(19)
(11) EP 3 151 955 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
17.06.2020 Bulletin 2020/25

(21) Application number: 15806384.2

(22) Date of filing: 08.05.2015
(51) International Patent Classification (IPC): 
B01J 8/18(2006.01)
B01J 8/26(2006.01)
B01J 8/34(2006.01)
B01J 8/24(2006.01)
B01J 8/20(2006.01)
(86) International application number:
PCT/CA2015/050407
(87) International publication number:
WO 2015/188267 (17.12.2015 Gazette 2015/50)

(54)

PLUG FLOW REACTOR WITH INTERNAL RECIRCULATION FLUIDIZED BED

ROHRREAKTOR MIT INTERNER RÜCKFÜHRUNGSWIRBELSCHICHT

RÉACTEUR À ÉCOULEMENT PISTON AVEC LIT FLUIDISÉ À RECIRCULATION INTERNE


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 09.06.2014 US 201462009486 P

(43) Date of publication of application:
12.04.2017 Bulletin 2017/15

(73) Proprietor: Hatch Ltd.
Mississauga, Ontario L5K 2R7 (CA)

(72) Inventors:
  • ADHAM, Kamal
    Toronto, Ontario M3H 2T6 (CA)
  • HARRIS, Christopher Thomas
    Toronto, Ontario M6P 1G2 (CA)
  • KOKOURINE, Alexandre
    Mississauga, Ontario L4Y 2Z9 (CA)

(74) Representative: Swindell & Pearson Limited 
48 Friar Gate
Derby DE1 1GY
Derby DE1 1GY (GB)


(56) References cited: : 
WO-A1-01/43861
FR-A1- 2 417 336
US-A- 5 343 830
US-A1- 2011 058 992
US-A1- 2012 205 288
WO-A1-2012/152258
US-A- 4 915 061
US-A1- 2010 197 879
US-A1- 2011 159 180
US-B2- 7 261 811
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD



    [0001] The present disclosure relates to plug flow, fluidized bed reactors, and particularly to such reactors in which the product zone and feed zone are separated by one or more underflow weirs to permit internal recirculation of material from the product zone to the feed zone. The disclosure also relates to methods of using such reactors to process a variety of particulate materials.

    BACKGROUND



    [0002] A fluidized bed reactor typically comprises a processing chamber which is partially filled with particulate matter such as sand. The floor of the chamber is perforated to allow a fluidizing medium, such as a hot gas, to be injected into the chamber to fluidize and heat and/or react with the particles. Particulate matter to be processed is simultaneously supplied to the fluidized bed through an inlet and mixes with the heated and/or reactive particles and the fluidizing medium to be heated and optionally undergo a reaction.

    [0003] Plug flow reactors are used in applications requiring reaction conditions having minimal back-mixing.

    [0004] Currently used fluidized bed reactors can be complex, and may include multiple fluid beds in multiple reactors, external circuits for recirculation of processed matter from the product zone to the feed zone. There remains a need for simpler plug flow, fluidized bed reactors which provide lower equipment costs and/or lower operating costs than known reactors.

    [0005] WO 2012/152258 discloses a device for continuously treating solids in a fluidised bed apparatus, comprising a round process chamber with a solids inlet and a solids outlet, and a distributor plate which is adapted to the inner contour of said process chamber and beneath which a media inlet is arranged to produce and maintain the fluidised bed. On said distributor plate there is a separating wall that protrudes radially inwards from the process chamber inner wall and into said process chamber. The solids inlet is located on one side close to the separating wall, and the solids outlet is on the other side close to the separating wall.

    [0006] FR 2 417 336 discloses a method for regenerating, by oxidation, a used catalyst from hydrocarbon cracking, comprises carbonisation of the coke deposits in two phases during the passage of a regenerating gas through a fluidised bed of the catalyst, in an apparatus comprising a body in the tower part of which is mounted a cylinder forming with the body of an annular space. The cylinder is provided with a pipe for charging used catalyst. A column for discharging regenerated catalyst is placed in the annular space. The cylinder and the annular space are equipped with their own pipes and distributors for charging regenerating gas. A cyclone separator and a used gas outlet pipe are mounted in the upper part of the body. A vertical partition is mounted in the annular space. The first phase of the regeneration is carried out in an ascending fluidised bed of the catalyst with parallel flow of gas and catalyst, the gas flowing at a high speed. The second phase is carried out in a fluidised bed with cross flow of gas and catalyst, the gas flowing at a lower speed. The process and apparatus give an increase in the depth of the regeneration of the catalyst, i.e. a reduction in the content of residual coke of the catalyst, an increase in the uniformity of regeneration of the catalyst particles and a reduced load in the cyclone.

    [0007] US 2011/0159180 discloses a method for processing of granules, by forming at least one injection zone in a fluidized bed where a feed stream of seed particles is contacted or coated by a liquid product by simultaneous injection of the feed stream of the seed particles and a feed stream of the liquid product, forming at least one granulation zone in the fluidized bed where the contacted or coated seed particles may be at least one of dried, shaped, and cooled to form granules, extracting the granules from the at least one granulation zone and sorting the extracted granules into undersize granules, on-size granules, and oversize granules, passing the on-size granules to post-processing treatment, removing the oversize granules, and passing the undersize granules back into the feed stream of the seed particles, wherein the extracted granules are made to pass through at least one classifier located in the at least one granulation zone.

    [0008] US 2010/0197879 discloses a device for discharging, through a central rotating chimney, fluids from a fluidized bed driven in a rotational movement in the same direction by the rotation of the outer circular wall of a reaction chamber and/or by injection of part of these fluids along the circular wall of a fixed or rotating chamber, and methods for catalytic polymerization, drying, or other treatments of solid particles in suspension in a rotating fluidized bed or for cracking or other catalytic conversions of fluids using this device.

    SUMMARY



    [0009] In an embodiment, there is provided a reactor comprising: an outer side wall, an inner side wall and a bottom wall enclosing a hollow chamber in the form of a closed loop for circulation of a fluidized bed, the hollow chamber comprising a lower fluidized bed zone and an upper freeboard zone, wherein the outer side wall has a substantially cylindrical shape, and has a central axis; a plurality of fluidizing medium inlets for injection of at least one fluidizing medium into the fluidized bed zone, wherein the fluidizing medium inlets are located in the bottom wall of the reactor, in communication with the lower fluidized bed zone and the fluidizing medium inlets comprise gas and/or liquid injectors, which are directed in a direction of a circumferential, swirling fluid flow and which are adapted to create the circumferential, swirling flow of material in the fluidized bed zone; at least one feed inlet communicating with the fluidized bed zone; at least one product outlet for removing a product from the chamber, wherein the at least one product outlet communicates with either the fluidized bed zone or the freeboard zone; and a planar plate, extending radially from the outer side wall toward the central axis, located inside the hollow chamber and at least partly located in the fluidized bed zone, wherein said planar plate is positioned to face in a direction of said circumferential swirling flow, and said planar plate has at least one opening within the fluidized bed zone.

    [0010] In an embodiment, said planar plate has a bottom edge which is spaced above the bottom wall, and wherein said at least one opening comprises an underflow opening within the fluidized bed zone, between the bottom wall and the bottom edge of the planar plate, and wherein the inner side wall has a substantially cylindrical shape.

    [0011] In an embodiment, said planar plate is located between the feed inlet and the product outlet, so as to prevent short-circuiting of flow between the feed inlet and the product outlet, and both the feed inlet and the product outlet are provided in the outer side wall and communicate with the fluidized bed zone.

    [0012] In an embodiment, said planar plate has a top edge located above the fluidized bed zone.

    [0013] In an embodiment, the reactor comprises a particulate dryer, in which; the plurality of fluidizing medium inlets are located in the bottom wall; the feed inlet is adapted for receiving particulate solids to be dried; the at least one product outlet is a first product outlet and the particulate drier includes a second product outlet, wherein the first product outlet communicates with the fluidized bed zone; the second product outlet communicates with the freeboard zone; the planar plate is located between the feed inlet and the first product outlet, and wherein the planar plate has a top edge which is located proximate to a top of the fluidized bed zone.

    [0014] In an embodiment, there is provided a method for drying wet particulate solids in a dryer. The dryer includes: an outer sidewall, an inner side wall and a bottom wall enclosing a hollow chamber in the form of a closed loop for circulation of a fluidized bed, the hollow chamber comprising a fluidized bed zone and a freeboard zone, wherein the outer sidewall has a substantially cylindrical shape and has a central axis; a plurality of gas injectors for injection of a gas into the fluidized bed zone, wherein the gas injectors are located in the bottom wall, in communication with the fluidized bed zone, and the gas injectors are directed in a direction of a circumferential, swirling fluid flow and which are adapted to create the circumferential, swirling flow of material in the fluidized bed zone; a feed inlet adapted to communicate the wet particulate solids into the fluidized bed zone; a first product outlet communicating with the fluidized bed zone; a second product outlet communicating with the freeboard zone; and a planar plate extending radially from the outer sidewall toward the central axis, thereby defining a further wall of the hollow chamber between the feed inlet and the first product outlet and at least partly located in the fluidized bed zone, the planar plate is positioned to face in a direction of said swirling flow, and the planar plate has at least one opening within the fluidized bed zone. The method comprises: receiving said wet particulate solids in a fluidized bed of dried particles in the fluidized bed zone of the reactor; injecting said gas into the fluidized bed zone through the gas injectors located in the bottom wall; drying the wet particulate solids with said gas as the fluidized bed flows from the feed inlet toward the first product outlet; recovering a first portion of the dried particulate solids through the first product outlet; recycling a second portion of the dried particulate solids by permitting the second portion to flow through said at least one opening to combine with said wet particulate solids entering the chamber through said feed inlet; and discharging said gas from said product outlet.

    [0015] In an embodiment, the reactor comprises a biomass pyrolysis apparatus, in which: the reactor includes a barrier extending, with the planar plate, throughout the height of the reactor so as to separate the hollow chamber into a first section for pyrolysis of the biomass and a second section for optionally re-heating the fluidized bed, and wherein communication between the first and second sections is provided by the at least one opening; the plurality of fluidizing medium inlets are located in the bottom wall, wherein a first sub-group of said plurality of fluidizing inlets is provided in the first section, and a second sub-group of said plurality of fluidizing inlets is provided in the second section; the reactor comprises one said feed inlet comprising an inlet for biomass and optionally inert particulate matter, wherein the feed inlet is located in said first section; the reactor comprises a first said product outlet, comprising an outlet for biochar, wherein the outlet for biochar is located in the second section and communicates with the fluidized bed zone; the reactor comprises a second said product outlet, comprising an outlet for a first off-gas communicating with the freeboard zone in the first section; and the reactor comprises a third said product outlet, comprising an outlet for a second off-gas communicating with the freeboard zone in the second section.

    [0016] In an embodiment, the reactor comprises a gold ore roasting apparatus, in which: the reactor includes a barrier extending, with the planar plate, throughout the height of the reactor so as to separate the hollow chamber into a first section for removal of arsenic species and a second section for removal of carbon and sulfur, and wherein communication between the first and second sections is provided by the at least one opening; the plurality of fluidizing medium inlets are located in the bottom wall, wherein a first sub-group of said plurality of fluidizing inlets is provided in the first section, and a second sub-group of said plurality of fluidizing inlets is provided in the second section; the reactor comprises one said feed inlet comprising an inlet for gold ore and/or concentrate, wherein the feed inlet is located in said first section; the reactor comprises a first said product outlet, comprising an outlet for calcine, wherein the outlet for calcine is located in the second section and communicates with the fluidized bed zone; the reactor comprises a second said product outlet, comprising an outlet for a first off-gas communicating with the freeboard zone in the first section; and the reactor comprises a third said product outlet, comprising an outlet for a second off-gas communicating with the freeboard zone in the second section.

    [0017] In an embodiment, the reactor comprises a catalytic reactor, in which: the reactor includes a barrier extending, with the planar plate, throughout the height of the reactor so as to separate the hollow chamber into a first section for a catalyzed reaction in the presence of a catalyst and a second section for regeneration of the catalyst, and wherein communication between the first and second sections is provided by the at least one opening; the plurality of fluidizing medium inlets are located in the bottom wall, wherein a first sub-group of said plurality of fluidizing inlets is provided in the first section, and a second sub-group of said plurality of fluidizing inlets is provided in the second section; the reactor comprises one said feed inlet comprising an inlet for one or more reactants in solid, liquid and/or gaseous form, wherein the feed inlet is located in said first section; the reactor comprises a first said product outlet, comprising an outlet for one or more products of said catalyzed reaction, wherein the first product outlet is located in the first section and communicates with the freeboard zone; the reactor comprises a second said product outlet, comprising an outlet for an off-gas communicating with the freeboard zone in the second section.

    [0018] In an embodiment, the reactor comprises an aerobic/anaerobic bio reactor, in which: the reactor includes a barrier which, with the planar plate, separates the hollow chamber into a first section comprising anaerobic and anoxic zones, and a second section comprising an aerobic zone, wherein the barrier and the planar plate extend throughout the height of the reactor, and wherein communication between the first and second sections is provided by the at least one opening; the plurality of fluidizing medium inlets are located in the bottom wall, wherein a first sub-group of said plurality of fluidizing inlets is provided in the first section, and a second sub-group of said plurality of fluidizing inlets is provided in the second section; the reactor comprises one said feed inlet comprising an inlet for waste water, wherein the feed inlet is located in said first section; the reactor comprises a first said product outlet, comprising an outlet for treated waste water, wherein the outlet for treated waste water is located in the second section and communicates with the fluidized bed zone; the reactor comprises a first recycling circuit for recycling a portion of the waste water from the first section to the first sub-group of fluidizing inlets; and the reactor comprises a second recycling circuit for recycling a portion of the treated waste water from the second section to the second sub-group of fluidizing inlets.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0019] The invention will now be described, by way of example only, with reference to the attached drawings, in which:

    Figures 1A and 1B are side and top sectional views of a plug flow, fluidized bed reactor according to a first embodiment, having a single underflow weir;

    Figures 2A and 2B are side and top sectional views of a plug flow, fluidized bed reactor according to a second embodiment, having two underflow weirs;

    Figure 3 is a schematic view of a plug flow, fluidized bed reactor for use in a coal drying application;

    Figure 4 is a schematic view of a plug flow, fluidized bed reactor for use in an arsenic roasting application;

    Figure 5 is a schematic view of a plug flow, fluidized bed reactor for use in a biomass pyrolysis application;

    Figure 6 is a schematic view of a plug flow, fluidized bed reactor for use as a catalytic reactor; and

    Figure 7 is a schematic view of a plug flow, fluidized bed reactor for use as a two-stage aerobic/anaerobic bio reactor.


    DETAILED DESCRIPTION



    [0020] The following is a detailed description of plug flow, fluidized bed reactors having one or more underflow weirs to separate the product zone and feed zone and to permit internal recirculation of material from the product zone to the feed zone. The detailed description also relates to methods of using such reactors to process a variety of particulate materials, for example in drying applications, roasting applications, pyrolysis/cracking applications, thermal power/gasification applications, chemical applications, and biological applications.

    [0021] Figures 1A and 1B illustrate a reactor 10 according to a first embodiment. Reactor 10 comprises an outer side wall 12, a bottom wall 14, and a top 16. The interior of the reactor 10, above bottom wall 14, comprises a hollow chamber 18 which includes a lower fluidized bed zone 20 and an upper freeboard zone 22.

    [0022] The outer side wall 12 is shaped so as to define a hollow chamber 18 in the form of a closed loop for circulation of the fluidized bed. The side wall 12 and/or chamber 18 may have rounded corners so as to promote a swirling flow. The side wall 12 and/or chamber 18 are sometimes referred to herein as being "substantially cylindrical", meaning that they are approximately vertical and have a rounded cross-sectional shape, wherein the rounded cross-sectional shape may be circular, oval, racetrack-shaped, rectangular or other polygon shape with rounded corners, etc. The outer side wall 12 also defines a central vertical axis Y of the reactor 10.

    [0023] The reactor 10 includes a plurality of fluidizing medium inlets 24 for injection of at least one fluidizing medium into the fluidized bed zone 20. These inlets 24 are in communication with the fluidized bed zone 20 and may be located in the lower portion of side wall 12 and/or in the bottom wall 14. In Figures 1A and 1B, the fluidizing medium inlets 24 are arranged throughout the bottom wall 14, and an inlet chamber 26 may be provided below the bottom wall 14 into which the fluidizing medium may be supplied through an inlet 27, and from which the fluidizing medium is injected into the fluidized bed zone 20 through the inlets 24.

    [0024] The fluidizing medium inlets 24 are arranged so as to create a swirling flow of material, comprising gaseous, liquid, and/or solid matter of the fluidized bed, inside the chamber 18. Although the inlets 24 are shown in Figure 1A as comprising simple apertures, it will be appreciated that the inlets may comprise directional nozzles or other injection devices facing in the direction of the swirling flow, and these injection devices may, for example, comprise directional, high-speed, bottom-bed injection tuyeres to induce the suspension and circulation of solids within the circulating fluidized bed.

    [0025] Where the inlets 24 are located in the side wall, they may be arranged so as to direct the fluidizing medium tangentially along the side wall 12.

    [0026] The reactor 10 further comprises at least one feed inlet 28 which may be located in the lower portion of the side wall 12, in communication with the fluidized bed zone 20. The feed inlet 28 provides a feed of a gaseous, liquid and/or solid material to be processed into the fluidized bed. The area of chamber 18 into which the feed material is introduced is sometimes referred to herein as the "feed zone" 30.

    [0027] The reactor 10 further comprises at least one product outlet 32 for removing a product from the chamber 18. The term "product" is used herein in a broad sense, to include all gaseous, liquid and/or solid materials which are removed from the chamber 18, whether they are reaction products, by-products, off-gases etc. Depending on the nature of the products, the at least one outlet 32 may be located in the side wall 12 or the top 16 of the reactor 10. For example, where the product includes solid and/or liquid matter, the reactor 10 will include a product outlet 32A in the lower portion of the side wall 12, in communication with the fluidized bed zone 20. Where the product includes gaseous matter, including off-gases, the reactor 10 will include a product outlet 32B in the top 16 or in the upper portion of side wall 12, in communication with the freeboard zone 22. In many cases, the reactor 10 will include one outlet 32A in communication with the fluidized bed zone 20 and one outlet 32B in communication with the freeboard zone 22, and this configuration is shown in Figures 1A and 1B.

    [0028] The area of chamber 18 from which the product is removed is sometimes referred to herein as the "product zone" 33.

    [0029] The reactor 10 further comprises at least one internal barrier 34 located inside the chamber 18 and at least partly located in the fluidized bed zone 20. The reactor 10 of Figures 1A and 1B includes one barrier 34, which is positioned within chamber 18 so as to face in the direction of the swirling flow of the fluidized bed. Internal barrier 34 may be in the form of a flat plate or baffle and, where the side wall has a generally cylindrical shape, each barrier 34 extends radially inwardly from the side wall 12 toward the central axis Y of the reactor 10.

    [0030] The barrier 34 has at least one opening 36 through which the fluidized bed may flow. The at least one opening 36 is located in a portion of the barrier 34 which is located in the fluidized bed zone 20, and therefore the at least one opening 36 will be located within the fluidized bed during use of reactor 10. The at least one opening 36 may comprise a plurality of discrete openings formed in barrier 34, or may comprise a gap between the barrier 34 and the side wall 12 and/or the bottom wall 14. In the illustrated embodiment, the barrier 34 has a bottom edge 38 which is spaced above the bottom wall 14 to provide a single opening 36 within the fluidized bed zone, this opening 36 being sometimes referred to herein as an "underflow opening". In the illustrated embodiment, the bottom edge 38 of barrier 34 lies in a horizontal plane such that the height of opening 36 is uniform along its entire width, although this may not be necessary in all embodiments. Also, as shown in Figure 1B, the outer edge of the barrier 34 may extend radially outwardly to the side wall 12, and may be secured to side wall 12, so as to prevent flow of the fluidized bed around the outer edge of barrier 34.

    [0031] The area of the at least one opening 36 relative to the area of barrier 34 is variable, and depends on the specific application. However, in typical cases, the area of barrier 34 will be greater than the area of the at least one opening 36.

    [0032] The inner edge of barrier 34 may be located proximate to the central axis Y of reactor 10. In some embodiments, the reactor will include an inner side wall 40 which may also have any of the shapes described above for the outer side wall 12 and chamber 18. For example, the inner side wall shown in the drawings is in the approximate shape of a cylinder of variable diameter. The inner side wall 40 extends at least above the top of the fluidized bed, and may in some embodiments extend throughout the height of the reactor 10. Therefore, the hollow chamber 18 may have an annular horizontal cross-section throughout at least a portion of its height, and throughout the entire height of the fluidized bed zone 20.

    [0033] In embodiments where the reactor 10 includes an inner side wall 40, the barrier 34 may have an inner edge which extends radially inwardly to the inner side wall 40, and may be secured to side wall 40, so as to prevent flow of the fluidized bed around the inner edge of barrier 34. In cases where reactor 10 has no inner side wall 40, the inner edge of barrier 34 may extend inwardly to a point which is at or close to the central axis Y.

    [0034] The barrier 34 also has a top edge 42 which is located above the fluidized bed zone 20, so as to substantially prevent the fluidized bed from flowing over top of the barrier 34. It will be appreciated that the fluidized bed will resemble a boiling liquid and that there will be a splash zone at the top of the fluidized bed. In some embodiments, it may be desired to extend the top edge 42 of the barrier 34 above this splash zone so as to prevent liquid and/or solid material from passing over the top edge 34.

    [0035] In reactor 10, the barrier 34 is located between the feed inlet 28 and the product outlet 32A, and separates the feed zone 30 from the product zone 33. The relative locations of inlet 28, outlet 32A and barrier 34 are such that the barrier 34 prevents short-circuiting of flow between the inlet 28 and outlet 32A, while maximizing the circumferential distance for flow and reaction of the fluidized bed between the inlet 28 and outlet 32A. Therefore, the inlet and outlet 28, 32A may be located close to one another, and are separated by the barrier 34.

    [0036] In operation, the fluidizing medium enters the chamber 18 through the bottom wall 14, and is directed so as to create a circumferential flow. In embodiments which are not claimed the fluidizing medium may be injected through the outer side wall 12, either instead of, or in addition to, injection through the bottom wall 14. For example, in the case of a bio reactor where a reactive biofilm is supported on relatively heavy particles in a liquid medium, it may be preferred to inject the fluidizing medium through both the bottom wall 14 and the side wall 12.

    [0037] Simultaneously with injection of the fluidizing medium, a feed material is fed into the feed zone 30 of chamber 18 through the feed inlet 28, the feed material comprising liquid and/or solid material which becomes suspended in the fluidized bed, and which flows toward the inlet while undergoing transformation into one or more products within the fluidized bed. A portion of the product, comprising a liquid and/or solid material, will be withdrawn from the chamber 18 through the product outlet 32A which is in communication with the fluidized bed zone 20, while a portion of the product will be carried by the fluidized bed, through the underflow opening 36 of the barrier 34, to the feed zone 30 where additional feed material is added to the fluidized bed. Simultaneously, a gaseous product which may comprise an off-gas, enters the freeboard zone 22 and is exhausted through the product outlet 32B in communication with the freeboard zone 22.

    [0038] The reactor 10 in Figures 1A and 1B therefore provides for re-circulation or recycling of a controlled portion of the product from the product zone 33 to the feed zone 30. This "internal recirculation" of a portion of the product eliminates the need for an external recirculation circuit, whereby a portion of the product is removed from the product zone 33 through outlet 28 and is then re-introduced into the feed zone 30. The controlled re-circulation of a portion of the product also provides heated and/or reactive particulate material to the feed zone 30 to supply heat and/or catalysis to the material entering chamber 18 through the feed inlet 28. This may permit the reduction or elimination of external heating and/or regeneration and circulation of sand or other particulate material as a heat and/or catalyst source for the incoming feed material.

    [0039] Figures 2A and 2B illustrate a reactor 100 according to a second embodiment. Reactor 100 includes many of the same elements as reactor 10, and like elements of reactor 100 are identified by like reference numerals, and the above description applies equally to these elements. The following description will focus on the differences between reactors 10 and 100.

    [0040] The primary difference between reactor 100 and reactor 10 is that reactor 100 includes two barriers 34, labeled as 34A and 34B in Figure 2B. Also, in contrast to the first embodiment, the barriers 34A and 34B extend throughout the entire height of the reactor so as to divide the hollow chamber 18 into two sections, also referred to herein as the feed zone 30 and the product zone 33. In the second embodiment, the barriers 34A and 34B not only divide the fluidized bed zone 20, but also divide the freeboard zone 22, with the only communication between the feed zone 30 and the product zone 33 being provided through the underflow openings 36 of the barriers 34A and 34B. The barriers 34A and 34B are shown in Figure 2B as being separated by about 180 degrees, although it will be appreciated that the amount of circumferential spacing between barriers 34A and 34B may be variable. Also, in some embodiments, it may be desired to provide a reactor having more than two barriers 34.

    [0041] The separation between the feed zone 30 from the product zone 33 in reactor 100 permits multi-stage processing of the feed material in a single reactor having a single fluidized bed. This eliminates the need for a separate reactor for each stage of the processing.

    [0042] In some embodiments, the two stages may require the use of different fluidizing media. Accordingly, the fluidizing medium inlets 28 may be divided into two sub-groups, one sub-group of inlets 28 being provided to feed a first fluidizing medium into the feed zone 30 and another sub-group of inlets 28 being provided to feed a second fluidizing medium into the product zone 33. Also, the separation of the feed zone 30 and product zone 33 requires that at least one product outlet 32 is provided in each of said zones 30, 33. Typically, the feed zone 30 and product zone 33 will each include a gaseous product outlet 32B, 32C in communication with the freeboard zone 20, while the product zone 33 may be provided with a product outlet 32A for a liquid and/or solid product in communication with the product zone 33.

    [0043] Accordingly, the configuration of reactor 100 provides controlled recirculation of a controlled portion of the product from the product zone 33 to the feed zone 30. As in reactor 10, the internal recirculation of a portion of the product eliminates the need for an external recirculation circuit, and may also permit the reduction or elimination of external heating and input of sand or other particulate material as a heat source for the incoming feed material. Also, as mentioned above, the reactor 100 provides the added benefit of permitting multi-stage processing of the feed material in a single reactor.

    [0044] Specific applications of reactors incorporating the features of reactors 10 and 100 are now described below with reference to Figures 3-7.

    Figure 3 - Coal Drying



    [0045] The drying of anthracite and bituminous coal from moisture contents of 10-15wt% down to values of less than 2% is important for many metallurgical operations. Current technologies for drying coal include rotary louver dryers and vibrating fluid bed dryers. A coal dryer having the configuration of reactor 10 is shown in Figure 3, in which wet coal is supplied to the fluidized bed through feed inlet 28 and dry coal is withdrawn from the fluidized bed through outlet 32A. The fluidizing medium injected through bottom wall 14 comprises preheated air or recycled inert gas.

    [0046] A portion of the dry coal is internally recirculated from the product zone to the feed zone through the underflow opening 36 of the barrier 34. Therefore, dry coal serves as the bed material to which the wet material is fed. This eliminates the problem of de-fluidization of the wet feed material, which currently prevents the adoption of a plug flow type fluid bed. The excellent gas/solids mixing in the fluidized bed provides improved fuel efficiency compared to rotary louver dryers, and the simple structure of the dryer should provide cost and maintenance advantages when compared to rotary louver and vibrating fluid bed dryers.

    [0047] It will be appreciated that essentially the same process and apparatus can be applied to the drying of other particulate matter, such as wet particles of wood or plastic.

    Figure 4 - Arsenic (Gold Ore) Roasting



    [0048] Two stage roasting is a common method of pre-treating arsenic-bearing refractory gold ores. Sulfur and carbon most be removed (oxidized) to allow access to the gold and prevent pregrobbing by the carbon. During oxidation, arsenic can form ferric arsenate and encapsulate gold (resulting in lower Au recovery) and therefore must first be removed in a reducing/neutral roast, the removed arsenic species comprising arsenic and/or volatile arsenic compounds.

    [0049] A roasting apparatus having the configuration of reactor 100 is shown in Figure 4, in which gold ore and/or gold ore concentrate is supplied to the fluidized bed through feed inlet 28 and undergoes two-stage processing, the first stage being a reduction (endothermic) and the second stage being an oxidation (exothermic). The fluidizing medium for the first stage comprises sub-stoichiometric air or nitrogen, and the fluidizing medium for the second stage comprises air or oxygen.

    [0050] The product is oxidized calcine which is withdrawn from the fluidized bed through outlet 32A. A portion of the oxidized calcine is internally recirculated back to the feed zone 30 through underflow opening 36 of barrier 34B to serve as a heat source for the reducing stage.

    [0051] Plug flow allows for both stages (oxidizing and reducing) to occur in the single reactor at different points and might allow for lower S, As and C levels due to limited backmixing. Also, the elimination of a second fluid bed is expected to provide lower capital costs and a reduction in fuel consumption in the reducing stage is expected to reduce operating costs.

    Figure 5 - Biomass Pyrolysis



    [0052] Charcoal/biochar has a number of industrial uses, and may be produced by pyrolysis of biomass in a reactor containing a fluidized bed containing sand.

    [0053] A pyrolysis apparatus having the configuration of reactor 100 is shown in Figure 5, in which biomass is supplied to the fluidized bed through feed inlet 28, optionally in combination with inert particulate matter such as sand, and undergoes two-stage processing, the first stage being pyrolysis and the second stage comprising re-heating of the fluidized bed. The fluidizing medium for the first stage comprises pre-heated air or nitrogen, and the fluidizing medium for the second stage comprises air.

    [0054] The product is biochar which is withdrawn from the fluidized bed through outlet 32A. A portion of the hot biochar is internally recirculated back to the feed zone to serve as a heat source for the pyrolysis stage and to aid in fluidization of the feed material.

    [0055] Similar reactor configurations can be used for a variety of pyrolysis/cracking applications, including the production of activated carbon from biomass, and the upgrading of heavy oil by fluid coking or fluid catalytic cracking.

    Figure 6 - Catalytic Reactor



    [0056] A catalytic reactor having the configuration of reactor 100 is shown in Figure 6, in which one or more gaseous, liquid and/or solid chemical reactants, are supplied to the fluidized bed through feed inlet 28 and/or through the bottom wall 14 to undergo two-stage processing, the first stage being a catalytic reaction and the second stage being re-generation of the catalyst. Separate fluidizing media are supplied to each stage, the compositions of the fluidizing media being dependent on the specific process being conducted in reactor 100. For example, the fluidizing medium supplied to the first stage may comprise one or more reactants, nitrogen, air, etc., while the fluidizing medium supplied to the second stage may comprise air.

    [0057] No product outlet 32A is shown in the reactor 100 of Fig. 6. However, it will be appreciated that the reactor 100 may include at least one product outlet 32B or 32C which communicates with the freeboard zone 22, as shown in Fig. 2A. Although not shown, it will be appreciated that it may be desired to provide a product outlet 32A communicating with the fluid bed zone for removal of product and/or for removal of poisoned catalyst. It will also be appreciated that fresh catalyst may be added through inlet 28.

    [0058] Similar reactor configurations can be used for a variety of chemical applications, including dehydrogenation of butane and/or propane, production of maleic anhydride from butane, and production of 3,4-ethylenedioxythiophene.

    Figure 7 - Aerobic/Anaerobic Bio Reactor



    [0059] The use of a two stage recirculating fluid bed process for biological treatment of waste water (C, P and N removal) has recently been proposed in US Patent No. 7,261,811. This process includes re-circulating solids with biofilm between two fluidized beds (Anaerobic and Aerobic zones), and uses two reactors with solids transferred between them, the solids comprising suspended particulate matter with a coating of reactive biofilm. The liquid used as fluidizing agent is recycled and goes through multiple passes.

    [0060] An aerobic/anaerobic bio reactor having the configuration of reactor 100 is shown in Figure 7, in which raw waste water is supplied to the fluidized bed through feed inlet 28 and undergoes two-stage processing, the first stage comprising an anoxic zone and the second stage comprising an aerobic zone in which the biofilm is aerated and regenerated. The fluid bed containing the regenerated biofilm is then recirculated from the aerobic zone to the anoxic zone. The fluidizing medium for the first stage comprises waste water, and the fluidizing medium for the second stage comprises partially treated waste water from the first stage, with air and/or oxygen.

    [0061] The product is treated waste water which is withdrawn from the fluidized bed through outlet 32. A portion of the treated waste water with the aerated and regenerated biofilm is internally recirculated back to the feed zone through the underflow opening 36 of barrier 34B to combine with waste water entering the chamber 18 through the inlet 28.

    [0062] Also, as shown in Figure 7, a portion of the treated waste water may be recycled back to the second stage, while a portion of the waste water treated in the anoxic zone may be recycled back to the aerobic zone and/or the anoxic zone.


    Claims

    1. A reactor comprising:

    an outer side wall (12), an inner side wall (40) and a bottom wall (14) enclosing a hollow chamber (18) in the form of a closed loop for circulation of a fluidized bed, the hollow chamber comprising a lower fluidized bed zone (20) and an upper freeboard zone (22), wherein the outer side wall has a substantially cylindrical shape, and has a central axis;

    a plurality of fluidizing medium inlets (24) for injection of at least one fluidizing medium into the fluidized bed zone, wherein the fluidizing medium inlets are located in the bottom wall of the reactor, in communication with the lower fluidized bed zone and the fluidizing medium inlets comprise gas and/or liquid injectors, which are directed in a direction of a circumferential, swirling fluid flow and which are adapted to create the circumferential, swirling flow of material in the fluidized bed zone;

    at least one feed inlet (28) communicating with the fluidized bed zone;

    at least one product outlet (32A; 32B) for removing a product from the chamber, wherein the at least one product outlet communicates with either the fluidized bed zone or the freeboard zone; and

    a planar plate, extending radially from the outer side wall toward the central axis, located inside the hollow chamber and at least partly located in the fluidized bed zone, wherein said planar plate is positioned to face in a direction of said circumferential, swirling flow, and said planar plate has at least one opening (36) within the fluidized bed zone.


     
    2. The reactor of claim 1, wherein said planar plate has a bottom edge (38) which is spaced above the bottom wall, and wherein said at least one opening comprises an underflow opening within the fluidized bed zone, between the bottom wall and the bottom edge of the planar plate; and
    wherein the inner side wall has a substantially cylindrical shape.
     
    3. The reactor of claim 1, wherein:

    the planar plate is located between the feed inlet and the product outlet, so as to prevent short-circuiting of flow between the feed inlet and the product outlet; and

    both the feed inlet and the product outlet are provided in the outer side wall and communicate with the fluidized bed zone.


     
    4. The reactor of claim 1, wherein the planar plate has a top edge located above the fluidized bed zone.
     
    5. The reactor of any one of claims 1 to 4, wherein the reactor comprises a particulate dryer, and wherein:

    the plurality of fluidizing medium inlets are located in the bottom wall;

    the feed inlet is adapted for receiving particulate solids to be dried;

    the at least one product outlet is a first product outlet and the particulate drier includes a second product outlet, wherein the first product outlet communicates with the fluidized bed zone and the second product outlet communicates with the freeboard zone;

    the planar plate is located between the feed inlet and the first product outlet, and wherein the planar plate has a top edge which is located proximate to a top of the fluidized bed zone.


     
    6. A method for drying wet particulate solids in a dryer, the dryer including:

    an outer sidewall (12), an inner side wall (40) and a bottom wall (14) enclosing a hollow chamber (18) in the form of a closed loop for circulation of a fluidized bed, the hollow chamber comprising a fluidized bed zone (20) and a freeboard zone (22), wherein the outer sidewall has a substantially cylindrical shape and has a central axis;

    a plurality of gas injectors (24) for injection of a gas into the fluidized bed zone, wherein the gas injectors are located in the bottom wall, in communication with the fluidized bed zone, and the gas injectors are directed in a direction of a circumferential, swirling fluid flow and which are adapted to create the circumferential, swirling flow of material in the fluidized bed zone;

    a feed inlet (28) adapted to communicate the wet particulate solids into the fluidized bed zone;

    a first product outlet (32A) communicating with the fluidized bed zone;

    a second product outlet (32B) communicating with the freeboard zone; and

    a planar plate (34) extending radially from the outer sidewall toward the central axis, thereby defining a further wall of the hollow chamber between the feed inlet and the first product outlet and at least partly located in the fluidized bed zone, the planar plate is positioned to face in a direction of said swirling flow, and the planar plate has at least one opening (36) within the fluidized bed zone;

    the method comprising:

    receiving said wet particulate solids in a fluidized bed of dried particles in the fluidized bed zone of the reactor;

    injecting said gas into the fluidized bed zone through the gas injectors located in the bottom wall;

    drying the wet particulate solids with said gas as the fluidized bed flows from the feed inlet toward the first product outlet;

    recovering a first portion of the dried particulate solids through the first product outlet;

    recycling a second portion of the dried particulate solids by permitting the second portion to flow through said at least one opening to combine with said wet particulate solids entering the chamber through said feed inlet; and

    discharging said gas from said product outlet.


     
    7. The reactor of any one of claims 1 to 4, wherein the reactor comprises a biomass pyrolysis apparatus, and wherein:

    the reactor includes a barrier extending, with the planar plate, throughout the height of the reactor so as to separate the hollow chamber into a first section for pyrolysis of the biomass and a second section for optionally re-heating the fluidized bed, and wherein communication between the first and second sections is provided by the at least one opening;

    the plurality of fluidizing medium inlets are located in the bottom wall, wherein a first sub-group of said plurality of fluidizing inlets is provided in the first section, and a second sub-group of said plurality of fluidizing inlets is provided in the second section;

    the reactor comprises one said feed inlet comprising an inlet for biomass and optionally inert particulate matter, wherein the feed inlet is located in said first section;

    the reactor comprises a first said product outlet, comprising an outlet for biochar, wherein the outlet for biochar is located in the second section and communicates with the fluidized bed zone;

    the reactor comprises a second said product outlet, comprising an outlet for a first off-gas communicating with the freeboard zone in the first section; and

    the reactor comprises a third said product outlet, comprising an outlet for a second off-gas communicating with the freeboard zone in the second section.


     
    8. The reactor of any one of claims 1 to 4, wherein the reactor comprises a gold ore roasting apparatus, and wherein:

    the reactor includes a barrier extending, with the planar plate, throughout the height of the reactor so as to separate the hollow chamber into a first section for removal of arsenic species and a second section for removal of carbon and sulfur, and wherein communication between the first and second sections is provided by the at least one opening;

    the plurality of fluidizing medium inlets are located in the bottom wall, wherein a first sub-group of said plurality of fluidizing inlets is provided in the first section, and a second sub-group of said plurality of fluidizing inlets is provided in the second section;

    the reactor comprises one said feed inlet comprising an inlet for gold ore and/or concentrate, wherein the feed inlet is located in said first section;

    the reactor comprises a first said product outlet, comprising an outlet for calcine, wherein the outlet for calcine is located in the second section and communicates with the fluidized bed zone;

    the reactor comprises a second said product outlet, comprising an outlet for a first off-gas communicating with the freeboard zone in the first section; and

    the reactor comprises a third said product outlet, comprising an outlet for a second off-gas communicating with the freeboard zone in the second section.


     
    9. The reactor of any one of claims 1 to 4, wherein the reactor comprises a catalytic reactor, and wherein:

    the reactor includes a barrier extending, with the planar plate, throughout the height of the reactor so as to separate the hollow chamber into a first section for a catalyzed reaction in the presence of a catalyst and a second section for regeneration of the catalyst, and wherein communication between the first and second sections is provided by the at least one opening;

    the plurality of fluidizing medium inlets are located in the bottom wall, wherein a first sub-group of said plurality of fluidizing inlets is provided in the first section, and a second sub-group of said plurality of fluidizing inlets is provided in the second section;

    the reactor comprises one said feed inlet comprising an inlet for one or more reactants in solid, liquid and/or gaseous form, wherein the feed inlet is located in said first section;

    the reactor comprises a first said product outlet, comprising an outlet for one or more products of said catalyzed reaction, wherein the first product outlet is located in the first section and communicates with the freeboard zone; and

    the reactor comprises a second said product outlet, comprising an outlet for an off-gas communicating with the freeboard zone in the second section.


     
    10. The reactor of any one of claims 1 to 4, wherein the reactor comprises an aerobic/anaerobic bio reactor, and wherein:

    the reactor includes a barrier, which, with the planar plate, separates the hollow chamber into a first section comprising anaerobic and anoxic zones, and a second section comprising an aerobic zone, wherein the barrier and the planar plate extend throughout the height of the reactor, and wherein communication between the first and second sections is provided by the at least one opening;

    the plurality of fluidizing medium inlets are located in the bottom wall, wherein a first sub-group of said plurality of fluidizing inlets is provided in the first section, and a second sub-group of said plurality of fluidizing inlets is provided in the second section;

    the reactor comprises one said feed inlet comprising an inlet for waste water, wherein the feed inlet is located in said first section;

    the reactor comprises a first said product outlet, comprising an outlet for treated waste water, wherein the outlet for treated waste water is located in the second section and communicates with the fluidized bed zone;

    the reactor comprises a first recycling circuit for recycling a portion of the waste water from the first section to the first sub-group of fluidizing inlets; and

    the reactor comprises a second recycling circuit for recycling a portion of the treated waste water from the second section to the second sub-group of fluidizing inlets.


     


    Ansprüche

    1. Reaktor, umfassend:

    eine äußere Seitenwand (12), eine innere Seitenwand (40) und eine Bodenwand (14), die eine Hohlkammer (18) in Form einer geschlossenen Schleife zur Zirkulation einer Wirbelschicht einschließen, wobei die Hohlkammer eine untere Wirbelschichtzone (20) und obere Freiraumzone (22) umfasst, wobei die äußere Seitenwand eine im wesentlichen zylindrische Form hat und eine Mittelachse aufweist;

    mehrere Fluidisierungsmediumeinlässe (24) zum Injizieren mindestens eines Fluidisierungsmediums in die Wirbelschichtzone, wobei die Fluidisierungsmediumeinlässe in der Bodenwand des Reaktors angeordnet sind, in Verbindung mit der unteren Wirbelschichtzone und den Fluidisierungsmediumeinlässen Gas- und/oder Flüssigkeitsinjektoren umfassen, die in Richtung eines umlaufenden, wirbelnden Fluidstroms gerichtet sind und die ausgelegt sind, den umlaufenden, wirbelnden Materialstrom in der Wirbelschichtzone zu erzeugen;

    mindestens einen Zufuhreinlass (28), der mit der Wirbelschichtzone in kommuniziert;

    mindestens einen Produktauslass (32A; 32B) zum Entfernen eines Produkts aus der Kammer, wobei der mindestens eine Produktauslass entweder mit der Wirbelschichtzone oder der Freiraumzone kommuniziert; und

    eine ebene Platte, die sich radial von der äußeren Seitenwand in Richtung der Mittelachse erstreckt, innerhalb der Hohlkammer angeordnet ist und zumindest teilweise in der Wirbelschichtzone angeordnet ist, wobei die ebene Platte positioniert ist, dass sie in eine Richtung der umlaufenden, wirbelnden Strömung zeigt, und die ebene Platte mindestens eine Öffnung (36) innerhalb der Wirbelschichtzone hat.


     
    2. Reaktor nach Anspruch 1, wobei die ebene Platte eine Unterkante (38) aufweist, die oberhalb der Bodenwand mit Abstand angeordnet ist, und wobei die mindestens eine Öffnung eine Unterlauföffnung innerhalb der Wirbelschichtzone zwischen der Bodenwand und der Unterkante der ebenen Platte umfasst; und
    wobei die innere Seitenwand eine im wesentlichen zylindrische Form hat.
     
    3. Reaktor nach Anspruch 1, wobei:

    die ebene Platte zwischen dem Zufuhreinlass und dem Produktauslass angeordnet ist, um einen Kurzschluss des Flusses zwischen dem Zufuhreinlass und dem Produktauslass zu verhindern; und

    sowohl der Zufuhreinlass als auch der Produktauslass in der äußeren Seitenwand vorgesehen sind und mit der Wirbelschichtzone kommunizieren.


     
    4. Reaktor nach Anspruch 1, wobei die ebene Platte eine Oberkante aufweist, die oberhalb der Wirbelschichtzone angeordnet ist.
     
    5. Reaktor nach einem der Ansprüche 1 bis 4, wobei der Reaktor einen Partikeltrockner umfasst und wobei:

    die mehreren Fluidisierungsmediumeinlässe in der Bodenwand angeordnet sind;

    der Zufuhreinlass zur Aufnahme von zu trocknenden teilchenförmigen Feststoffen geeignet ist;

    der mindestens eine Produktauslass ein erster Produktauslass ist und der Partikeltrockner einen zweiten Produktauslass umfasst, wobei der erste Produktauslass mit der Wirbelschichtzone und der zweite Produktauslass mit der Freiraumzone kommuniziert;

    die ebene Platte zwischen dem Zufuhreinlass und dem ersten Produktauslass angeordnet ist und wobei die ebene Platte eine Oberkante aufweist, die nahe einer Oberseite der Wirbelschichtzone angeordnet ist.


     
    6. Verfahren zum Trocknen feuchter teilchenförmiger Feststoffe in einem Trockner, wobei der Trockner Folgendes umfasst:

    eine äußere Seitenwand (12), eine innere Seitenwand (40) und eine Bodenwand (14), die eine Hohlkammer (18) in Form einer geschlossenen Schleife zur Zirkulation einer Wirbelschicht einschließen, wobei die Hohlkammer eine Wirbelschichtzone (20) und eine Freiraumzone (22) umfasst, wobei die äußere Seitenwand eine im wesentlichen zylindrische Form hat und eine Mittelachse aufweist;

    mehrere Gasinjektoren (24) zum Injizieren eines Gases in die Wirbelschichtzone, wobei sich die Gasinjektoren in der Bodenwand in Verbindung mit der Wirbelschichtzone angeordnet sind und die Gasinjektoren in eine Richtung eines umlaufenden, wirbelnden Fluidstroms gerichtet sind und die ausgelegt sind, den umlaufenden, wirbelnden Materialstrom in der Wirbelschichtzone zu erzeugen;

    einen Zufuhreinlass (28), der angepasst ist, die feuchten teilchenförmigen Feststoffe in die Wirbelschichtzone zu leiten;

    einen ersten Produktauslass (32A), der mit der Wirbelschichtzone kommuniziert;

    einen zweiten Produktauslass (32B), der mit der Freiraumzone kommuniziert; und

    eine ebene Platte (34), die sich radial von der äußeren Seitenwand zur Mittelachse erstreckt, dadurch eine weitere Wand der Hohlkammer zwischen dem Zufuhreinlass und dem ersten Produktauslass definiert und zumindest teilweise in der Wirbelschichtzone angeordnet ist, wobei die ebene Platte positioniert ist, dass sie in eine Richtung der umlaufenden, wirbelnden Strömung zeigt, und die ebene Platte mindestens eine Öffnung (36) innerhalb der Wirbelschichtzone hat;

    wobei das Verfahren umfasst:

    Empfangen der feuchten teilchenförmigen Feststoffe in einer Wirbelschicht aus getrockneten Partikeln in der Wirbelschichtzone des Reaktors;

    Injizieren des Gases in die Wirbelschichtzone durch die in der Bodenwand angeordneten Gasinjektoren;

    Trocknen der feuchten teilchenförmigen Feststoffe mit dem Gas, wenn die Wirbelschicht vom Zufuhreinlass zum ersten Produktauslass strömt;

    Zurückgewinnen eines ersten Teils der getrockneten teilchenförmigen Feststoffe durch den ersten Produktauslass;

    Recyceln eines zweiten Teils der getrockneten teilchenförmigen Feststoffe durch Ermöglichen, dass der zweite Teil durch die mindestens eine Öffnung fließt, um sich mit den feuchten teilchenförmigen Feststoffen zu mischen, die durch den Zufuhreinlass in die Kammer eintreten; und

    Ablassen des Gases aus dem Produktauslass.


     
    7. Reaktor nach einem der Ansprüche 1 bis 4, wobei der Reaktor eine Biomassepyrolysevorrichtung umfasst und wobei:

    der Reaktor eine Barriere umfasst, die sich mit der ebenen Platte über die gesamte Höhe des Reaktors erstreckt, um die Hohlkammer in einen ersten Abschnitt zur Pyrolyse der Biomasse und einen zweiten Abschnitt zum optionalen Wiedererhitzen der Wirbelschicht zu trennen, und wobei eine Verbindung zwischen dem ersten und dem zweiten Abschnitt durch die mindestens eine Öffnung bereitgestellt wird;

    die mehreren Fluidisierungsmediumeinlässe in der Bodenwand angeordnet sind, wobei eine erste Untergruppe der mehreren Fluidisierungseinlässe im ersten Abschnitt vorgesehen ist und eine zweite Untergruppe der mehreren Fluidisierungseinlässe in dem zweiten Abschnitt vorgesehen ist;

    der Reaktor einen Zufuhreinlass umfasst, der einen Einlass für Biomasse und optional inerte Partikel umfasst, wobei der Zufuhreinlass in dem ersten Abschnitt angeordnet ist;

    der Reaktor einen ersten Produktauslass umfasst, der einen Auslass für Biokohle umfasst, wobei der Auslass für Biokohle in dem zweiten Abschnitt angeordnet ist und mit der Wirbelschichtzone kommuniziert;

    der Reaktor einen zweiten Produktauslass umfasst, der einen Auslass für ein erstes Abgas umfasst, das mit der Freiraumzone im ersten Abschnitt kommuniziert; und

    der Reaktor einen dritten Produktauslass umfasst, der einen Auslass für ein zweites Abgas umfasst, der mit der Freiraumzone im zweiten Abschnitt in kommuniziert.


     
    8. Reaktor nach einem der Ansprüche 1 bis 4, wobei der Reaktor eine Golderz-Röstvorrichtung umfasst und wobei:

    der Reaktor eine Barriere aufweist, die sich mit der ebenen Platte über die gesamte Höhe des Reaktors erstreckt, um die Hohlkammer in einen ersten Abschnitt zum Entfernen von Arsenspezies und einen zweiten Abschnitt zum Entfernen von Kohlenstoff und Schwefel zu trennen, und wobei eine Verbindung zwischen dem ersten und zweiten Abschnitt durch die mindestens eine Öffnung bereitgestellt wird;

    die mehreren Fluidisierungsmediumeinlässe in der Bodenwand angeordnet sind, wobei eine erste Untergruppe der mehreren Fluidisierungseinlässe in dem ersten Abschnitt vorgesehen ist und eine zweite Untergruppe der mehreren Fluidisierungseinlässe in dem zweiten Abschnitt vorgesehen ist;

    der Reaktor einen Zufuhreinlass umfasst, der einen Einlass für Golderz und/oder Konzentrat umfasst, wobei der Zufuhreinlass in dem ersten Abschnitt angeordnet ist;

    der Reaktor einen ersten Produktauslass umfasst, der einen Auslass für Calcin umfasst, wobei der Auslass für Calcin im zweiten Abschnitt angeordnet ist und mit der Wirbelschichtzone kommuniziert;

    der Reaktor einen zweiten Produktauslass umfasst, der einen Auslass für ein erstes Abgas umfasst, der mit der Freiraumzone im ersten Abschnitt kommuniziert; und

    der Reaktor einen dritten Produktauslass umfasst, der einen Auslass für ein zweites Abgas umfasst, der mit der Freiraumzone im zweiten Abschnitt kommuniziert.


     
    9. Reaktor nach einem der Ansprüche 1 bis 4, wobei der Reaktor einen katalytischen Reaktor umfasst und wobei:

    der Reaktor eine Barriere aufweist, die sich mit der ebenen Platte über die gesamte Höhe des Reaktors erstreckt, um die Hohlkammer in einen ersten Abschnitt für eine katalysierte Reaktion in Gegenwart eines Katalysators und einen zweiten Abschnitt zur Regeneration des Katalysators zu trennen; und wobei eine Verbindung zwischen dem ersten und dem zweiten Abschnitt durch die mindestens eine Öffnung bereitgestellt wird;

    die mehreren Fluidisierungsmediumeinlässe in der Bodenwand angeordnet sind, wobei eine erste Untergruppe der mehreren Fluidisierungseinlässe im ersten Abschnitt vorgesehen ist und eine zweite Untergruppe der mehreren Fluidisierungseinlässe in dem zweiten Abschnitt vorgesehen ist;

    der Reaktor einen Zufuhreinlass umfasst, der einen Einlass für einen oder mehrere Reaktanten in fester, flüssiger und/oder gasförmiger Form umfasst, wobei der Zufuhreinlass in dem ersten Abschnitt angeordnet ist;

    der Reaktor einen ersten Produktauslass umfasst, der einen Auslass für ein oder mehrere Produkte der katalysierten Reaktion umfasst, wobei der erste Produktauslass im ersten Abschnitt angeordnet ist und mit der Freiraumzone kommuniziert; und

    der Reaktor einen zweiten Produktauslass umfasst, der einen Auslass für ein Abgas umfasst, das mit der Freiraumzone im zweiten Abschnitt kommuniziert.


     
    10. Reaktor nach einem der Ansprüche 1 bis 4, wobei der Reaktor einen aeroben/anaeroben Bioreaktor umfasst und wobei:

    der Reaktor eine Barriere umfasst, die mit der ebenen Platte die Hohlkammer in einen ersten Abschnitt mit anaeroben und anoxischen Zonen und einen zweiten Abschnitt mit einer aeroben Zone trennt, wobei sich die Barriere und die ebene Platte über die gesamte Höhe des Reaktors erstrecken, und wobei eine Verbindung zwischen dem ersten und dem zweiten Abschnitt durch die mindestens eine Öffnung bereitgestellt wird;

    die mehreren Fluidisierungsmediumeinlässe in der Bodenwand angeordnet sind, wobei eine erste Untergruppe der mehreren Fluidisierungseinlässe im ersten Abschnitt vorgesehen ist und eine zweite Untergruppe der mehreren Fluidisierungseinlässe in dem zweiten Abschnitt vorgesehen ist;

    wobei der Reaktor einen Zufuhreinlass umfasst, der einen Einlass für Abwasser umfasst, wobei der Zufuhreinlass in dem ersten Abschnitt angeordnet ist;

    wobei der Reaktor einen ersten Produktauslass umfasst, der einen Auslass für behandeltes Abwasser umfasst, wobei der Auslass für behandeltes Abwasser in dem zweiten Abschnitt angeordnet ist und mit der Wirbelschichtzone kommuniziert;

    der Reaktor einen ersten Recyclingkreislauf zum Recyceln eines Teils des Abwassers vom ersten Abschnitt zur ersten Untergruppe von Fluidisierungseinlässen umfasst; und

    der Reaktor einen zweiten Recyclingkreislauf zum Recyceln eines Teils des behandelten Abwassers vom zweiten Abschnitt zur zweiten Untergruppe von Fluidisierungseinlässen umfasst.


     


    Revendications

    1. Réacteur comprenant :

    une paroi latérale extérieure (12), une paroi latérale intérieure (40) et une paroi inférieure (14) renfermant une chambre creuse (18) sous la forme d'une boucle fermée pour la circulation d'un lit fluidisé, la chambre creuse comprenant une zone de lit fluidisée inférieure (20) et une zone de franc-bord supérieure (22), dans lequel la paroi latérale extérieure a une forme sensiblement cylindrique et a un axe central ;

    une pluralité d'entrées de milieu de fluidisation (24) pour l'injection d'au moins un milieu de fluidisation dans la zone de lit fluidisé, dans lequel les entrées de milieu de fluidisation étant situées dans la paroi inférieure du réacteur, en communication avec la zone de lit fluidisé inférieure et les entrées de milieu de fluidisation comprennent des injecteurs de gaz et / ou de liquide, qui sont dirigés dans une direction d'un flux de fluide tourbillonnant circonférentiel et qui sont adaptés pour créer le flux tourbillonnant circonférentiel de matière dans la zone de lit fluidisé ;

    au moins une entrée d'alimentation (28) communiquant avec la zone de lit fluidisé ;

    au moins une sortie de produit (32A ; 32B) pour éliminer un produit de la chambre, dans lequel ladite au moins une sortie de produit communique soit avec la zone de lit fluidisé soit avec la zone de franc-bord ; et

    une plaque plane, s'étendant radialement depuis la paroi latérale extérieure vers l'axe central, située à l'intérieur de la chambre creuse et au moins partiellement située dans la zone du lit fluidisé, dans lequel ladite plaque plane est positionnée pour faire face dans une direction dudit flux tourbillonnant circonférentiel, et ladite plaque plane a au moins une ouverture (36) à l'intérieur de la zone de lit fluidisé.


     
    2. Réacteur selon la revendication 1, dans lequel ladite plaque plane a un bord inférieur (38) qui est espacé au-dessus de la paroi inférieure, et dans lequel ladite au moins une ouverture comprend une ouverture de sous-écoulement à l'intérieur de la zone de lit fluidisé, entre la paroi inférieure et le bord inférieur de la plaque plane ; et
    dans lequel la paroi latérale intérieure a une forme sensiblement cylindrique.
     
    3. Réacteur selon la revendication 1, dans lequel :

    la plaque plane est située entre l'entrée d'alimentation et la sortie de produit, de manière à éviter les courts-circuits de flux entre l'entrée d'alimentation et la sortie de produit ; et

    à la fois l'entrée d'alimentation et la sortie de produit sont prévues dans la paroi latérale extérieure et communiquent avec la zone de lit fluidisé.


     
    4. Réacteur selon la revendication 1, dans lequel la plaque plane a un bord supérieur situé au-dessus de la zone de lit fluidisé.
     
    5. Réacteur selon l'une quelconque des revendications 1 à 4, dans lequel le réacteur comprend un séchoir à particules, et dans lequel :

    la pluralité d'entrées de milieu de fluidisation sont situées dans la paroi inférieure ;

    l'entrée d'alimentation est adaptée pour recevoir des particules solides à sécher ;

    ladite au moins une sortie de produit est une première sortie de produit et le séchoir à particules comprend une seconde sortie de produit, dans lequel la première sortie de produit communique avec la zone de lit fluidisé et la seconde sortie de produit communique avec la zone de franc-bord ;

    la plaque plane est située entre l'entrée d'alimentation et la première sortie de produit, et dans lequel la plaque plane a un bord supérieur qui est situé à proximité d'un sommet de la zone de lit fluidisé.


     
    6. Une méthode de séchage de particules solides humides dans un séchoir, le séchoir comprenant :

    une paroi latérale extérieure (12), une paroi latérale intérieure (40) et une paroi inférieure (14) enfermant une chambre creuse (18) sous la forme d'une boucle fermée pour la circulation d'un lit fluidisé, la chambre creuse comprenant une zone de lit fluidisé (20) et une zone de franc-bord (22), dans lequel la paroi latérale extérieure a une forme sensiblement cylindrique et a un axe central ;

    une pluralité d'injecteurs de gaz (24) pour l'injection d'un gaz dans la zone de lit fluidisé, les injecteurs de gaz étant situés dans la paroi inférieure, en communication avec la zone de lit fluidisé, et les injecteurs de gaz étant dirigés dans la direction d'un flux de fluide circonférentiel tourbillonnant et qui sont adaptés pour créer le flux circonférentiel tourbillonnant de matière dans la zone de lit fluidisé ;

    une entrée d'alimentation (28) adaptée pour communiquer les solides particulaires humides dans la zone du lit fluidisé ;

    une première sortie de produit (32A) communiquant avec la zone de lit fluidisé ; une deuxième sortie de produit (32B) communiquant avec la zone de franc-bord ; et

    une plaque plane (34) s'étendant radialement depuis la paroi latérale extérieure vers l'axe central, définissant ainsi une autre paroi de la chambre creuse entre l'entrée d'alimentation et la première sortie de produit et au moins partiellement située dans la zone du lit fluidisé, la plaque plane est positionnée pour faire face dans une direction dudit flux tourbillonnant, et la plaque plane a au moins une ouverture (36) à l'intérieur de la zone de lit fluidisé ;

    le procédé comprenant les étapes consistant à :

    recevoir lesdits solides particulaires humides dans un lit fluidisé de particules séchées dans la zone de lit fluidisé du réacteur ;

    injecter ledit gaz dans la zone du lit fluidisé à travers les injecteurs de gaz situés dans la paroi inférieure ;

    sécher les solides particulaires humides avec ledit gaz lorsque le lit fluidisé s'écoule de l'entrée d'alimentation vers la première sortie de produit ;

    récupérer une première partie des solides particulaires séchés à travers la première sortie de produit ;

    recycler une deuxième partie des solides particulaires séchés en permettant à la deuxième partie de s'écouler à travers ladite au moins une ouverture pour se combiner avec lesdits solides particulaires humides entrant dans la chambre par ladite entrée d'alimentation ; et

    évacuer ledit gaz de ladite sortie de produit.


     
    7. Réacteur selon l'une quelconque des revendications 1 à 4, dans lequel le réacteur comprend un appareil de pyrolyse de biomasse, et dans lequel :

    le réacteur comprend une barrière s'étendant, avec la plaque plane, sur toute la hauteur du réacteur de manière à séparer la chambre creuse en une première section pour la pyrolyse de la biomasse et une deuxième section pour éventuellement réchauffer le lit fluidisé, et dans lequel la communication entre les première et deuxième sections est assurée par au moins une ouverture ;

    la pluralité d'entrées de milieu de fluidisation sont situées dans la paroi inférieure, un premier sous-groupe d'entrées parmi ladite pluralité d'entrées de fluidisation étant prévu dans la première section, et un deuxième sous-groupe d'entrées parmi ladite pluralité d'entrées de fluidisation étant prévu dans la deuxième section ;

    le réacteur comprend une dite entrée d'alimentation comprenant une entrée pour la biomasse et éventuellement une matière particulaire inerte, dans lequel l'entrée d'alimentation est située dans ladite première section ;

    le réacteur comprend une première sortie dudit produit, comprenant une sortie pour du biochar, dans lequel la sortie pour le biochar est située dans la deuxième section et communique avec la zone de lit fluidisé ;

    le réacteur comprend une seconde sortie dudit produit, comprenant une sortie pour un premier gaz d'échappement communiquant avec la zone de franc-bord dans la première section ; et

    le réacteur comprend une troisième sortie dudit produit, comprenant une sortie pour un deuxième gaz d'échappement communiquant avec la zone de franc-bord de la deuxième section.


     
    8. Réacteur selon l'une quelconque des revendications 1 à 4, dans lequel le réacteur comprend un appareil de grillage de minerai d'or, et dans lequel :

    le réacteur comprend une barrière s'étendant, avec la plaque plane, sur toute la hauteur du réacteur de manière à séparer la chambre creuse en une première section pour l'élimination des types d'arsenic et une deuxième section pour l'élimination du carbone et du soufre, et dans lequel la communication entre les première et deuxième sections est assurée par ladite au moins une ouverture ;

    la pluralité d'entrées de milieu de fluidisation sont situées dans la paroi inférieure, dans lequel un premier sous-groupe d'entrées parmi ladite pluralité d'entrées de fluidisation est prévu dans la première section, et un deuxième sous-groupe d'entrées parmi ladite pluralité d'entrées de fluidisation est prévu dans la deuxième section ;

    le réacteur comprend une dite entrée d'alimentation comprenant une entrée pour le minerai d'or et / ou le concentré, dans lequel l'entrée d'alimentation est située dans ladite première section ;

    le réacteur comprend une première sortie dudit produit, comprenant une sortie pour la calcine, dans lequel la sortie pour la calcine est située dans la deuxième section et communique avec la zone du lit fluidisé ;

    le réacteur comprend une seconde sortie dudit produit, comprenant une sortie pour un premier gaz d'échappement communiquant avec la zone de franc-bord dans la première section ; et

    le réacteur comprend une troisième sortie dudit produit, comprenant une sortie pour un deuxième gaz d'échappement communiquant avec la zone de franc-bord dans la deuxième section.


     
    9. Réacteur selon l'une quelconque des revendications 1 à 4, dans lequel le réacteur comprend un réacteur catalytique, et dans lequel :

    le réacteur comprend une barrière s'étendant, avec la plaque plane, sur toute la hauteur du réacteur de manière à séparer la chambre creuse en une première section pour une réaction catalysée en présence d'un catalyseur et une seconde section pour la régénération du catalyseur, et

    dans lequel la communication entre les première et seconde sections est assurée par ladite au moins une ouverture ;

    la pluralité d'entrées de milieu de fluidisation sont situées dans la paroi inférieure, dans lequel un premier sous-groupe d'entrées parmi ladite pluralité d'entrées de fluidisation est prévu dans la première section, et un deuxième sous-groupe d'entrées parmi ladite pluralité d'entrées de fluidisation est prévu dans la deuxième section ;

    le réacteur comprend une dite entrée d'alimentation comprenant une entrée pour un ou plusieurs réactifs sous forme solide, liquide et / ou gazeuse, dans lequel l'entrée d'alimentation est située dans ladite première section ;

    le réacteur comprend une première sortie dudit produit, comprenant une sortie pour un ou plusieurs produits de ladite réaction catalysée, dans lequel la première sortie de produit est située dans la première section et communique avec la zone de franc-bord ; et

    le réacteur comprend une deuxième sortie dudit produit, comprenant une sortie pour un gaz d'échappement communiquant avec la zone de franc-bord dans la deuxième section.


     
    10. Réacteur selon l'une quelconque des revendications 1 à 4, dans lequel le réacteur comprend un bio-réacteur aérobie / anaérobie, et dans lequel :

    le réacteur comprend une barrière qui, avec la plaque plane, sépare la chambre creuse en une première section comprenant des zones anaérobie et anoxique, et une deuxième section comprenant une zone aérobie, dans lequel la barrière et la plaque plane s'étendent sur toute la hauteur du réacteur, et dans lequel la communication entre les première et seconde sections est assurée par ladite au moins une ouverture ;

    la pluralité d'entrées de milieu de fluidisation sont situées dans la paroi inférieure, dans lequel un premier sous-groupe d'entrées parmi ladite pluralité d'entrées de fluidisation est prévu dans la première section, et un deuxième sous-groupe d'entrées parmi ladite pluralité d'entrées de fluidisation est prévu dans la deuxième section ;

    le réacteur comprend une dite entrée d'alimentation comprenant une entrée pour les eaux usées, dans lequel l'entrée d'alimentation est située dans ladite première section ;

    le réacteur comprend une première sortie dudit produit, comprenant une sortie pour les eaux usées traitées, dans lequel la sortie pour les eaux usées traitées est située dans la deuxième section et communique avec la zone du lit fluidisé ;

    le réacteur comprend un premier circuit de recyclage pour recycler une partie des eaux usées de la première section vers le premier sous-groupe d'entrées de fluidisation ; et

    le réacteur comprend un deuxième circuit de recyclage pour recycler une partie des eaux usées traitées de la deuxième section vers le deuxième sous-groupe d'entrées de fluidisation.


     




    Drawing


























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description