(19)
(11) EP 2 719 951 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
20.05.2020 Bulletin 2020/21

(21) Application number: 13188114.6

(22) Date of filing: 10.10.2013
(51) International Patent Classification (IPC): 
F23R 3/10(2006.01)
F23R 3/54(2006.01)
F23R 3/34(2006.01)

(54)

Air management arrangement for a late lean injection combustor system and method of routing an airflow

Luftregelungsanordnung für ein Magergemischeinspritz-Verbrennungssystem und Verfahren zum Routen einer Luftströmung

Système de gestion d'air pour système de chambre de combustion par injection pauvre tardive et procédé d'acheminement d'un flux d'air


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 10.10.2012 US 201213648558

(43) Date of publication of application:
16.04.2014 Bulletin 2014/16

(73) Proprietor: General Electric Company
Schenectady, NY 12345 (US)

(72) Inventor:
  • Chen, Wei
    Greenville, SC South Carolina 29615 (US)

(74) Representative: BRP Renaud & Partner mbB Rechtsanwälte Patentanwälte Steuerberater 
Königstraße 28
70173 Stuttgart
70173 Stuttgart (DE)


(56) References cited: : 
US-A- 4 928 481
US-A- 5 983 643
US-A1- 2009 071 159
US-A- 5 687 571
US-A- 6 158 223
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] The subject matter disclosed herein relates to combustor systems, and more particularly to an air management arrangement for a late lean injection combustor system, as well as a method of routing an airflow within such a late lean injection combustor system.

    [0002] In combustion applications, such as a gas turbine system, for example, a combustor section includes a combustor chamber defined by a combustor liner that is often surrounded by a sleeve, such as a flow sleeve. An airflow typically passes through a passage disposed between the combustor liner and the sleeve for cooling of the combustor liner, as well as routing of the airflow to air-fuel injectors located at a forward end of the combustor liner. The airflow is derived from an air supply that must typically also provide air to other regions for a variety of purposes. Such a region may include late lean injectors that inject air into the combustor chamber in an effort to reduce undesirable emissions into an ambient atmosphere. Such combustor chambers are known, for example, from US 5687571 and US 4928481. As late lean injection combustor systems become more prevalent and more of the air supply is employed to provide air to the late lean injectors, efforts to cool the combustor liner are hindered due to the availability of less air from the air supply to be used for cooling purposes within the passage between the sleeve and the combustor liner.

    [0003] Based on the direct supply of airflow to the air-fuel injectors, a combustion system is subject to back pressure when combustion fluctuates and suddenly increases the combustion pressure. The higher pressure inside the combustor chamber will instantaneously "push" a flammable fuel/air mixture into an air supply chamber, such as a compressor discharge casing (CDC). Such flammable mixture may cause damage to the CDC and result in shut down.

    BRIEF DESCRIPTION



    [0004] According to one aspect of the invention, an air management arrangement for a late lean injection combustor system includes a combustor liner defining a combustor chamber. Also included is a sleeve surrounding at least a portion of the combustor liner, the combustor liner and the sleeve defining a cooling annulus for routing a cooling airflow from proximate an aft end of the combustor liner toward a forward end of the combustor liner. Further included is a cooling airflow divider region, which is a walled region disposed at a location along the combustor liner, and configured to split the cooling airflow into a first cooling airflow portion and a second cooling airflow portion, wherein the first cooling airflow portion is directed to at least one primary air-fuel injector, wherein the second cooling airflow portion is directed to at least one lean-direct injector extending through the sleeve and the cooling annulus for injection of the second cooling airflow portion into the combustor chamber. According to another aspect of the invention, a method of routing an airflow for a late lean injector combustor system is provided. The method includes directing a cooling airflow into a cooling annulus defined by a combustor liner and a sleeve surrounding at least a portion of the combustor liner, wherein the cooling airflow is routed through the cooling annulus from proximate an aft end of the combustor liner toward a forward end of the combustor liner. Also included is splitting the cooling airflow into a first cooling airflow portion and a second cooling airflow portion with a cooling airflow divider region which is a walled region disposed at a location along the combustor liner. Further included is routing the first cooling airflow portion to at least one primary air-fuel injector. Yet further included is routing the second cooling airflow portion to at least one lean-direct injector extending through the sleeve and the cooling annulus for injection of the second cooling airflow portion into a combustor chamber.

    [0005] These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0006] The subject matter, which is regarded as the invention, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:

    FIG. 1 is a schematic illustration of a gas turbine system;

    FIG. 2 is a partial schematic illustration of a combustor section of the gas turbine system;

    FIG. 3 is a schematic illustration of an air management arrangement for the combustor section; and

    FIG. 4 is a flow diagram illustrating a method of routing an airflow for the combustor section.



    [0007] The detailed description explains embodiments of the invention, together with advantages and features, by way of example with reference to the drawings.

    DETAILED DESCRIPTION



    [0008] Referring to FIG. 1, a gas turbine system is schematically illustrated with reference numeral 10. The gas turbine system 10 includes a compressor section 12, a combustor section 14, a turbine section 16, a shaft 18 and one or more air-fuel nozzles 20. It is to be appreciated that one embodiment of the gas turbine system 10 may include a plurality of compressor sections 12, combustor sections 14, turbine sections 16, shafts 18 and one or more air-fuel fuel nozzles 20. The compressor section 12 and the turbine section 16 are coupled by the shaft 18. The shaft 18 may be a single shaft or a plurality of shaft segments coupled together to form the shaft 18.

    [0009] The combustor section 14 uses a combustible liquid and/or gas fuel, such as natural gas or a hydrogen rich synthetic gas, to run the gas turbine system 10. For example, the one or more air-fuel nozzles 20 may be of various types, as will be discussed in detail below, and are in fluid communication with an air supply 22 and a fuel supply 24. The one or more air-fuel nozzles 20 create an air-fuel mixture, and discharge the air-fuel mixture into the combustor section 14, thereby causing a combustion that creates a hot pressurized exhaust gas. The combustor section 14 directs the hot pressurized gas through a transition piece into a turbine nozzle (or "stage one nozzle"), and other stages of buckets and nozzles causing rotation of the turbine section 16 within a turbine casing 26. Rotation of the turbine section 16 causes the shaft 18 to rotate, thereby compressing the air as it flows into the compressor 12. In an embodiment, hot gas path components are located in and proximate the combustor section 14, where hot gas flow proximate the components causes creep, oxidation, wear and thermal fatigue of components. As the firing temperature increases, the hot gas path components need to be properly cooled to meet service life and to effectively perform intended functionality.

    [0010] Referring now to FIG. 2, the combustor section 14 is schematically illustrated in greater detail. The combustor section 14 includes a transition piece 28 in the form of a duct that is at least partially surrounded by an impingement sleeve 30 disposed radially outwardly of the transition piece 28. Upstream thereof, proximate a forward region of the impingement sleeve 30 is a combustor liner 32 defining a combustor chamber 34. The combustor liner 32 is at least partially surrounded by a flow sleeve 36 disposed radially outwardly of the combustor liner 32. Although the combustor liner 32 and the transition piece 28 have been described as separate components, it is to be appreciated that the combustor liner 32 and the transition piece 28 may be formed as a single, unitary structural component that forms the combustor chamber 34 and a transition zone. Similarly, although the flow sleeve 36 and the impingement sleeve 30 have been described as separate components, it is to be appreciated that the flow sleeve 36 and the impingement sleeve 30 may be formed as a single, unitary sleeve configured to surround at least a portion of the combustor liner 32 and the transition piece 28, whether separate or integrated components.

    [0011] Irrespective of the precise configuration of the combustor liner 32, the transition piece 28, the flow sleeve 36 and the impingement sleeve 30, a compressor discharge casing 38 is illustrated and includes a compressor discharge exit 40 that is configured to route the air supply 22 that is employed for numerous purposes within the combustor section 14. The air supply 22 typically originates from the compressor section 12 and enters into the compressor discharge casing 38. The air supply 22 exits the compressor discharge casing 38 proximate the compressor discharge exit 40 and rushes downstream toward the transition duct 28 and/or the combustor liner 32. Specifically, rather than routing a portion of the air supply 22 directly to various components, such as air-fuel nozzles, approximately all of the air supply 22 is directed as a cooling airflow 42 to a first cooling annulus 44 defined by the combustor liner 32 and the flow sleeve 36. The cooling airflow 42 is directed within the first cooling annulus 44 from an aft end 48 of the combustor liner 32 toward a forward end 49 of the combustor liner 32. As described in detail above, various embodiments relating to the sleeve(s), as well as the combustor liner 32 and transition piece 28 configuration are contemplated, and it is to be understood that the air supply 22 may be directed as the cooling airflow 42 to a second cooling annulus 46 defined by the transition piece 28 and the impingement sleeve 30. For an embodiment having a single liner or duct defining the combustor chamber 34 surrounded by one or more sleeves, the air supply 22 may be directed as the cooling airflow 42 to such a cooling annulus. For purposes of this description, reference to the first cooling annulus 44 defined by the combustor liner 32 and the flow sleeve 36 is intended to apply to routing of the cooling airflow 42 to any cooling annulus described above.

    [0012] The combustor section 14 is late lean injection (LLI) compatible. An LLI compatible combustor is any combustor with either an exit temperature that exceeds 1371°C (2500°F) or handles fuels with components that are more reactive than methane with a hot side residence time greater than 10 milliseconds (ms).

    [0013] Irrespective of the embodiment employed in the gas turbine system 10, at least one, but typically a plurality of lean-direct injectors ("LDIs") 50, are each integrated with or structurally supported by a plurality of housings that extend radially into at least one of the transition piece 28 or the combustor liner 32. The plurality of LDIs 50 extend through the respective component, i.e., the transition piece 28 or the combustor liner 32, to varying depths. That is, the plurality of LDIs 50 are each configured to supply a second fuel (i.e., LLI fuel) to the combustion zone through fuel injection in a direction that is generally transverse to a predominant flow direction through the transition piece 28 and/or the combustor liner 32. For each of the above-described embodiments, it is emphasized that the plurality of LDIs 50 may be disposed proximate the transition piece 28 or the combustor liner 32, in spite of the illustrated embodiments showing disposal of the plurality of LDIs 50 disposed in connection with only one of the transition piece 28 and the combustor liner 32. Furthermore, the plurality of LDIs 50 may be disposed in connection with both the transition piece 28 and the combustor liner 32. The plurality of LDIs 50 may be disposed in a single axial circumferential stage that includes multiple currently operating LDIs respectively disposed around a circumference of a single axial location of the transition piece 28 and/or the combustor liner 32. It is also conceivable that the plurality of LDIs 50 may be situated in a single axial stage, multiple axial stages, or multiple axial circumferential stages. A single axial stage includes a currently operating single LDI. A multiple axial stage includes multiple currently operating LDIs that are respectively disposed at multiple axial locations. A multiple axial circumferential stage includes multiple currently operating LDIs, which are disposed around a circumference of the transition piece 28 and/or the combustor liner 32 at multiple axial locations thereof.

    [0014] Referring now to FIG. 3, the cooling airflow 42 is illustrated proximate the forward end 49 of the combustor liner 32. As shown, the cooling airflow 42 is routed toward the forward end 49 of the combustor liner 32 within the first cooling annulus 44 and around the plurality of LDIs 50. The cooling airflow 42 provides a convective cooling effect on the combustor liner 32 while flowing toward the forward end 49 of the combustor liner 32. As noted above, approximately all (i.e., about 100%) of the air supply 22 is directed to the first cooling annulus 44 for cooling purposes. Upon reaching a location proximate the forward end 49 of the combustor liner 32, a cooling airflow divider region, which as shown in the illustrated embodiment is a walled region of the combustor section 14, splits the cooling airflow 42 into a first cooling airflow portion 54 and a second cooling airflow portion 56.

    [0015] The first cooling airflow portion 54 is directed to at least one primary air-fuel injector 58 located at the forward end 49 of the combustor liner 32 for mixing and injection of an air-fuel mixture into the combustor chamber 34. The at least one primary air-fuel injector 58 is typically aligned relatively parallel to the predominant direction of flow within the combustor chamber 34. The second cooling airflow portion 56 is directed to the plurality of LDIs 50 for mixing and injection of the LLI fuel, as described above. Although illustrated and described above as being located proximate the forward end 49 of the combustor liner 32, it is to be appreciated that the cooling airflow divider region may be disposed at any location along the combustor liner 32 and/or the transition piece 28, as well as any location along the flow sleeve 36 and/or the impingement sleeve 30. Specifically, the cooling airflow 42 may be split into the first cooling airflow portion 54 and the second cooling airflow portion 56 at any desired location suitable for the particular application of use. Furthermore, the combustor section 14 may include a plurality of cooling airflow divider regions and the cooling airflow 42 may be divided into more than two portions.

    [0016] Routing approximately all of the air supply 22 through the first cooling annulus 44 reduces the likelihood of "flame flash back" pushing out of the combustor chamber 34 upon a sudden increase or fluctuation of combustion pressure within the combustor chamber 34. In the event of such an increase or fluctuation of combustion pressure, the path that the air-fuel mixture must travel to extend into a sensitive region subject to damage is more tortuous. Specifically, the likelihood of the air-fuel mixture reaching the compressor discharge casing 38 is reduced. Advantageously, in addition to having a longer and more tortuous path, the air-fuel mixture is provided multiple paths to flash back through. In particular, the split of the cooling flow 42 proximate the forward end 49 of the combustor liner 32 allows the air-fuel mixture being pushed back to enter the at least one primary air-fuel injector 58 or one of the plurality of LDIs 50. For example, if the air-fuel mixture is pushed out of one of the plurality of LDIs 50, the air-fuel mixture may pass to the at least one primary air-fuel injector 58 for re-entry to the combustor chamber 34.

    [0017] As illustrated in the flow diagram of FIG. 4, and with reference to FIGS. 1-3, a method of routing an airflow for a late lean injection combustor system 100 is also provided. The gas turbine system 10 and the combustor section 14 have been previously described and specific structural components need not be described in further detail. The method of routing an airflow for a late lean injection combustor system 100 includes directing a cooling airflow into a cooling annulus 102 defined by the combustor liner 32 and a sleeve surrounding at least a portion of the combustor liner 32. The cooling airflow is split into a first cooling airflow portion and a second cooling airflow portion 104. The first cooling airflow portion is routed to at least one primary air-fuel injector 106, while the second cooling airflow portion is routed to at least one lean-direct injector 108.

    [0018] Advantageously, approximately all of the air supply 22 is employed to cool various components subjected to extreme thermal conditions, such as the transition piece 28 and/or the combustor liner 32, for example. By routing the cooling airflow 42 to several air-fuel injectors, including the plurality of LDIs 50, the air supply 22 serves a dual purpose benefit. Specifically, the cooling air 42 cools various components, then is mixed with a fuel for injection to the combustor chamber 34.

    [0019] While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.


    Claims

    1. An air management arrangement for a late lean injection combustor system (14) comprising:

    a combustor liner (32) defining a combustor chamber (34);

    a sleeve (36) surrounding at least a portion of the combustor liner, the combustor liner and the sleeve defining a cooling annulus (44) for routing a cooling airflow (42) from proximate an aft end (48) of the combustor liner toward a forward end (49) of the combustor liner; and

    a cooling airflow divider region being a walled region of the combustor system (14) and disposed at a location along the combustor liner and configured to split the cooling airflow into a first cooling airflow portion (54) and a second cooling airflow portion (56), wherein the first cooling airflow portion is directed to at least one primary air-fuel injector (58), wherein the second cooling airflow portion is directed to at least one lean-direct injector (50) extending through the sleeve and the cooling annulus for injection of the second cooling airflow portion into the combustor chamber.


     
    2. The air management arrangement of claim 1, wherein the cooling airflow (42) is derived from an air supply (22) from a compressor.
     
    3. The air management arrangement of claim 2, operable such that about 100% of the air supply (22) is directed to the cooling annulus (44) as the cooling airflow (42).
     
    4. The air management arrangement of any of the preceding claims, wherein the at least one lean-direct injector (50) comprises a plurality of lean-direct injectors.
     
    5. The air management arrangement of claim 4, wherein the plurality of lean-direct injectors (50) are staged in an axially spaced relationship.
     
    6. The air management arrangement of any of the preceding claims, wherein the cooling airflow divider region is disposed proximate the forward end (49) of the combustor liner (32).
     
    7. The air management arrangement of any preceding the claims, further comprising a transition piece (28) disposed proximate the aft end (48) of the combustor liner (32), at least a portion of the transition piece surrounded by the sleeve.
     
    8. The air management arrangement of claim 7, the at least one lean-direct injector (50) extending through the sleeve and the combustor liner.
     
    9. The air management arrangement of any of claims 1 to 6, further comprising a transition piece (28) disposed proximate the aft end (48) of the combustor liner (32), the sleeve surrounding the combustor liner (32) comprising a flow sleeve (36) and the transition piece (28) at least partially surrounded by an impingement sleeve (30).
     
    10. The air management arrangement of claim 9, the at least one lean-direct injector (50) extending through the flow sleeve (36) and the combustor liner (32).
     
    11. The air management arrangement of either of claim 9 or 10, the at least one lean-direct injector (50) extending through the impingement sleeve (30) and the transition piece (28).
     
    12. The air management arrangement of any of claims 9 to 11, the cooling airflow divider region disposed at an axial location proximate the flow sleeve (36).
     
    13. The air management arrangement of any of claims 9 to 11, the cooling airflow divider region disposed at an axial location proximate the impingement sleeve (30).
     
    14. A method (100) of routing an airflow for a late lean injection combustor system (14) comprising:

    directing (102) a cooling airflow (42) into a cooling annulus (44) defined by a combustor liner (32) and a sleeve (36) surrounding at least a portion of the combustor liner, wherein the cooling airflow is routed through the cooling annulus from proximate an aft end (48) of the combustor liner toward a forward end (49) of the combustor liner;

    splitting (104) the cooling airflow (42) into a first cooling airflow portion (54) and a second cooling airflow portion (56) with a cooling airflow divider region being a walled region of the combustor system (14) and disposed at a location along the combustor liner;

    routing (106) the first cooling airflow portion to at least one primary air-fuel injector (58); and

    routing (108) the second cooling airflow portion to at least one lean-direct injector (50) extending through the sleeve and the cooling annulus for injection of the second cooling airflow portion into a combustor chamber (34).


     
    15. The method (100) of claim 14, further comprising routing a flashed back fuel-air mixture that is pushed out of the combustor chamber (34) to proximate at least one of the at least one primary air-fuel injector and the at least one lean-direct injector for re-entry of the flashed back fuel-air mixture into the combustor chamber.
     


    Ansprüche

    1. Luftregelungsanordnung für ein Magergemischeinspritz-Verbrennungssystem (14), umfassend:

    eine Brennkammerauskleidung (32), die eine Brennkammer (34) definiert;

    eine Hülse (36), die mindestens einen Abschnitt der Brennkammerauskleidung umgibt, wobei die Brennkammerauskleidung und die Hülse einen Kühlringkanal (44) zum Routen einer Kühlluftströmung (42) von nahe einem hinteren Ende (48) der Brennkammerauskleidung zu einem vorderen Ende (49) der Brennkammerauskleidung definieren; und

    einen Teilerbereich der Kühlluftströmung, der ein Wandbereich des Verbrennungssystems (14) ist und an einer Stelle entlang der Brennkammerauskleidung angeordnet ist und dafür konfiguriert ist, um die Kühlluftströmung in einen ersten Kühlluftströmungsabschnitt (54) und einen zweiten Kühluftströmungsabschnitt (56) aufzuteilen, wobei der erste Kühlluftströmungsabschnitt zu mindestens einer Haupt-Luft-Kraftstoff-Einspritzdüse (58) geleitet wird, wobei der zweite Kühlluftströmungsabschnitt zu mindestens einer Magergemisch-Direkt-Einspritzdüse (50) geleitet wird, die sich durch die Hülse und den Kühlringkanal zum Einspritzen des zweiten Kühlluftströmungsabschnitts in die Brennkammer erstreckt.


     
    2. Luftregelungsanordnung nach Anspruch 1, wobei die Kühlluftströmung (42) von einer Luftzufuhr (22) von einem Verdichter abgeleitet ist.
     
    3. Luftregelungsanordnung nach Anspruch 2, die derart betreibbar ist, dass etwa 100 % der Luftzufuhr (22) zu dem Kühlringkanal (44) als Kühlluftströmung (42) geleitet wird.
     
    4. Luftregelungsanordnung nach einem der vorstehenden Ansprüche, wobei die mindestens eine Magergemisch-Direkt-Einspritzdüse (50) eine Vielzahl von Magergemisch-Direkt-Einspritzdüsen umfasst.
     
    5. Luftregelungsanordnung nach Anspruch 4, wobei die Vielzahl von Magergemisch-Direkt-Einspritzdüsen (50) in einer axial beabstandeten Beziehung gestapelt sind.
     
    6. Luftregelungsanordnung nach einem der vorstehenden Ansprüche, wobei der Teilerbereich der Kühlluftströmung nahe dem vorderen Ende (49) der Brennkammerauskleidung (32) angeordnet ist.
     
    7. Luftregelungsanordnung nach einem der vorstehenden Ansprüche, ferner umfassend ein Übergangsstück (28), das nahe dem hinteren Ende (48) der Brennkammerauskleidung (32) angeordnet ist, wobei mindestens ein Abschnitt des Übergangsstücks von der Hülse umgeben wird.
     
    8. Luftregelungsanordnung nach Anspruch 7, wobei die mindestens eine Magergemisch-Direkt-Einspritzdüse (50) sich durch die Hülse und die Brennkammerauskleidung erstreckt.
     
    9. Luftregelungsanordnung nach einem der Ansprüche 1 bis 6, ferner umfassend ein Übergangsstück (28), das nahe dem hinteren Ende (48) der Brennkammerauskleidung (32) angeordnet ist, wobei die Hülse die Brennkammerauskleidung (32) umgibt, umfassend eine Strömungshülse (36) und wobei das Übergangsstück (28) mindestens teilweise durch eine Prallhülse (30) umgeben wird.
     
    10. Luftregelungsanordnung nach Anspruch 9, wobei die mindestens eine Magergemisch-Direkt-Einspritzdüse (50) sich durch die Strömungshülse (36) und die Brennkammerauskleidung (32) erstreckt.
     
    11. Luftregelungsanordnung nach einem der Ansprüche 9 oder 10, wobei die mindestens eine Magergemisch-Direkt-Einspritzdüse (50) sich durch die Prallhülse (30) und das Übergangsstück (28) erstreckt.
     
    12. Luftregelungsanordnung nach einem der Ansprüche 9 bis 11, wobei der Teilerbereich der Kühlluftströmung an einer axialen Stelle nahe der Strömungshülse (36) angeordnet ist.
     
    13. Luftregelungsanordnung nach einem der Ansprüche 9 bis 11, wobei der Teilerbereich der Kühlluftströmung an einer axialen Stelle nahe der Prallhülse (30) angeordnet ist.
     
    14. Verfahren (100) zum Routen einer Luftströmung für ein Magergemischeinspritz-Verbrennungssystem (14), umfassend:

    Leiten (102) einer Kühlluftströmung (42) in einen Kühlringkanal (44), der durch eine Brennkammerauskleidung (32) und eine Hülse (36), die wenigstens einen Abschnitt der Brennkammerauskleidung umgibt, definiert wird, wobei die Kühlluftströmung durch den Kühlringkanal von nahe einem hinteren Ende (48) der Brennkammerauskleidung zu einem vorderen Ende (49) der Brennkammerauskleidung geroutet wird;

    Aufteilen (104) der Kühlluftströmung (42) in einen ersten Kühlluftströmungsabschnitt (54) und einen zweiten Kühlluftströmungsabschnitt (56), wobei ein Teilerbereich der Kühlluftströmung ein Wandbereich des Verbrennungssystems (14) ist und an einer Stelle entlang der Brennkammerauskleidung angeordnet ist;

    Routen (106) des ersten Kühlluftströmungsabschnitts zu mindestens einer Haupt-Luft-Kraftstoff-Einspritzdüse (58); und

    Routen (108) des zweiten Kühlluftströmungsabschnitts zu mindestens einer Magergemisch-Direkt-Einspritzdüse (50), das sich durch die Hülse und den Kühlringkanal zum Einspritzen des zweiten Kühlluftströmungsabschnitts in eine Brennkammer (34) erstreckt.


     
    15. Verfahren (100) nach Anspruch 14, ferner umfassend das Routen eines zurückgeblasenen Kraftstoff-Luft-Gemisches, das aus der Brennkammer (34) zu nahe mindestens einer der mindestens einen Haupt-Luft-Kraftstoff-Einspritzdüse und der mindestens einen Magergemisch-Direkt-Einspritzdüse gedrückt wird, um das zurückgeblasene Kraftstoff-Luft-Gemisch wieder in die Brennkammer einzuführen.
     


    Revendications

    1. Agencement de gestion d'air pour un système de chambre de combustion à injection pauvre tardive (14) comprenant :

    une chemise de chambre de combustion (32) définissant une chambre de combustion (34) ;

    un manchon (36) entourant au moins une partie de la chemise de chambre de combustion, la chemise de chambre de combustion et le manchon définissant un anneau de refroidissement (44) permettant d'acheminer un flux d'air de refroidissement (42) depuis à proximité d'une extrémité arrière (48) de la chemise de chambre de combustion vers une extrémité avant (49) de la chemise de chambre de combustion ; et

    une région de diviseur du flux d'air de refroidissement, qui est une région cloisonnée du système de chambre de combustion (14) et est disposée au niveau d'un emplacement le long de la chemise de chambre de combustion et conçue pour fractionner un flux d'air de refroidissement en une première partie de flux d'air de refroidissement (54) et une deuxième partie de flux d'air de refroidissement (56), dans lequel la première partie de flux d'air de refroidissement est dirigée vers au moins un injecteur primaire air-carburant (58), dans lequel la deuxième partie de flux d'air de refroidissement est dirigée vers au moins un injecteur direct pauvre (50) s'étendant à travers le manchon et l'anneau de refroidissement pour l'injection de la deuxième partie de flux d'air de refroidissement dans la chambre de combustion.


     
    2. Agencement de gestion d'air selon la revendication 1, dans lequel le flux d'air de refroidissement (42) est dérivé d'une alimentation en air (22) provenant d'un compresseur.
     
    3. Agencement de gestion d'air selon la revendication 2, pouvant fonctionner de sorte qu'environ 100 % de l'alimentation en air (22) est dirigée vers l'anneau de refroidissement (44) en tant que le flux d'air de refroidissement(42).
     
    4. Agencement de gestion d'air selon l'une quelconque des revendications précédentes, dans lequel l'au moins un injecteur direct pauvre (50) comprend une pluralité d'injecteurs directs pauvres.
     
    5. Agencement de gestion d'air selon la revendication 4, dans lequel la pluralité d'injecteurs directs pauvres (50) sont étagés dans une relation axialement espacée.
     
    6. Agencement de gestion d'air selon l'une quelconque des revendications précédentes, dans lequel la région de diviseur de flux d'air de refroidissement est disposée à proximité de l'extrémité avant (49) de la chemise de chambre de combustion (32).
     
    7. Agencement de gestion d'air selon l'une quelconque des revendications précédentes, comprenant en outre une pièce de transition (28) disposée à proximité de l'extrémité arrière (48) de la chemise de chambre de combustion (32), au moins une partie de la pièce de transition entourée par le manchon.
     
    8. Agencement de gestion d'air selon la revendication 7, l'au moins un injecteur direct pauvre (50) s'étendant à travers le manchon et la chemise de chambre de combustion.
     
    9. Agencement de gestion d'air selon l'une quelconque des revendications 1 à 6, comprenant en outre une pièce de transition (28) disposée à proximité de l'extrémité arrière (48) de la chemise de chambre de combustion (32), le manchon entourant la chemise de chambre de combustion (32) comprenant un manchon d'écoulement (36) et la pièce de transition (28) au moins partiellement entourée par un manchon d'impact (30).
     
    10. Agencement de gestion d'air selon la revendication 9, l'au moins un injecteur direct pauvre (50) s'étendant à travers le manchon d'écoulement (36) et la chemise de chambre de combustion (32).
     
    11. Agencement de gestion d'air selon l'une ou l'autre de revendication 9 ou 10, l'au moins un injecteur direct pauvre (50) s'étendant à travers le manchon d'impact (30) et la pièce de transition (28).
     
    12. Agencement de gestion d'air selon l'une quelconque des revendications 9 à 11, la région de diviseur d'écoulement d'air de refroidissement disposée à un emplacement axial à proximité du manchon d'écoulement (36).
     
    13. Agencement de gestion d'air selon l'une quelconque des revendications 9 à 11, la région de diviseur d'écoulement d'air de refroidissement disposée à un emplacement axial à proximité du manchon d'impact (30).
     
    14. Procédé (100) d'acheminement d'un flux d'air pour un système de chambre de combustion à injection pauvre tardive (14) comprenant :

    la direction (102) d'un écoulement d'air de refroidissement (42) dans un anneau de refroidissement (44) défini par une chemise de chambre de combustion (32) et un manchon (36) entourant au moins une partie de la chemise de chambre de combustion, dans lequel le flux d'air de refroidissement est acheminé à travers l'anneau de refroidissement depuis à proximité d'une extrémité arrière (48) de la chemise de chambre de combustion vers une extrémité avant (49) de la chemise de chambre de combustion ;

    la division (104) du flux d'air de refroidissement (42) en une première partie de flux d'air de refroidissement (54) et une deuxième partie de flux d'air de refroidissement (56) avec une région de diviseur de flux d'air de refroidissement, qui est une région cloisonnée du système de chambre de combustion (14) et disposée à un emplacement le long de la chemise de chambre de combustion ;

    l'acheminement(106) de la première partie de flux d'air de refroidissement vers au moins un injecteur air-carburant primaire (58) ; et

    l'acheminement (108) de la deuxième partie de flux d'air de refroidissement à au moins un injecteur direct pauvre (50) s'étendant à travers le manchon et l'anneau de refroidissement pour l'injection de la deuxième partie de flux d'air de refroidissement dans une chambre de combustion (34).


     
    15. Procédé (100) selon la revendication 14, comprenant en outre l'acheminement d'un mélange carburant-air de retour prélevé, qui est poussé hors de la chambre de combustion (34) jusqu'à proximité d'au moins l'un du au moins un injecteur air-carburant primaire et du au moins un injecteur direct pauvre pour réentrer le mélange carburant-air de retour prélevé dans la chambre de combustion.
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description