(19) |
 |
|
(11) |
EP 2 719 951 B1 |
(12) |
EUROPEAN PATENT SPECIFICATION |
(45) |
Mention of the grant of the patent: |
|
20.05.2020 Bulletin 2020/21 |
(22) |
Date of filing: 10.10.2013 |
|
(51) |
International Patent Classification (IPC):
|
|
(54) |
Air management arrangement for a late lean injection combustor system and method of
routing an airflow
Luftregelungsanordnung für ein Magergemischeinspritz-Verbrennungssystem und Verfahren
zum Routen einer Luftströmung
Système de gestion d'air pour système de chambre de combustion par injection pauvre
tardive et procédé d'acheminement d'un flux d'air
|
(84) |
Designated Contracting States: |
|
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL
NO PL PT RO RS SE SI SK SM TR |
(30) |
Priority: |
10.10.2012 US 201213648558
|
(43) |
Date of publication of application: |
|
16.04.2014 Bulletin 2014/16 |
(73) |
Proprietor: General Electric Company |
|
Schenectady, NY 12345 (US) |
|
(72) |
Inventor: |
|
- Chen, Wei
Greenville, SC South Carolina 29615 (US)
|
(74) |
Representative: BRP Renaud & Partner mbB
Rechtsanwälte Patentanwälte
Steuerberater |
|
Königstraße 28 70173 Stuttgart 70173 Stuttgart (DE) |
(56) |
References cited: :
US-A- 4 928 481 US-A- 5 983 643 US-A1- 2009 071 159
|
US-A- 5 687 571 US-A- 6 158 223
|
|
|
|
|
|
|
|
|
Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
BACKGROUND
[0001] The subject matter disclosed herein relates to combustor systems, and more particularly
to an air management arrangement for a late lean injection combustor system, as well
as a method of routing an airflow within such a late lean injection combustor system.
[0002] In combustion applications, such as a gas turbine system, for example, a combustor
section includes a combustor chamber defined by a combustor liner that is often surrounded
by a sleeve, such as a flow sleeve. An airflow typically passes through a passage
disposed between the combustor liner and the sleeve for cooling of the combustor liner,
as well as routing of the airflow to air-fuel injectors located at a forward end of
the combustor liner. The airflow is derived from an air supply that must typically
also provide air to other regions for a variety of purposes. Such a region may include
late lean injectors that inject air into the combustor chamber in an effort to reduce
undesirable emissions into an ambient atmosphere. Such combustor chambers are known,
for example, from
US 5687571 and
US 4928481. As late lean injection combustor systems become more prevalent and more of the air
supply is employed to provide air to the late lean injectors, efforts to cool the
combustor liner are hindered due to the availability of less air from the air supply
to be used for cooling purposes within the passage between the sleeve and the combustor
liner.
[0003] Based on the direct supply of airflow to the air-fuel injectors, a combustion system
is subject to back pressure when combustion fluctuates and suddenly increases the
combustion pressure. The higher pressure inside the combustor chamber will instantaneously
"push" a flammable fuel/air mixture into an air supply chamber, such as a compressor
discharge casing (CDC). Such flammable mixture may cause damage to the CDC and result
in shut down.
BRIEF DESCRIPTION
[0004] According to one aspect of the invention, an air management arrangement for a late
lean injection combustor system includes a combustor liner defining a combustor chamber.
Also included is a sleeve surrounding at least a portion of the combustor liner, the
combustor liner and the sleeve defining a cooling annulus for routing a cooling airflow
from proximate an aft end of the combustor liner toward a forward end of the combustor
liner. Further included is a cooling airflow divider region, which is a walled region
disposed at a location along the combustor liner, and configured to split the cooling
airflow into a first cooling airflow portion and a second cooling airflow portion,
wherein the first cooling airflow portion is directed to at least one primary air-fuel
injector, wherein the second cooling airflow portion is directed to at least one lean-direct
injector extending through the sleeve and the cooling annulus for injection of the
second cooling airflow portion into the combustor chamber. According to another aspect
of the invention, a method of routing an airflow for a late lean injector combustor
system is provided. The method includes directing a cooling airflow into a cooling
annulus defined by a combustor liner and a sleeve surrounding at least a portion of
the combustor liner, wherein the cooling airflow is routed through the cooling annulus
from proximate an aft end of the combustor liner toward a forward end of the combustor
liner. Also included is splitting the cooling airflow into a first cooling airflow
portion and a second cooling airflow portion with a cooling airflow divider region
which is a walled region disposed at a location along the combustor liner. Further
included is routing the first cooling airflow portion to at least one primary air-fuel
injector. Yet further included is routing the second cooling airflow portion to at
least one lean-direct injector extending through the sleeve and the cooling annulus
for injection of the second cooling airflow portion into a combustor chamber.
[0005] These and other advantages and features will become more apparent from the following
description taken in conjunction with the drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
[0006] The subject matter, which is regarded as the invention, is particularly pointed out
and distinctly claimed in the claims at the conclusion of the specification. The foregoing
and other features, and advantages of the invention are apparent from the following
detailed description taken in conjunction with the accompanying drawings in which:
FIG. 1 is a schematic illustration of a gas turbine system;
FIG. 2 is a partial schematic illustration of a combustor section of the gas turbine
system;
FIG. 3 is a schematic illustration of an air management arrangement for the combustor
section; and
FIG. 4 is a flow diagram illustrating a method of routing an airflow for the combustor
section.
[0007] The detailed description explains embodiments of the invention, together with advantages
and features, by way of example with reference to the drawings.
DETAILED DESCRIPTION
[0008] Referring to FIG. 1, a gas turbine system is schematically illustrated with reference
numeral 10. The gas turbine system 10 includes a compressor section 12, a combustor
section 14, a turbine section 16, a shaft 18 and one or more air-fuel nozzles 20.
It is to be appreciated that one embodiment of the gas turbine system 10 may include
a plurality of compressor sections 12, combustor sections 14, turbine sections 16,
shafts 18 and one or more air-fuel fuel nozzles 20. The compressor section 12 and
the turbine section 16 are coupled by the shaft 18. The shaft 18 may be a single shaft
or a plurality of shaft segments coupled together to form the shaft 18.
[0009] The combustor section 14 uses a combustible liquid and/or gas fuel, such as natural
gas or a hydrogen rich synthetic gas, to run the gas turbine system 10. For example,
the one or more air-fuel nozzles 20 may be of various types, as will be discussed
in detail below, and are in fluid communication with an air supply 22 and a fuel supply
24. The one or more air-fuel nozzles 20 create an air-fuel mixture, and discharge
the air-fuel mixture into the combustor section 14, thereby causing a combustion that
creates a hot pressurized exhaust gas. The combustor section 14 directs the hot pressurized
gas through a transition piece into a turbine nozzle (or "stage one nozzle"), and
other stages of buckets and nozzles causing rotation of the turbine section 16 within
a turbine casing 26. Rotation of the turbine section 16 causes the shaft 18 to rotate,
thereby compressing the air as it flows into the compressor 12. In an embodiment,
hot gas path components are located in and proximate the combustor section 14, where
hot gas flow proximate the components causes creep, oxidation, wear and thermal fatigue
of components. As the firing temperature increases, the hot gas path components need
to be properly cooled to meet service life and to effectively perform intended functionality.
[0010] Referring now to FIG. 2, the combustor section 14 is schematically illustrated in
greater detail. The combustor section 14 includes a transition piece 28 in the form
of a duct that is at least partially surrounded by an impingement sleeve 30 disposed
radially outwardly of the transition piece 28. Upstream thereof, proximate a forward
region of the impingement sleeve 30 is a combustor liner 32 defining a combustor chamber
34. The combustor liner 32 is at least partially surrounded by a flow sleeve 36 disposed
radially outwardly of the combustor liner 32. Although the combustor liner 32 and
the transition piece 28 have been described as separate components, it is to be appreciated
that the combustor liner 32 and the transition piece 28 may be formed as a single,
unitary structural component that forms the combustor chamber 34 and a transition
zone. Similarly, although the flow sleeve 36 and the impingement sleeve 30 have been
described as separate components, it is to be appreciated that the flow sleeve 36
and the impingement sleeve 30 may be formed as a single, unitary sleeve configured
to surround at least a portion of the combustor liner 32 and the transition piece
28, whether separate or integrated components.
[0011] Irrespective of the precise configuration of the combustor liner 32, the transition
piece 28, the flow sleeve 36 and the impingement sleeve 30, a compressor discharge
casing 38 is illustrated and includes a compressor discharge exit 40 that is configured
to route the air supply 22 that is employed for numerous purposes within the combustor
section 14. The air supply 22 typically originates from the compressor section 12
and enters into the compressor discharge casing 38. The air supply 22 exits the compressor
discharge casing 38 proximate the compressor discharge exit 40 and rushes downstream
toward the transition duct 28 and/or the combustor liner 32. Specifically, rather
than routing a portion of the air supply 22 directly to various components, such as
air-fuel nozzles, approximately all of the air supply 22 is directed as a cooling
airflow 42 to a first cooling annulus 44 defined by the combustor liner 32 and the
flow sleeve 36. The cooling airflow 42 is directed within the first cooling annulus
44 from an aft end 48 of the combustor liner 32 toward a forward end 49 of the combustor
liner 32. As described in detail above, various embodiments relating to the sleeve(s),
as well as the combustor liner 32 and transition piece 28 configuration are contemplated,
and it is to be understood that the air supply 22 may be directed as the cooling airflow
42 to a second cooling annulus 46 defined by the transition piece 28 and the impingement
sleeve 30. For an embodiment having a single liner or duct defining the combustor
chamber 34 surrounded by one or more sleeves, the air supply 22 may be directed as
the cooling airflow 42 to such a cooling annulus. For purposes of this description,
reference to the first cooling annulus 44 defined by the combustor liner 32 and the
flow sleeve 36 is intended to apply to routing of the cooling airflow 42 to any cooling
annulus described above.
[0012] The combustor section 14 is late lean injection (LLI) compatible. An LLI compatible
combustor is any combustor with either an exit temperature that exceeds 1371°C (2500°F)
or handles fuels with components that are more reactive than methane with a hot side
residence time greater than 10 milliseconds (ms).
[0013] Irrespective of the embodiment employed in the gas turbine system 10, at least one,
but typically a plurality of lean-direct injectors ("LDIs") 50, are each integrated
with or structurally supported by a plurality of housings that extend radially into
at least one of the transition piece 28 or the combustor liner 32. The plurality of
LDIs 50 extend through the respective component, i.e., the transition piece 28 or
the combustor liner 32, to varying depths. That is, the plurality of LDIs 50 are each
configured to supply a second fuel (i.e., LLI fuel) to the combustion zone through
fuel injection in a direction that is generally transverse to a predominant flow direction
through the transition piece 28 and/or the combustor liner 32. For each of the above-described
embodiments, it is emphasized that the plurality of LDIs 50 may be disposed proximate
the transition piece 28 or the combustor liner 32, in spite of the illustrated embodiments
showing disposal of the plurality of LDIs 50 disposed in connection with only one
of the transition piece 28 and the combustor liner 32. Furthermore, the plurality
of LDIs 50 may be disposed in connection with both the transition piece 28 and the
combustor liner 32. The plurality of LDIs 50 may be disposed in a single axial circumferential
stage that includes multiple currently operating LDIs respectively disposed around
a circumference of a single axial location of the transition piece 28 and/or the combustor
liner 32. It is also conceivable that the plurality of LDIs 50 may be situated in
a single axial stage, multiple axial stages, or multiple axial circumferential stages.
A single axial stage includes a currently operating single LDI. A multiple axial stage
includes multiple currently operating LDIs that are respectively disposed at multiple
axial locations. A multiple axial circumferential stage includes multiple currently
operating LDIs, which are disposed around a circumference of the transition piece
28 and/or the combustor liner 32 at multiple axial locations thereof.
[0014] Referring now to FIG. 3, the cooling airflow 42 is illustrated proximate the forward
end 49 of the combustor liner 32. As shown, the cooling airflow 42 is routed toward
the forward end 49 of the combustor liner 32 within the first cooling annulus 44 and
around the plurality of LDIs 50. The cooling airflow 42 provides a convective cooling
effect on the combustor liner 32 while flowing toward the forward end 49 of the combustor
liner 32. As noted above, approximately all (i.e., about 100%) of the air supply 22
is directed to the first cooling annulus 44 for cooling purposes. Upon reaching a
location proximate the forward end 49 of the combustor liner 32, a cooling airflow
divider region, which as shown in the illustrated embodiment is a walled region of
the combustor section 14, splits the cooling airflow 42 into a first cooling airflow
portion 54 and a second cooling airflow portion 56.
[0015] The first cooling airflow portion 54 is directed to at least one primary air-fuel
injector 58 located at the forward end 49 of the combustor liner 32 for mixing and
injection of an air-fuel mixture into the combustor chamber 34. The at least one primary
air-fuel injector 58 is typically aligned relatively parallel to the predominant direction
of flow within the combustor chamber 34. The second cooling airflow portion 56 is
directed to the plurality of LDIs 50 for mixing and injection of the LLI fuel, as
described above. Although illustrated and described above as being located proximate
the forward end 49 of the combustor liner 32, it is to be appreciated that the cooling
airflow divider region may be disposed at any location along the combustor liner 32
and/or the transition piece 28, as well as any location along the flow sleeve 36 and/or
the impingement sleeve 30. Specifically, the cooling airflow 42 may be split into
the first cooling airflow portion 54 and the second cooling airflow portion 56 at
any desired location suitable for the particular application of use. Furthermore,
the combustor section 14 may include a plurality of cooling airflow divider regions
and the cooling airflow 42 may be divided into more than two portions.
[0016] Routing approximately all of the air supply 22 through the first cooling annulus
44 reduces the likelihood of "flame flash back" pushing out of the combustor chamber
34 upon a sudden increase or fluctuation of combustion pressure within the combustor
chamber 34. In the event of such an increase or fluctuation of combustion pressure,
the path that the air-fuel mixture must travel to extend into a sensitive region subject
to damage is more tortuous. Specifically, the likelihood of the air-fuel mixture reaching
the compressor discharge casing 38 is reduced. Advantageously, in addition to having
a longer and more tortuous path, the air-fuel mixture is provided multiple paths to
flash back through. In particular, the split of the cooling flow 42 proximate the
forward end 49 of the combustor liner 32 allows the air-fuel mixture being pushed
back to enter the at least one primary air-fuel injector 58 or one of the plurality
of LDIs 50. For example, if the air-fuel mixture is pushed out of one of the plurality
of LDIs 50, the air-fuel mixture may pass to the at least one primary air-fuel injector
58 for re-entry to the combustor chamber 34.
[0017] As illustrated in the flow diagram of FIG. 4, and with reference to FIGS. 1-3, a
method of routing an airflow for a late lean injection combustor system 100 is also
provided. The gas turbine system 10 and the combustor section 14 have been previously
described and specific structural components need not be described in further detail.
The method of routing an airflow for a late lean injection combustor system 100 includes
directing a cooling airflow into a cooling annulus 102 defined by the combustor liner
32 and a sleeve surrounding at least a portion of the combustor liner 32. The cooling
airflow is split into a first cooling airflow portion and a second cooling airflow
portion 104. The first cooling airflow portion is routed to at least one primary air-fuel
injector 106, while the second cooling airflow portion is routed to at least one lean-direct
injector 108.
[0018] Advantageously, approximately all of the air supply 22 is employed to cool various
components subjected to extreme thermal conditions, such as the transition piece 28
and/or the combustor liner 32, for example. By routing the cooling airflow 42 to several
air-fuel injectors, including the plurality of LDIs 50, the air supply 22 serves a
dual purpose benefit. Specifically, the cooling air 42 cools various components, then
is mixed with a fuel for injection to the combustor chamber 34.
[0019] While the invention has been described in detail in connection with only a limited
number of embodiments, it should be readily understood that the invention is not limited
to such disclosed embodiments. Aspects of the invention may include only some of the
described embodiments. Accordingly, the invention is not to be seen as limited by
the foregoing description, but is only limited by the scope of the appended claims.
1. An air management arrangement for a late lean injection combustor system (14) comprising:
a combustor liner (32) defining a combustor chamber (34);
a sleeve (36) surrounding at least a portion of the combustor liner, the combustor
liner and the sleeve defining a cooling annulus (44) for routing a cooling airflow
(42) from proximate an aft end (48) of the combustor liner toward a forward end (49)
of the combustor liner; and
a cooling airflow divider region being a walled region of the combustor system (14)
and disposed at a location along the combustor liner and configured to split the cooling
airflow into a first cooling airflow portion (54) and a second cooling airflow portion
(56), wherein the first cooling airflow portion is directed to at least one primary
air-fuel injector (58), wherein the second cooling airflow portion is directed to
at least one lean-direct injector (50) extending through the sleeve and the cooling
annulus for injection of the second cooling airflow portion into the combustor chamber.
2. The air management arrangement of claim 1, wherein the cooling airflow (42) is derived
from an air supply (22) from a compressor.
3. The air management arrangement of claim 2, operable such that about 100% of the air
supply (22) is directed to the cooling annulus (44) as the cooling airflow (42).
4. The air management arrangement of any of the preceding claims, wherein the at least
one lean-direct injector (50) comprises a plurality of lean-direct injectors.
5. The air management arrangement of claim 4, wherein the plurality of lean-direct injectors
(50) are staged in an axially spaced relationship.
6. The air management arrangement of any of the preceding claims, wherein the cooling
airflow divider region is disposed proximate the forward end (49) of the combustor
liner (32).
7. The air management arrangement of any preceding the claims, further comprising a transition
piece (28) disposed proximate the aft end (48) of the combustor liner (32), at least
a portion of the transition piece surrounded by the sleeve.
8. The air management arrangement of claim 7, the at least one lean-direct injector (50)
extending through the sleeve and the combustor liner.
9. The air management arrangement of any of claims 1 to 6, further comprising a transition
piece (28) disposed proximate the aft end (48) of the combustor liner (32), the sleeve
surrounding the combustor liner (32) comprising a flow sleeve (36) and the transition
piece (28) at least partially surrounded by an impingement sleeve (30).
10. The air management arrangement of claim 9, the at least one lean-direct injector (50)
extending through the flow sleeve (36) and the combustor liner (32).
11. The air management arrangement of either of claim 9 or 10, the at least one lean-direct
injector (50) extending through the impingement sleeve (30) and the transition piece
(28).
12. The air management arrangement of any of claims 9 to 11, the cooling airflow divider
region disposed at an axial location proximate the flow sleeve (36).
13. The air management arrangement of any of claims 9 to 11, the cooling airflow divider
region disposed at an axial location proximate the impingement sleeve (30).
14. A method (100) of routing an airflow for a late lean injection combustor system (14)
comprising:
directing (102) a cooling airflow (42) into a cooling annulus (44) defined by a combustor
liner (32) and a sleeve (36) surrounding at least a portion of the combustor liner,
wherein the cooling airflow is routed through the cooling annulus from proximate an
aft end (48) of the combustor liner toward a forward end (49) of the combustor liner;
splitting (104) the cooling airflow (42) into a first cooling airflow portion (54)
and a second cooling airflow portion (56) with a cooling airflow divider region being
a walled region of the combustor system (14) and disposed at a location along the
combustor liner;
routing (106) the first cooling airflow portion to at least one primary air-fuel injector
(58); and
routing (108) the second cooling airflow portion to at least one lean-direct injector
(50) extending through the sleeve and the cooling annulus for injection of the second
cooling airflow portion into a combustor chamber (34).
15. The method (100) of claim 14, further comprising routing a flashed back fuel-air mixture
that is pushed out of the combustor chamber (34) to proximate at least one of the
at least one primary air-fuel injector and the at least one lean-direct injector for
re-entry of the flashed back fuel-air mixture into the combustor chamber.
1. Luftregelungsanordnung für ein Magergemischeinspritz-Verbrennungssystem (14), umfassend:
eine Brennkammerauskleidung (32), die eine Brennkammer (34) definiert;
eine Hülse (36), die mindestens einen Abschnitt der Brennkammerauskleidung umgibt,
wobei die Brennkammerauskleidung und die Hülse einen Kühlringkanal (44) zum Routen
einer Kühlluftströmung (42) von nahe einem hinteren Ende (48) der Brennkammerauskleidung
zu einem vorderen Ende (49) der Brennkammerauskleidung definieren; und
einen Teilerbereich der Kühlluftströmung, der ein Wandbereich des Verbrennungssystems
(14) ist und an einer Stelle entlang der Brennkammerauskleidung angeordnet ist und
dafür konfiguriert ist, um die Kühlluftströmung in einen ersten Kühlluftströmungsabschnitt
(54) und einen zweiten Kühluftströmungsabschnitt (56) aufzuteilen, wobei der erste
Kühlluftströmungsabschnitt zu mindestens einer Haupt-Luft-Kraftstoff-Einspritzdüse
(58) geleitet wird, wobei der zweite Kühlluftströmungsabschnitt zu mindestens einer
Magergemisch-Direkt-Einspritzdüse (50) geleitet wird, die sich durch die Hülse und
den Kühlringkanal zum Einspritzen des zweiten Kühlluftströmungsabschnitts in die Brennkammer
erstreckt.
2. Luftregelungsanordnung nach Anspruch 1, wobei die Kühlluftströmung (42) von einer
Luftzufuhr (22) von einem Verdichter abgeleitet ist.
3. Luftregelungsanordnung nach Anspruch 2, die derart betreibbar ist, dass etwa 100 %
der Luftzufuhr (22) zu dem Kühlringkanal (44) als Kühlluftströmung (42) geleitet wird.
4. Luftregelungsanordnung nach einem der vorstehenden Ansprüche, wobei die mindestens
eine Magergemisch-Direkt-Einspritzdüse (50) eine Vielzahl von Magergemisch-Direkt-Einspritzdüsen
umfasst.
5. Luftregelungsanordnung nach Anspruch 4, wobei die Vielzahl von Magergemisch-Direkt-Einspritzdüsen
(50) in einer axial beabstandeten Beziehung gestapelt sind.
6. Luftregelungsanordnung nach einem der vorstehenden Ansprüche, wobei der Teilerbereich
der Kühlluftströmung nahe dem vorderen Ende (49) der Brennkammerauskleidung (32) angeordnet
ist.
7. Luftregelungsanordnung nach einem der vorstehenden Ansprüche, ferner umfassend ein
Übergangsstück (28), das nahe dem hinteren Ende (48) der Brennkammerauskleidung (32)
angeordnet ist, wobei mindestens ein Abschnitt des Übergangsstücks von der Hülse umgeben
wird.
8. Luftregelungsanordnung nach Anspruch 7, wobei die mindestens eine Magergemisch-Direkt-Einspritzdüse
(50) sich durch die Hülse und die Brennkammerauskleidung erstreckt.
9. Luftregelungsanordnung nach einem der Ansprüche 1 bis 6, ferner umfassend ein Übergangsstück
(28), das nahe dem hinteren Ende (48) der Brennkammerauskleidung (32) angeordnet ist,
wobei die Hülse die Brennkammerauskleidung (32) umgibt, umfassend eine Strömungshülse
(36) und wobei das Übergangsstück (28) mindestens teilweise durch eine Prallhülse
(30) umgeben wird.
10. Luftregelungsanordnung nach Anspruch 9, wobei die mindestens eine Magergemisch-Direkt-Einspritzdüse
(50) sich durch die Strömungshülse (36) und die Brennkammerauskleidung (32) erstreckt.
11. Luftregelungsanordnung nach einem der Ansprüche 9 oder 10, wobei die mindestens eine
Magergemisch-Direkt-Einspritzdüse (50) sich durch die Prallhülse (30) und das Übergangsstück
(28) erstreckt.
12. Luftregelungsanordnung nach einem der Ansprüche 9 bis 11, wobei der Teilerbereich
der Kühlluftströmung an einer axialen Stelle nahe der Strömungshülse (36) angeordnet
ist.
13. Luftregelungsanordnung nach einem der Ansprüche 9 bis 11, wobei der Teilerbereich
der Kühlluftströmung an einer axialen Stelle nahe der Prallhülse (30) angeordnet ist.
14. Verfahren (100) zum Routen einer Luftströmung für ein Magergemischeinspritz-Verbrennungssystem
(14), umfassend:
Leiten (102) einer Kühlluftströmung (42) in einen Kühlringkanal (44), der durch eine
Brennkammerauskleidung (32) und eine Hülse (36), die wenigstens einen Abschnitt der
Brennkammerauskleidung umgibt, definiert wird, wobei die Kühlluftströmung durch den
Kühlringkanal von nahe einem hinteren Ende (48) der Brennkammerauskleidung zu einem
vorderen Ende (49) der Brennkammerauskleidung geroutet wird;
Aufteilen (104) der Kühlluftströmung (42) in einen ersten Kühlluftströmungsabschnitt
(54) und einen zweiten Kühlluftströmungsabschnitt (56), wobei ein Teilerbereich der
Kühlluftströmung ein Wandbereich des Verbrennungssystems (14) ist und an einer Stelle
entlang der Brennkammerauskleidung angeordnet ist;
Routen (106) des ersten Kühlluftströmungsabschnitts zu mindestens einer Haupt-Luft-Kraftstoff-Einspritzdüse
(58); und
Routen (108) des zweiten Kühlluftströmungsabschnitts zu mindestens einer Magergemisch-Direkt-Einspritzdüse
(50), das sich durch die Hülse und den Kühlringkanal zum Einspritzen des zweiten Kühlluftströmungsabschnitts
in eine Brennkammer (34) erstreckt.
15. Verfahren (100) nach Anspruch 14, ferner umfassend das Routen eines zurückgeblasenen
Kraftstoff-Luft-Gemisches, das aus der Brennkammer (34) zu nahe mindestens einer der
mindestens einen Haupt-Luft-Kraftstoff-Einspritzdüse und der mindestens einen Magergemisch-Direkt-Einspritzdüse
gedrückt wird, um das zurückgeblasene Kraftstoff-Luft-Gemisch wieder in die Brennkammer
einzuführen.
1. Agencement de gestion d'air pour un système de chambre de combustion à injection pauvre
tardive (14) comprenant :
une chemise de chambre de combustion (32) définissant une chambre de combustion (34)
;
un manchon (36) entourant au moins une partie de la chemise de chambre de combustion,
la chemise de chambre de combustion et le manchon définissant un anneau de refroidissement
(44) permettant d'acheminer un flux d'air de refroidissement (42) depuis à proximité
d'une extrémité arrière (48) de la chemise de chambre de combustion vers une extrémité
avant (49) de la chemise de chambre de combustion ; et
une région de diviseur du flux d'air de refroidissement, qui est une région cloisonnée
du système de chambre de combustion (14) et est disposée au niveau d'un emplacement
le long de la chemise de chambre de combustion et conçue pour fractionner un flux
d'air de refroidissement en une première partie de flux d'air de refroidissement (54)
et une deuxième partie de flux d'air de refroidissement (56), dans lequel la première
partie de flux d'air de refroidissement est dirigée vers au moins un injecteur primaire
air-carburant (58), dans lequel la deuxième partie de flux d'air de refroidissement
est dirigée vers au moins un injecteur direct pauvre (50) s'étendant à travers le
manchon et l'anneau de refroidissement pour l'injection de la deuxième partie de flux
d'air de refroidissement dans la chambre de combustion.
2. Agencement de gestion d'air selon la revendication 1, dans lequel le flux d'air de
refroidissement (42) est dérivé d'une alimentation en air (22) provenant d'un compresseur.
3. Agencement de gestion d'air selon la revendication 2, pouvant fonctionner de sorte
qu'environ 100 % de l'alimentation en air (22) est dirigée vers l'anneau de refroidissement
(44) en tant que le flux d'air de refroidissement(42).
4. Agencement de gestion d'air selon l'une quelconque des revendications précédentes,
dans lequel l'au moins un injecteur direct pauvre (50) comprend une pluralité d'injecteurs
directs pauvres.
5. Agencement de gestion d'air selon la revendication 4, dans lequel la pluralité d'injecteurs
directs pauvres (50) sont étagés dans une relation axialement espacée.
6. Agencement de gestion d'air selon l'une quelconque des revendications précédentes,
dans lequel la région de diviseur de flux d'air de refroidissement est disposée à
proximité de l'extrémité avant (49) de la chemise de chambre de combustion (32).
7. Agencement de gestion d'air selon l'une quelconque des revendications précédentes,
comprenant en outre une pièce de transition (28) disposée à proximité de l'extrémité
arrière (48) de la chemise de chambre de combustion (32), au moins une partie de la
pièce de transition entourée par le manchon.
8. Agencement de gestion d'air selon la revendication 7, l'au moins un injecteur direct
pauvre (50) s'étendant à travers le manchon et la chemise de chambre de combustion.
9. Agencement de gestion d'air selon l'une quelconque des revendications 1 à 6, comprenant
en outre une pièce de transition (28) disposée à proximité de l'extrémité arrière
(48) de la chemise de chambre de combustion (32), le manchon entourant la chemise
de chambre de combustion (32) comprenant un manchon d'écoulement (36) et la pièce
de transition (28) au moins partiellement entourée par un manchon d'impact (30).
10. Agencement de gestion d'air selon la revendication 9, l'au moins un injecteur direct
pauvre (50) s'étendant à travers le manchon d'écoulement (36) et la chemise de chambre
de combustion (32).
11. Agencement de gestion d'air selon l'une ou l'autre de revendication 9 ou 10, l'au
moins un injecteur direct pauvre (50) s'étendant à travers le manchon d'impact (30)
et la pièce de transition (28).
12. Agencement de gestion d'air selon l'une quelconque des revendications 9 à 11, la région
de diviseur d'écoulement d'air de refroidissement disposée à un emplacement axial
à proximité du manchon d'écoulement (36).
13. Agencement de gestion d'air selon l'une quelconque des revendications 9 à 11, la région
de diviseur d'écoulement d'air de refroidissement disposée à un emplacement axial
à proximité du manchon d'impact (30).
14. Procédé (100) d'acheminement d'un flux d'air pour un système de chambre de combustion
à injection pauvre tardive (14) comprenant :
la direction (102) d'un écoulement d'air de refroidissement (42) dans un anneau de
refroidissement (44) défini par une chemise de chambre de combustion (32) et un manchon
(36) entourant au moins une partie de la chemise de chambre de combustion, dans lequel
le flux d'air de refroidissement est acheminé à travers l'anneau de refroidissement
depuis à proximité d'une extrémité arrière (48) de la chemise de chambre de combustion
vers une extrémité avant (49) de la chemise de chambre de combustion ;
la division (104) du flux d'air de refroidissement (42) en une première partie de
flux d'air de refroidissement (54) et une deuxième partie de flux d'air de refroidissement
(56) avec une région de diviseur de flux d'air de refroidissement, qui est une région
cloisonnée du système de chambre de combustion (14) et disposée à un emplacement le
long de la chemise de chambre de combustion ;
l'acheminement(106) de la première partie de flux d'air de refroidissement vers au
moins un injecteur air-carburant primaire (58) ; et
l'acheminement (108) de la deuxième partie de flux d'air de refroidissement à au moins
un injecteur direct pauvre (50) s'étendant à travers le manchon et l'anneau de refroidissement
pour l'injection de la deuxième partie de flux d'air de refroidissement dans une chambre
de combustion (34).
15. Procédé (100) selon la revendication 14, comprenant en outre l'acheminement d'un mélange
carburant-air de retour prélevé, qui est poussé hors de la chambre de combustion (34)
jusqu'à proximité d'au moins l'un du au moins un injecteur air-carburant primaire
et du au moins un injecteur direct pauvre pour réentrer le mélange carburant-air de
retour prélevé dans la chambre de combustion.
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader's convenience only.
It does not form part of the European patent document. Even though great care has
been taken in compiling the references, errors or omissions cannot be excluded and
the EPO disclaims all liability in this regard.
Patent documents cited in the description