindestens
einen Verbindungen A, B und C 1/0,5/0,12 ist.
9. Zusammensetzung gemäß mindestens einem der vorangehenden Ansprüche, die weiterhin
umfasst: schweres aromatisches Naphta in Mengen zwischen 10 und 90 Gewichtsprozent
bezüglich des Gewichts der Zusammensetzung gemäß mindestens einem der Ansprüche 1
bis 8.
10. Verwendung der Zusammensetzung gemäß mindestens einem der Ansprüche 1 bis 9 als Stabilisator/Verträglichkeitsvermittler
von Heizölen.
11. Verfahren zum Stabilisieren von Heizölen, wobei die Zusammensetzung gemäß mindestens
einem der Ansprüche 1 bis 9 vor dem Mischen hinzugefügt wird, wobei die Verschnitte
in einer größeren Menge als 10 ppm (Gewicht/Gewicht), vorzugsweise in dem Bereich
100 - 1000 ppm, eher noch 150 - 700 ppm, zu normalisieren sind.
12. Stabilisierte Heizöle, die mit dem Verfahren gemäß Anspruch 11 erhalten werden können.
1. Composition comprenant
- au moins un composé A appartenant à la classe des polyalkylsuccinimides ;
- au moins un composé B appartenant à la classe des acides alkylbenzènesulfoniques
et
- au moins un composé C appartenant à la classe des imidazolines dérivées d'acides
gras,
dans laquelle au moins un composé C est choisi dans la classe formée par les produits
de condensation parmi les acides gras naturels, végétaux ou animaux, issus de sébum,
de tallol, de noix de coco, de diverses huiles, et les polyamines, dans des rapports
variables de 0,5/2 à 2/0,5.
2. Composition selon la revendication 1, dans laquelle ledit au moins un composé A est
choisi dans la classe formée par les polyalkylsuccinimides ayant une masse moléculaire
comprise entre 500 et 5 000 daltons, ayant une valeur de basicité comprise entre 30
et 80 mg KOH/g et une teneur en azote comprise entre 2,0 et 5,0 % en poids, de préférence
par les polyisobutényl-succinimides.
3. Composition selon au moins une des revendications précédentes, dans laquelle ledit
au moins un composé B est choisi dans la classe formée par les acides sulfoniques
et leurs sels de métaux alcalins et alcalino-terreux ; les acides monoalkyl- ou dialkyl-benzènesulfoniques
et leurs sels de métaux alcalins et alcalino-terreux ; les acides monoalkyl- et dialkyl-naphtalènesulfoniques
et leurs sels de métaux alcalins et alcalino-terreux.
4. Composition selon la revendication 3, dans laquelle ledit composé B est choisi dans
la classe formée par l'acide dodécyl- ou lauryl-benzènesulfonique et ses sels de sodium,
potassium, calcium et magnésium, l'acide didodécylbenzènesulfonique et ses sels de
sodium, potassium, calcium et magnésium ; l'acide dinonylnaphtalènesulfonique et ses
sels de sodium, potassium, calcium et magnésium.
5. Composition selon la revendication 4, dans laquelle ledit composé B est l'acide dodécylbenzènesulfonique
ou son sel de calcium.
6. Composition selon au moins une des revendications précédentes, dans laquelle ledit
au moins un composé C est choisi dans la classe formée par l'imidazoline synthétisée
avec des acides de tallol et la diéthylènetriamine dans un rapport en poids/poids
de 1/1,1.
7. Composition selon au moins une des revendications précédentes, dans laquelle le rapport
en poids entre lesdits au moins un composés A, B et C est compris dans les plages
de proportion suivantes : composé A 1 à 1,5, composé B 0,25 à 1, composé C 0,06 à
0,24.
8. Composition selon la revendication 7, dans laquelle le rapport en poids entre lesdits
au moins un composés A, B et C est de 1/0,5/0,12.
9. Composition selon au moins une des revendications précédentes, comprenant en outre
du naphta aromatique lourd en une quantité comprise entre 10 et 90 % en poids par
rapport au poids de la composition telle que définie dans au moins une des revendications
1 à 8.
10. Utilisation de la composition d'au moins une des revendications 1 à 9 en tant qu'agent
de stabilité/ compatibilité de fiouls.
11. Procédé pour stabiliser les fiouls, dans lequel la composition d'au moins une des
revendications 1 à 9 est ajoutée avant mélange avec les coupes devant être normalisées
en une quantité supérieure à 10 ppm (poids/poids), de préférence située dans la plage
allant de 100 à 1 000 ppm, mieux encore de 150 à 700 ppm.
12. Fiouls stabilisés qui peuvent être obtenus conformément au procédé de la revendication
11.