[0001] The present invention relates to a pump group for a cooling system of a vehicle,
preferably for cooling an engine, such as an internal combustion engine.
[0002] As is known, during normal use of an engine, it is appropriate to vary the intensity
of the cooling action.
[0003] For example, an intense cooling is appropriate when the engine is working at full
capacity or in towing conditions or on an uphill road or with high ambient temperatures.
[0004] In other conditions of use instead, it is appropriate for the cooling not to be accentuated,
for example when starting the engine or after use.
[0005] The prior art discloses cooling pumps in which this need has been addressed.
[0006] Cooling pumps are in fact known of for electrically operated vehicles, in which the
speed of rotation of the impeller is regulated by means of an electric drive and thus
the amount of coolant moved by it in circulation in the cooling circuit.
[0007] Unfortunately, such pumps, although extremely versatile in their application and
in the possibilities of rotation management thanks to the dedicated electronic control,
typically have low delivery power, limited by the electric power provided by the vehicle's
electrical system.
[0008] Furthermore, these pumps do not have the "fail-safe" feature in case of failure,
i.e. the possibility to function in an emergency configuration when the electric motor
has suffered a breakage.
[0009] Mechanically operated pumps are also known of where the rotation of the impeller
is related to the number of revolutions of the internal combustion engine; in these
solutions, the adjustment of the quantity of coolant is entrusted to special adjustment
elements, placed upstream or downstream of the impeller, suitable to change the through
cross-section of the circuit thus varying the flow of coolant liquid.
[0010] Unfortunately, such solutions although suitable for delivering high power and proving
conspicuously reliable, have less versatile cooling management, related to the engine
speed and the characteristics of the adjustment element, and are typically oversize.
Also, in a "post-run" configuration, i.e. with the engine off, no cooling is performed.
[0011] Lastly, dual drive pumps are also known of, i.e. comprising both an electric drive
and a mechanical drive.
[0012] Unfortunately, these pumps have particularly complex management of the two drives,
as well as an articulated and bulky structure.
An example, of a known dual drive pump according to the state of the art is disclosed
in document JPS5919908U.
[0013] The purpose of the present invention is to provide a pump group for a cool i ng system
of a vehicle, for example for an internal combustion engine, which meets the requirements
mentioned, overcoming the drawbacks spoken of. In other words, the aim is to provide
a dual action pump group, with simplified management of the two drives, and with a
simple and compact structure.
[0014] Such purpose is achi eved by a pump group made accordi ng to claim 1. The dependent
claims refer to preferred embodiment variants having further advantageous aspects.
[0015] The obj ect of the present inventi on will be described in detail below, with the
hel p of the appended drawings, wherein:
- figures 1a and 1b shows two perspective views of the purrp group according to the
present invention, accordi ng to a possible embodiment;
- figure 2 shows a longitudinal cross-section vi ew of the purrp group referred to in
figures 1a and 1b, accordi ng to a first embodiment variant;
- figure 2' shows an enlarged cross-secti on view of a detail of the purrp group shown
in figure 2;
- figure 3 shows a longitudinal cross-section view of the pump group referred to in
figures 1a and 1b, according to a second embodiment variant;
- figure 3' shows an enlarged cross-section view of a detail of the pump group shown
in figure 3;
- figure 4' shows an enlarged cross-section view of a detail of the pump group referred
to in figures 1a and 1b, according to a further embodiment;
- figure 5a shows a perspective view of the pump group according to the present invention,
according to a further embodiment;
- figures 6a and 6b show two longitudinal cross-section views of the pump group in figure
5a;
- figure 6' shows an enlarged cross-section view of a detail of the pump group shown
in figures 6a and 6b;
- figure 6" shows an enlarged cross-section view of a detail of the pump group in the
embodiment analogous to that of figures 6a and 1b, in a further embodiment variant.
[0016] With reference to the aforementioned drawings, reference numeral 1 globally denotes
a pump group for a cooling system of an engine, preferably an internal combustion
engine.
[0017] The pump group 1 of the present invention comprises an impeller 2 rotatable around
an axis X-X so that the rotation of the impeller 2 corresponds to the movement of
a predetermined quantity of coolant in the circuit.
[0018] Preferably, the impeller 2 is of the radial type, i.e. provides that the incoming
flow of liquid has an overall substantially axial direction and the flow of liquid
in output has a radial direction.
[0019] The pump group 1 provides a dual drive, i.e. it is operable both mechanically and
electrically. To such purpose, the pump group 1 comprises a mechanical drive 3 and
an electric drive 4.
[0020] In particular, the pump group 1 comprises a mechanical shaft 300 rotatable by the
mechanical drive 3 and operationally connected to the impeller 2.
[0021] In a preferred embodiment, the mechanical drive 3 comprises a pulley 33 for a drive
belt connected, for example by using a kinematic chain, to the drive shaft.
[0022] Preferably, the pulley 33 is an electromagnetic pulley. In the embodiment with the
electromagnetic pulley, this is normally engaged and only when it is actuated (i.e.
the coil in it is electrically excited) does the release mechanism disengage the pulley
from the mechanical shaft 300.
[0023] In fact, preferably, the electromagnetic pulley comprises an outer ring on which
the drive belt is mounted, an inner ring and an intermediate release mechanism which
comprises an intermediate coil. The inner ring is, in this embodiment, the drive ring
operationally connected to the mechanical shaft 300, which by means of a first unidirectional
clutch 51 (described below) is operatively connected to the impeller 2.
[0024] Normally, i.e. when the electromagnetic pulley is not electrically energized, the
outer ring is integral in rotation with the inner ring. In this configuration of the
electromagnetic pulley disabled, if the inner ring has a rotation speed greater than
the driven ring, the mechanical shaft 300 is dragged in rotation mechanically. Instead,
when the electromagnetic pulley is activated (i.e. the coil is electrically energised)
the release mechanism releases the outer ring from the inner ring, so that the outer
ring, while driven in rotation by the belt, does not transmit any rotation to the
inner ring and thus to the mechanical shaft 300.
[0025] In addition, the pump group 1 comprises an electric shaft 400 rotatable by the electric
drive 4 and operationally connected to the impeller 2.
[0026] Preferably, the electric drive 4 comprises an electric motor 40 comprising a rotor
41 mounted on an impeller portion 401 of the electric shaft 400 and a stator 42 fixed
coaxial to the rotor 41.
[0027] According to a preferred embodiment, the rotor 41 is of the wet rotor type.
[0028] The pump unit 1 further comprises an electronic control unit 45 to control the electric
drive 4 and/or electromagnetic pulley.
[0029] According to a preferred embodiment, the pump group 1 comprises a pump body 10 to
support and contain the various components described previously and described below
comprised in the pump group 1. Preferably, the pump body 10 is suitable to allow the
fluidic connection with the cooling system and is suitable to be flanged or connected
to other vehicle components such as the engine.
[0030] The pump body 10 comprises a main casing 12 housing the impeller 2 in an impeller
chamber 120, in which the coolant enters through an inlet duct 121 and exits through
an outlet duct 122, preferably entering in an axial direction and exiting in a radial
direction.
[0031] Preferably, the pump body 10 comprises, also, a mechanical drive casing 13 for the
support of the mechanical drive 3, suitable to support the mechanical shaft 300 preferably
by means of special rotation means 135, such as bearings. In a preferred embodiment,
the mechanical drive casing 13 is separated from the impeller chamber 120 by means
of a dynamic seal 6.
[0032] Preferably, the pump body 10 further comprises an electric drive casing 14 for the
support of the electric drive 4, suitable to support the electric shaft 400 in rotation,
and to contain the electric motor 40.
[0033] Preferably, the electric drive casing 14 is fluidically connected with said impeller
chamber 120. Specifically, the electric drive casing 14 comprises a rotor chamber
140, which extends along the axis of the electric shaft 400, containing the rotor
41 which is fluidically connected with the impeller chamber 120.
[0034] Moreover, in a preferred embodiment, the pump body 10 comprises a control casing
15 placed on the electric drive casing 14 containing, sealed with respect to the coolant,
the electronic control unit 45. Said control casing 15 is placed at the opposite end
with respect to the impeller 2.
[0035] As mentioned, the mechanical shaft 300 and electric shaft 400 are both operatively
connected with the impeller 2 to control the rotation speed thereof.
[0036] Preferably, the mechanical shaft 300 and electric shaft 400 extend along the axis
X-X.
[0037] In a preferred embodiment, the mechanical shaft 300 and electric shaft 400 extend
in two opposite directions, at the two sides of the impeller 2.
[0038] Preferably, the mechanical drive 3 is placed behind the impeller 2 while the electric
drive 4 is placed in front of the impeller 2; similarly, the respective casings comprised
in the pump body 10 are respectively positioned behind and in front of the impeller
casing 12 (by way of a non-limiting example as shown in the embodiment in figures
2, 3 and 4).
[0039] In a further preferred embodiment, the mechanical shaft 300 and the electric shaft
400 extend in the same direction as the impeller 2, one concentric with the other
(as, instead, shown by way of a non-limiting example, in the embodiments of figures
5 and 6).
[0040] Preferably, both the mechanical drive 3 and the electric drive 4 are placed behind
the impeller 2; similarly, the respective casings comprised in the pump body 10 are
also respectively positioned behind the impeller casing 12: the electric drive casing
14 is present centrally along the axis X-X with the rotor chamber 140 fluidly connected
with the impeller chamber 120, while the mechanical drive casing 13 extends concentrically
to the axis X-X separated from the impeller chamber 120 by means of a dynamic seal
6.
[0041] Preferably, the rotor chamber 140 is fluidically connected with the impeller chamber
120, preferably being adjacent with each other. In some embodiment variants, the rotor
chamber 140 is fluidically associated with the impeller chamber 120 through the electric
shaft 400 and/or through special channels 210, for example made through the impeller
or made through the casings.
[0042] In further embodiment variants (not shown) both the mechanical drive 3 and the electric
drive 4 are placed in front of the impeller 2; similarly, the respective casings comprised
in the pump body 10 are also respectively positioned in front of the impeller casing
12.
[0043] The mechanical shaft 300 and the electric shaft 400 comprise a mechanical shaft impeller
end 302 and an electric shaft impeller end 402 operatively connected to the impeller
2 respectively by means of a first unidirectional clutch 51 and a second unidirectional
clutch 52.
[0044] In other words, between the mechanical shaft 300 and the impeller 2 a first unidirectional
clutch 51 is interposed, while between the electric drive and impeller a second unidirectional
clutch 52 is placed.
[0045] The impeller 2 comprises a central hub 20, arranged on the axis X-X, on which the
first unidirectional clutch 51 and the second unidirectional clutch 52 are housed.
In addition, the impeller 2 comprises a blade portion 21 having a radial extension
from the central hub 20. In one embodiment, the central hub 20 is integral with the
blade portion 21; in other embodiments the central hub 20 and the blade portion 21
are two, distinct, mutually mounted elements.
[0046] Preferably the first unidirectional clutch 51 and the second unidirectional clutch
52 are co-moulded with the impeller 2, pref erably they are co-moul ded with the central
hub 20.
[0047] According to a preferred embodiment, the first unidirectional clutch 51 comprises
a rolling bearing for the support in rotation of the mechanical shaft impeller end
302. For example, the rolling bearing is of the type with rollers or needle rollers,
having rolling elements placed between the driven ring and the drive ring.
[0048] According to a preferred embodiment, the second unidirectional clutch 52 comprises
a rolling bearing for the support in rotation of the electric shaft impeller end 402.
For example, the rolling bearing is of the type with rollers or needle rollers, having
rolling elements placed between the driven ring and the drive ring.
[0049] In a preferred embodiment, the first unidirectional clutch 51 and the second unidirectional
clutch 52 are arranged side by side along the axis X-X.
[0050] In a further preferred embodiment, the first unidirectional clutch 51 and the second
unidirectional clutch 52 are arranged one concentric to the other. Preferably, in
this embodiment, the first unidirectional clutch 51 and the second unidirectional
clutch 52 are axially, parallel to the axis X-X, superposed for at least a portion.
[0051] Depending on the type and arrangement of the unidirectional clutches, the central
hub 20 is specially shaped to be operatively connected to the impeller end of the
mechanical shaft 300 and/or electric shaft 400, in order to support and/or house said
clutches and the respective impeller of the electric shaft and of the mechanical shaft.
That is to say, the central hub 20 is specially shaped to house and/or support the
respective clutches in such a way that they are facing inwards and/or outwards. According
to a preferred embodiment, the central hub 20 is compact in size, i.e. extends in
length along the axis X-X by a portion substantially equal, or slightly greater than
the height of the blade portion 21, (as shown in figures 2 and 3); in other preferred
embodiments, the central hub 20 is also suitable to extend in length along the axis
X-X by a longer portion, proving two or three times greater than the previously described
embodiment. In some preferred embodiments, the central hub 20 comprises a through
cavity along the axis X-X; in other preferred embodiments, the central hub 20 comprises
two respective cavities made at the axial ends.
[0052] Preferably, in a similar embodiment to that shown in figure 3, the mechanical shaft
impeller end 302 comprises a pin 302' that extends along the axis X-X, while the electric
shaft impeller end 402 comprises a housing 402' suitable to house and rotationally
support the pin 302'.
[0053] Instead, in an embodiment variant (not shown) the electric shaft impeller end 402
comprises a pin which extends along the axis X-X, while the mechanical shaft impeller
end 302 comprises a housing suitable to house and rotationally support the pin.
[0054] According to a preferred embodiment, said pin is housed in the respective housing
comprising a bushing suitable to limit the friction between the two shafts.
[0055] A further aspect of the pump group 1 according to a preferred embodiment is related
to the fact that the electric shaft 400 has inside it a central duct 450 that extends
in length along the axis X-X; preferably, the central duct 450 has, near its ends,
radial access mouths 450'. In other words, thanks to the central duct 450, the coolant
that fills the rotor chamber 140 also flows inside the electric shaft 400 through
the central duct 450. Preferably, the impeller 2 in rotation also aspirates, in addition
to the coolant present in the impeller chamber 120, the coolant through the central
duct 450 present in the rotor chamber 140.
[0056] Further preferred embodiments of the pump group 1 exist, including a preferred embodiment
in which the pump group 1 comprises a choke valve (not shown), housed in the pump
body so as to be placed along the outlet duct 122 from the impeller chamber 120. The
valve is controllable using an actuator (not shown), for example electric, hydraulic
or vacuum, preferably controllable by the control device. The characteristics of such
valve are disclosed in the documents
EP2534381,
EP13188771,
EP13801735,
WO2015/059586 and
BS2014A000171 on behalf of the Applicant.
[0057] In addition, according to yet another embodiment, the pump group 1 comprises, upstream
of the impeller 2 in the inlet pipe 121, an adjustment cartridge (not shown) suitable
to adjust the amount of coolant flowing towards the impeller. The characteristics
of said obturator cartridge are illustrated for example in the document
WO2015/004548 on behalf of the Applicant.
[0058] According to the embodiments described above, the electric drive 4 and/or possible
electromagnetic pulley are controlled electronically depending on the occurrence of
certain conditions during use of the vehicle.
[0059] In a normal configuration, the electromagnetic pulley is not energised and the electric
drive 4 is off, so the impeller 2 is moved only by the electromagnetic pulley, i.e.
by the rotation of the mechanical shaft 300.
[0060] For example, when starting the vehicle, if the engine is still cold (so-called "warm-up"
configuration), the electromagnetic pulley is activated in order to disengage the
action on the mechanical shaft 300 while the electric drive 4 is left off. As a result
the impeller 2 remains stationary, the liquid does not circulate in the circuit and
the motor warms up faster.
[0061] According to another example, under heavy load conditions, such as when the vehicle
is towing a trailer or going uphill, typically at low speed (and therefore with low
engine revs), the electric drive 4 is activated in order to place the electric shaft
400 in rotation at a speed greater than that induced by the mechanical drive 3 and
by the mechanical shaft 300, thus inducing the impeller 2 to rotate at the speed induced
by the electric shaft 400.
[0062] Advantageously, in this configuration, the first unidirectional clutch 51 disengages
the impeller 2 in rotation from the mechanical shaft 300, reducing the masses dragged
in rotation by the electric drive 4.
[0063] According to a further example, after use of the vehicle, if the coolant is still
very hot, the electric drive 4 is activated so as to keep the impeller 2 rotating
(this stage is called "post run"). This way, the impeller 2 rotates at a predetermined
rotation speed, while the mechanical drive 3 is completely inactive, since the vehicle
engine is off. Specifically, for example, the electromagnetic pulley is not energized,
it not being necessary for the movement of the rotation shaft. In this case too, the
first unidirectional clutch 51 disengages the impeller 2 in rotation from the mechanical
shaft 300 reducing the masses dragged in rotation by the electric drive 4.
[0064] In general, therefore, the electric drive 4 is activated whenever it is necessary
to increase the cooling capacity, regardless of the mechanical drive 3, related to
the engine speed.
[0065] For example, in an embodiment in which the pump group 1 comprises a mechanical drive
3 with a "classic pulley" of the mechanical type, therefore not controlled electronically
and the above-mentioned choke valve in the aforementioned "warm-up" phase in which
the engine is still cold and heating as fast as possible is desired, the quantity
of coolant in circulation is regulated by controlling the positioning of the choke
valve.
[0066] Innovatively, the pump group according to the present invention satisfies the cooling
requirements of the engine and overcomes the drawbacks referred to above.
[0067] In the first place, advantageously, the pump group according to the invention is
very flexible, as it responds to the cooling needs of the vehicle depending on actual
demand and not on the engine speed or availability of electric power of the system.
That is to say, advantageously, the pump group proves particularly suitable for entirely
managing the quantity of coolant in the cooling system, for example by managing the
cooling of further vehicle components besides the engine, such as the turbo group,
obviating the need to have specific electrical pumps to move the predetermined quantities
of coolant in such components, permitting extra space to be gained in the engine compartment.
[0068] Moreover, advantageously, the pump group is particularly compact and small in dimensions,
making it particularly suitable to be housed in the engine compartment of a motor
vehicle.
[0069] For example, advantageously, the impeller (and the impeller chamber with the volute)
is more compact and not oversized, and always operates in optimal performance conditions
compared to the known pump groups, where the impeller is often oversized to compensate
for the poor flexibility of the mechanical pumps and limited power of the electric
pumps.
[0070] A further advantageous aspect lies in the fact that the engagement of an electric
drive and a mechanical drive directly on the impeller, for example without intermediate
shafts, simplifies the structure of the pump group, which is more compact in size
compared to solutions of the prior art.
[0071] Yet a further advantageous aspect consists of the fact that the pump group requires
a small number of dynamic seals: specifically only one dynamic seal is needed to divide
the impeller casing from the mechanical drive casing. Advantageously, the electric
motor of the pump group of the present invention may be provided with a wet rotor
type, therefore not needing specific dynamic seals, instead needed to sealingly isolate
it from the coolant liquid.
[0072] Advantageously, the design of the mechanical drive and of the electric drive is extremely
simplified and optimisable by the designer; advantageously, the electromagnetic pulley,
if provided, does not require special design updates; advantageously, the rotor of
the electric motor is mounted directly on the impeller shaft, without the need for
special shielded bearings, thus limiting the axial footprint of the rotor.
[0073] Moreover, advantageously, the transition from the electric drive to the mechanical
drive and vice versa is operated mechanically by the unidirectional clutches. Therefore,
advantageously, the electronic management of the pump group is very simple.
[0074] Advantageously, the pump group is able to avoid the cooling action, even though the
engine is in gear, when for example, in conditions of "warm-up", it is appropriate
to heat the motor.
[0075] In a further advantageous aspect, the pump group has the "fail-safe" characteristic;
in fact, in the event of a failure of the electric drive the pump group, thanks to
the mechanical drive and the second unidirectional clutch, continues to ensure the
movement of the impeller.
[0076] According to a further advantageous aspect, the pump group is operative in "after-run"
conditions, i.e. with the engine off. Advantageously, in conditions of "post-run",
it is possible to avoid electrically powering the electromagnetic pulley, saving electricity.
[0077] A further advantageous aspect consists in the fact that the pump group has a more
limited power absorption compared to standard mechanical pumps.
[0078] Advantageously, the impeller is producible already comprising the unidirectional
clutches, in fact, inserted in it, in its moulding operations.
[0079] Moreover, the kinematic chain between the mechanical drive, electric drive and impeller
is extremely simplified.
[0080] In addition, advantageously, the second unidirectional clutch allows the rotor, in
a configuration in which the impeller is made to rotate by the mechanical drive, not
to be rotated by the shaft; magnetic friction is thus not produced (nor does the rotor-stator
group work as an electric generator).
[0081] Moreover, advantageously, the first unidirectional clutch and the second unidirectional
clutch are selectable for different characteristics as a function of the different
actions required of the electric drive and the mechanical drive.
[0082] Advantageously, the electric drive is totally free of the dynamic seal and of the
bearing supporting the drive shaft, thus presenting greater electrical efficiency
and a wider range of electrical operation.
[0083] A further advantageous aspect also lies in the versatility of design of the pump
group, and in particular of the respective casings, which are designable as needed
in such a way as to house and/or support the electric drive and the mechanical drive,
in such a way that the respective shafts are operatively connected to the impeller.
[0084] Yet a further advantageous aspect consists in the fact that the water chamber in
which the rotor of the electric motor is housed is efficiently filled by the coolant
thanks to the electric shaft which it is mounted on which allows an efficient recirculation
of coolant, aspirating it through the central duct.
[0085] It is clear that a person skilled in the art may make modifications to the pump group
described above so as to satisfy contingent requirements, all contained within the
scope of protection as defined by the following claims.
[0086] In addition, each variant described as belonging to a possible embodiment may be
realised independently of the other embodiments described.
1. Pump group (1) for a cooling system of an engine of a vehicle, comprising:
- an impeller (2) rotatable around an axis (X-X);
- a mechanical drive (3) and a mechanical shaft (300) rotatable by the mechanical
drive (3);
- an electric drive (4) and an electric shaft (400) rotatable by the electric drive
(4), wherein the electric drive (4) comprises an electric motor (40);
wherein the mechanical shaft (300) and the electric shaft (400) extend along the axis
(X-X) and respectively comprise a mechanical shaft impeller end (302) and an electric
shaft impeller end (402) operatively connected to the impeller (2) respectively by
means of a first unidirectional clutch (51) and a second unidirectional clutch (52);
wherein the pump group (1) is
characterized by the fact that the impeller (2) comprises a central hub (20), arranged on the axis
(X-X), on which there are accommodated the first unidirectional clutch (51) and the
second unidirectional clutch (52).
2. Pump group (1) according to claim 1, wherein the first unidirectional clutch (51)
and second unidirectional clutch (52) are co-moulded with the impeller (2), preferably
co-moulded with the central hub (20).
3. Pump group according to any of the preceding claims, wherein the first unidirectional
clutch (51) comprises a rolling bearing for the support in rotation of the mechanical
shaft impeller end (302).
4. Pump group according to any of the preceding claims, wherein the second unidirectional
clutch (52) comprises a rolling bearing for the support in rotation of the electric
shaft impeller end (402).
5. Pump group according to any of the preceding claims, wherein the first unidirectional
clutch (51) and the second unidirectional clutch (52) are arranged side by side along
the axis (X-X).
6. Pump group according to any of the preceding claims, wherein the first unidirectional
clutch (51) and the second unidirectional clutch (52) are arranged concentric to one
another.
7. Pump group according to any of the preceding claims, wherein the electric shaft (300)
and the mechanical shaft (400) extend to opposite sides of the impeller (2).
8. Pump group according to claim 7, wherein the mechanical shaft impeller end (302) comprises
a pin (302') that extends along the axis (X-X), while the electric shaft impeller
end (402) comprises a housing (402') suitable to house and rotationally support the
pin (302').
9. Pump group according to claim 7, wherein the electric shaft impeller end (402) comprises
a pin that extends along the axis (X-X), while the mechanical shaft impeller end (302)
comprises a housing suitable to house and rotationally support the pin.
10. Pump group (1) according to any one of the preceding claims, wherein the mechanical
drive (3) is positioned behind the impeller (2) while the electric drive (4) is placed
frontally to the impeller (2).
11. Pump group according to any of claims 1 to 6, wherein the electric shaft (300) and
the mechanical shaft (400) extend on the same side of the impeller (2), preferably
frontally to it, the one concentric to the other.
12. Pump group (1) according to any of the preceding claims, wherein the mechanical drive
(3) comprises an electromagnetic pulley mounted to a pulley end (303) of the mechanical
shaft (300) wherein the electromagnetic pulley is normally engaged, electrically excitable
to disengage the mechanical drive shaft.
13. Pump group (1) according to any of the preceding claims, wherein the electric drive
(4) comprises a rotor (41), mounted on a rotor portion (401) of the electric shaft
(400), and a fixed stator (42) coaxial to the rotor (41), wherein preferably the rotor
(41) is of the wet rotor type.
14. Pump group (1) according to any of the preceding claims, also comprising a pump body
(10) comprising:
- a main casing (12) housing the impeller (2) in an impeller chamber (120), in which
the coolant enters through an inlet duct (121) and exits through an outlet duct (122);
- a mechanical drive casing (13) for the support of the mechanical drive (3), suitable
to support the mechanical shaft (300) in rotation, wherein the mechanical drive casing
(13) is separated from the impeller chamber (120) by means of a dynamic seal (6);
- an electric drive casing (14) for the support of the electric drive (4), suitable
to support the electric shaft (400) in rotation, wherein the electric drive casing
(14) is fluidically connected with said impeller chamber (120).
15. Pump group (1) according to claim 14, wherein the electric drive (4) also comprises
an electronic control unit (45) of the electric drive (4) and possibly of the electromagnetic
pulley, wherein said electronic control unit (45) is housed in a control casing (15)
placed on the electric drive casing (14) at the end opposite the impeller end (402)
of the electric shaft (4).
16. Pump group (1) according to any of the preceding claims, wherein the electric shaft
(400) has inside it a central duct (450) that extends in length along the axis (X-X)
and allows the flow of coolant, preferably having, near its ends, radial access mouths
(450').
1. Pumpengruppe (1) für ein Kühlsystem eines Motors eines Fahrzeugs, umfassend:
- einen Impeller (2), der um eine Achse (X-X) drehbar ist;
- einen mechanischen Antrieb (3) und einen Mechanikschaft bzw. eine Mechanikwelle
(300), der bzw. die durch den mechanischen Antrieb (3) drehbar ist;
- einen elektrischen Antrieb (4) und einen Elektrikschaft bzw. eine Elektrikwelle
(400), der bzw. die durch den elektrischen Antrieb (4) drehbar ist, wobei der elektrische
Antrieb (4) einen Elektromotor (40) umfasst;
wobei sich die Mechanikwelle (300) und die Elektrikwelle (400) entlang der Achse (X-X)
erstrecken und ein Mechanikwellenimpellerende (302) bzw. ein Elektrikwellenimpellerende
(402) umfassen, die durch eine erste Unidirektionalkupplung (51) bzw. eine zweite
Unidirektionalkupplung (52) bedienbar mit dem Impeller (2) verbunden sind;
wobei die Pumpengruppe (1)
dadurch gekennzeichnet ist, dass der Impeller (2) eine zentrale Nabe (20) umfasst, die auf der Achse (X-X) angeordnet
ist, auf der die erste Unidirektionalkupplung (51) und die zweite Unidirektionalkupplung
(52) aufgenommen sind.
2. Pumpengruppe (1) nach Anspruch 1, wobei die erste Unidirektionalkupplung (51) und
die zweite Unidirektionalekupplung (52) mit dem Impeller (2) zusammengeformt sind,
vorzugsweise mit der zentralen Nabe (20) zusammengeformt.
3. Pumpengruppe nach einem der vorhergehenden Ansprüche, wobei die erste Unidirektionalkupplung
(51) ein Wälzlager für das drehende Stützen bzw. Tragen des Mechanikwellenimpellerendes
(302) umfasst.
4. Pumpengruppe nach einem der vorhergehenden Ansprüche, wobei die zweite Unidirektionalkupplung
(52) ein Wälzlager für das drehende Stützen bzw. Tragen des Elektrikwellenimpellerendes
(402) umfasst.
5. Pumpengruppe nach einem der vorhergehenden Ansprüche, wobei die erste Unidirektionalkupplung
(51) und die zweite Unidirektionalkupplung (52) nebeneinander entlang der Achse (X-X)
angeordnet sind.
6. Pumpengruppe nach einem der vorhergehenden Ansprüche, wobei die erste Unidirektionalkupplung
(51) und die zweite Unidirektionalkupplung (52) konzentrisch zueinander angeordnet
sind.
7. Pumpengruppe nach einem der vorhergehenden Ansprüche, wobei sich die Elektrikwelle
(300) und die Mechanikwelle (400) zu entgegengesetzten bzw. gegenüberliegenden Seiten
des Impellers (2) erstrecken.
8. Pumpengruppe nach Anspruch 7, wobei das Mechanikwellenimpellerende (302) einen Stift
bzw. Bolzen (302') umfasst, der sich entlang der Achse (X-X) erstreckt, während das
Elektrikwellenimpellerende (402) ein Gehäuse (402') umfasst, das geeignet ist, den
Stift (302') aufzunehmen und drehend zu stützen bzw. zu tragen.
9. Pumpengruppe nach Anspruch 7, wobei das Elektrikwellenimpellerende (402) einen Stift
bzw. Bolzen umfasst, der sich entlang der Achse (X-X) erstreckt, während das Mechanikwellenimpellerende
(302) ein Gehäuse umfasst, das geeignet ist, den Stift aufzunehmen und drehend zu
stützen bzw. zu tragen.
10. Pumpengruppe (1) nach einem der vorhergehenden Ansprüche, wobei der mechanische Antrieb
(3) hinter dem Impeller (2) positioniert ist, während der elektrische Antrieb (4)
frontal zu dem Impeller (2) platziert ist.
11. Pumpengruppe nach einem der Ansprüche 1 bis 6, wobei sich die Elektrikwelle (300)
und die Mechanikwelle (400) auf derselben Seite des Impellers (2) erstrecken, vorzugsweise
frontal dazu, wobei eine konzentrisch zu der anderen ist.
12. Pumpengruppe (1) nach einem der vorhergehenden Ansprüche, wobei der mechanische Antrieb
(3) eine elektromagnetische Riemenscheibe umfasst, die auf einem Riemenscheibenende
(303) der Mechanikwelle (300) montiert ist, wobei die elektromagnetische Riemenscheibe
normal in Eingriff steht, und zwar elektrisch erregbar, die mechanische Antriebswelle
zu lösen bzw. außer Eingriff zu bringen.
13. Pumpengruppe (1) nach einem der vorhergehenden Ansprüche, wobei der elektrische Antrieb
(4) einen Rotor (41), der auf einem Rotorabschnitt (401) der Elektrikwelle (400) montiert
ist, und einen feststehenden Stator (42) umfasst, der koaxial zu dem Rotor (41) ist,
wobei der Rotor (41) vorzugsweise vom Typ Nassrotor bzw. Nassläufer ist.
14. Pumpengruppe (1) nach einem der vorhergehenden Ansprüche, außerdem umfassend einen
Pumpenkörper (10), umfassend:
- ein Hauptgehäuse (12), das den Impeller (2) in einer Impellerkammer (120) aufnimmt,
worin das Kühlmittel durch einen Einlasskanal (121) eintritt und durch einen Auslasskanal
(122) austritt;
- ein Mechanikantriebsgehäuse (13) für das Stützen bzw. Tragen des mechanischen Antriebs
(3), geeignet, die Mechanikwelle (300) drehend zu stützen bzw. zu tragen, wobei das
Mechanikantriebsgehäuse (13) von der Impellerkamer (120) durch eine dynamische Dichtung
(6) getrennt ist;
- ein Elektrikantriebsgehäuse (14) für das Stützen bzw. Tragen des elektrischen Antriebs
(4), geeignet, die Elektrikwelle (400) drehend zu stützen bzw. zu tragen, wobei das
Elektrikantriebsgehäuse (14) fluidisch mit der Impellerkammer (120) verbunden ist.
15. Pumpengruppe (1) nach Anspruch 14, wobei der elektrische Antrieb (4) außerdem eine
elektrische Steuer- bzw. Regeleinheit (45) des elektrischen Antriebs (4) und möglicherweise
der elektromagnetischen Riemenscheibe umfasst, wobei die elektrische Steuer- bzw.
Regeleinheit (45) in einem Steuer- bzw. Regelgehäuse (15) aufgenommen ist, die auf
dem Elektrikantriebsgehäuse (14) auf dem dem Impellerende (402) entgegengesetzten
bzw. gegenüberliegenden Ende der Elektrikwelle (4) platziert ist.
16. Pumpengruppe (1) nach einem der vorhergehenden Ansprüche, wobei die Elektrikwelle
(400) in sich einen zentralen Kanal (450) aufweist, der sich in einer Länge entlang
der Achse (X-X) erstreckt und den Fluss von Kühlmittel erlaubt, vorzugsweise aufweisend,
nahe ihren Enden, radiale Zugangsmündungen (450').
1. Groupe de pompage (1) pour un système de refroidissement d'un moteur d'un véhicule,
comprenant :
- une hélice (2) capable d'être mise en rotation autour d'un axe (X-X) ;
- un entraînement mécanique (3) et un arbre mécanique (300) capable d'être mis en
rotation par l'entraînement mécanique (3) ;
- un entraînement électrique (4) et un arbre électrique (400) capable d'être mis en
rotation par l'entraînement électrique (4), dans lequel l'entraînement électrique
(4) comprend un moteur électrique (40) ;
dans lequel l'arbre mécanique (300) et l'arbre électrique (400) s'étendent le long
de l'axe (X-X) et comprennent respectivement une extrémité d'hélice d'arbre mécanique
(302) et une extrémité d'hélice d'arbre électrique (402) raccordées fonctionnellement
à l'hélice (2) respectivement au moyen d'un premier embrayage unidirectionnel (51)
et d'un second embrayage unidirectionnel (52) ;
dans lequel le groupe de pompage (1) est
caractérisé par le fait que l'hélice (2) comprend un moyeu central (20), agencé sur l'axe (X-X), sur lequel sont
logés le premier embrayage unidirectionnel (51) et le second embrayage unidirectionnel
(52).
2. Groupe de pompage (1) selon la revendication 1, dans lequel le premier embrayage unidirectionnel
(51) et le second embrayage unidirectionnel (52) sont co-moulés avec l'hélice (2),
de préférence co-moulés avec le moyeu central (20).
3. Groupe de pompage selon l'une quelconque des revendications précédentes, dans lequel
le premier embrayage unidirectionnel (51) comprend un roulement pour le support en
rotation de l'extrémité d'hélice d'arbre mécanique (302).
4. Groupe de pompage selon l'une quelconque des revendications précédentes, dans lequel
le second embrayage unidirectionnel (52) comprend un roulement pour le support en
rotation de l'extrémité d'hélice d'arbre électrique (402).
5. Groupe de pompage selon l'une quelconque des revendications précédentes, dans lequel
le premier embrayage unidirectionnel (51) et le second embrayage unidirectionnel (52)
sont agencés côte à côte le long de l'axe (X-X).
6. Groupe de pompage selon l'une quelconque des revendications précédentes, dans lequel
le premier embrayage unidirectionnel (51) et le second embrayage unidirectionnel (52)
sont agencés concentriques l'un à l'autre.
7. Groupe de pompage selon l'une quelconque des revendications précédentes, dans lequel
l'arbre électrique (300) et l'arbre mécanique (400) s'étendent vers des côtés opposés
de l'hélice (2).
8. Groupe de pompage selon la revendication 7, dans lequel l'extrémité d'hélice d'arbre
mécanique (302) comprend une broche (302') qui s'étend le long de l'axe (X-X), tandis
que l'extrémité d'hélice d'arbre électrique (402) comprend un logement (402') approprié
pour loger et supporter en rotation la broche (302').
9. Groupe de pompage selon la revendication 7, dans lequel l'extrémité d'hélice d'arbre
électrique (402) comprend une broche qui s'étend le long de l'axe (X-X), tandis que
l'extrémité d'hélice d'arbre mécanique (302) comprend un logement approprié pour loger
et supporter en rotation la broche.
10. Groupe de pompage (1) selon l'une quelconque des revendications précédentes, dans
lequel l'entraînement mécanique (3) est positionné derrière l'hélice (2) tandis que
l'entraînement électrique (4) est placé frontalement à l'hélice (2).
11. Groupe de pompage selon l'une quelconque des revendications 1 à 6, dans lequel l'arbre
électrique (300) et l'arbre mécanique (400) s'étendent sur le même côté de l'hélice
(2), de préférence frontalement à celle-ci, l'un concentrique à l'autre.
12. Groupe de pompage (1) selon l'une quelconque des revendications précédentes, dans
lequel l'entraînement mécanique (3) comprend une poulie électromagnétique montée sur
une extrémité de poulie (303) de l'arbre mécanique (300) dans lequel la poulie électromagnétique
peut, engagée normalement, être excitée électriquement pour désengager l'arbre d'entraînement
mécanique.
13. Groupe de pompage (1) selon l'une quelconque des revendications précédentes, dans
lequel l'entraînement électrique (4) comprend un rotor (41), monté sur une portion
de rotor (401) de l'arbre électrique (400), et un stator fixe (42) coaxial au rotor
(41), dans lequel de préférence le rotor (41) est du type rotor noyé.
14. Groupe de pompage (1) selon l'une quelconque des revendications précédentes, comprenant
également un corps de pompe (10) comprenant :
- un carter principal (12) logeant l'hélice (2) dans une chambre d'hélice (120), dans
lequel le liquide de refroidissement entre par un conduit d'entrée (121) et sort par
un conduit de sortie (122) ;
- un carter d'entraînement mécanique (13) pour le support de l'entraînement mécanique
(3), approprié pour supporter l'arbre mécanique (300) en rotation, dans lequel le
carter d'entraînement mécanique (13) est séparé de la chambre d'hélice (120) au moyen
d'un joint dynamique (6) ;
- un carter d'entraînement électrique (14) pour le support de l'entraînement électrique
(4), approprié pour supporter l'arbre électrique (400) en rotation, dans lequel le
carter d'entraînement électrique (14) est raccordé fluidiquement à ladite chambre
d'hélice (120).
15. Groupe de pompage (1) selon la revendication 14, dans lequel l'entraînement électrique
(4) comprend également une unité de commande électronique (45) de l'entraînement électrique
(4) et éventuellement de la poulie électromagnétique, dans lequel ladite unité de
commande électronique (45) est logée dans un carter de commande (15) placé sur le
carter d'entraînement électrique (14) à l'extrémité opposée à l'extrémité d'hélice
(402) de l'arbre électrique (4).
16. Groupe de pompage (1) selon l'une quelconque des revendications précédentes, dans
lequel l'arbre électrique (400) possède en son intérieur un conduit central (450)
qui s'étend en longueur le long de l'axe (X-X) et permet l'écoulement de liquide de
refroidissement, possédant de préférence, à proximité de ses extrémités, des embouchures
d'accès radiales (450').