(19)
(11) EP 3 511 519 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
17.06.2020 Bulletin 2020/25

(21) Application number: 18151895.2

(22) Date of filing: 16.01.2018
(51) International Patent Classification (IPC): 
E21B 47/01(2012.01)
E21B 47/12(2012.01)

(54)

SUBSEA HOUSING ASSEMBLY

UNTERWASSERGEHÄUSEANORDNUNG

ENSEMBLE DE LOGEMENT SOUS-MARIN


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43) Date of publication of application:
17.07.2019 Bulletin 2019/29

(73) Proprietor: Siemens Aktiengesellschaft
80333 München (DE)

(72) Inventor:
  • Promies, Hendrik
    81477 München (DE)


(56) References cited: : 
GB-A- 2 142 480
US-A1- 2002 135 179
US-B1- 7 847 671
GB-A- 2 144 274
US-A1- 2010 011 853
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present invention relates to a subsea housing assembly and to a subsea sensor.

    BACKGROUND



    [0002] Subsea sensors such as temperature sensors or pressure sensors are essential components of any subsea processing facility. A subsea sensor may for example be mounted to a pipe section through which a process fluid flows, such as a gas, a liquid, or a multiphase fluid which can include gaseous, liquid and solid constituents. The process fluid pressure in some applications can be very high, for example in excess of 1,000 or 1,400 bar. While it is important for the process of extracting the process fluid to measure those high pressures with high accuracy it is similarly important to ensure that no process fluid leaks into the seawater under any circumstances.

    [0003] US patent application US 2010/011853 A1 discloses a sensor cartridge comprising a protective housing having a single housing portion which is resistant to a down-hole oilfield environment and houses a sensor which is able to measure a parameter of the down-hole oilfield environment. The sensor cartridge is attachable to another sensor cartridge and/or a hub and comprises a data communication unit within the protective housing, the data communication unit providing wireless communication of the measured parameter to the other sensor cartridge and/or the hub. According to [0035] of US 2010/011853 A1 the wireless data communication can be an electromagnetic communication if the housing is non-metallic or an acoustic or optical communication if the if the housing is metallic. The sensor cartridge has a power unit within the protective housing providing power to the sensor and/or the data communication unit. The power unit may provide power by means of an incorporated battery or via inductive coupling. In operation, the sensor cartridge is lowered into the well. The housing's sole purpose is to protect the sensor, the data communication unit and the power unit from the down-hole environment. The housing does not provide a separation between process fluid and seawater. Consequently, if the housing breaks the sensor will be destroyed but there will not be a leaking of process fluid into seawater.

    [0004] European patent application EP 3269921 discusses a subsea housing assembly having a wall 30 providing a separation between a first housing portion 10 and a second housing portion 20 wherein a data communication is being provided between the first and second housing portions, through said wall, by way of inductive coupling 50. In the embodiments discussed in EP 3269921 the wall is integrally formed with a housing body 12 and the coils 51, 52 forming the inductive coupler are placed on either side of the wall. As housing body 12 and wall 30 are typically made of metal having a certain minimum thickness in order to withstand the high pressures the performance of the inductive coupling will generally not be optimal.

    [0005] It is therefore an object of the present invention to provide a subsea housing assembly and a subsea sensor wherein the performance of the inductive coupling is improved.

    SUMMARY



    [0006] In accordance with one aspect of the present invention there is provided a subsea housing assembly comprising a subsea housing having a first and a second housing portion. The first housing portion comprises a first electrical connection for data communication and the second housing portion comprises a second electrical connection for data communication. A wall provides separation between the first housing portion and the second housing portion. The subsea housing assembly further comprises an inductive coupler comprising a first coupling section disposed in the first housing portion and a second coupling section disposed in the second housing portion. The inductive coupler is configured to provide inductive coupling across the wall for providing at least a data communication between the first electrical connection and the second electrical connection. The inductive coupler further comprises a magnetic coupling element which traverses the wall and extends into the first housing portion and into the second housing portion, wherein the magnetic coupling element is made from a material different than that of the wall.

    [0007] In a preferred embodiment the wall is a pressure barrier configured to resist a predetermined minimum pressure difference across the wall.

    [0008] In a preferred embodiment the inductive coupler may further be configured to inductively supply electrical power from the electrical connection in the second housing portion to the electrical connection in the first housing portion.

    [0009] In a preferred embodiment the magnetic coupling element may be mounted in the wall by way of an interference fit such as a press fit or a shrink fit.

    [0010] In a preferred embodiment the magnetic coupling element may be welded to the wall. It should be noted that the interference fitting and the welding can be combined to improve pressure resistance of the joint.

    [0011] In preferred embodiments, in order to increase the pressure resistance of the joint between wall and magnetic coupling element the thickness of the wall may increase near the joint so as to increase the area of contact between the wall and the coupling element.

    [0012] In a preferred embodiment the magnetic coupling element is made of soft magnetic material, preferably soft iron.

    [0013] In a preferred embodiment the wall is made of a non-magnetic material, preferably a non-magnetic metal, for example Iconel 625.

    [0014] In a preferred embodiment the first coupling section and/or the second coupling section of the inductive coupler comprise(s) at least one respective coil arranged on a respective section of the magnetic coupling element. As an example, the coil in the second housing section may be driven by an AC current that can be modulated for data communication. The resulting electromagnetic field can induce a magnetic flow in the magnetic coupling element which in turn can induce a current in the coil of the first coupling section in the first housing portion. Electrical power and data communication signals (which can include control signals) may thus be transferred into the first housing portion. Similarly, a modulated current can be provided to the coil of the first coupling section, which induces a respective magnetic flow in the magnetic coupling element which in turn induces a respective current in the second coupling section, for example for transferring sensor data or the like.

    [0015] In embodiments of the present invention the magnetic coupling element is essentially cylindrical and extends into both housing sections such that the first and second coupling sections, including any number of coils, can be mounted in full on respective ends of the magnetic coupling elements. In other embodiments the cross section of the magnetic coupling element does not need to be constant over its length; for example the diameter may vary in the case of an essentially circular cross section so as to improve the magnetic flux.

    [0016] In accordance with another aspect of the present invention there is provided a subsea sensor comprising a subsea housing assembly according to the present invention and further comprising a sensor element disposed in the first housing portion, wherein the first electrical connection is configured for providing communication with the sensor element, and wherein the second electrical connection is configured to provide at least a sensor output of the subsea sensor.

    [0017] By providing a subsea housing assembly with such inductive coupler, a data communication can be established through the wall of the subsea housing without using conventional glass penetrators which require a glass to metal sealing and need to be tested at 2.5 times the operating pressure, requiring the entire sensor to be designed to reliably withstand 2.5 times the operating pressure. With an inductive coupler it should be possible to test at only 1.5 times the operating pressure thereby reducing the design and testing requirements considerably. Additionally, problems associated the manufacture of glass to metal junctions and reduced insulation resistance of such penetrators may be avoided.

    [0018] In some configurations, a single electrical line may be provided for power supply and data communication, for example by providing a respective modulation on the power line. In other embodiments, separate lines may be provided and may be part of the respective electrical connection, for example dedicated lines for power supply and data communication. In some embodiments, the sensor may only be a passive sensor, and only the electrical power required to read such passive sensor may be transmitted by means of the inductive coupler. In other applications, further electric and/or electronic components may be provided in the first housing portion, for example for operating the sensor element or processing sensor data. The inductive coupler's first and second coupling sections preferably provide inductive coupling for both data communication and power transfer. In other embodiments, the inductive coupler may comprise further coupling sections, for example for separately transferring electrical power and communication signals.

    [0019] The first housing portion may for example comprise a sensor assembly including diaphragms, such as a process diaphragm and a sensor diaphragm, a sensor element, medium filled channels or the like and may further include a first pressure barrier that provides separation between the pressure prevailing in such medium filled channels and the first chamber. As an example, a process diaphragm may transmit the pressure of the process fluid to such medium (e.g. oil) present in the channels, which in turn applies the pressure to a sensor element. Accordingly, if such first pressure barrier fails and process fluid or process fluid pressure is transmitted into the first chamber, such fluid/pressure can be confined to within the first housing portion by means of the wall which constitutes a second pressure barrier.

    [0020] The first housing portion may be sealed against a metal body by means of a metal seal, in particular a metal gasket. As an example, the subsea housing assembly may be part of a subsea sensor, and the first housing portion may be sealed against a pipe section, for example a pipeline section or a flow duct in a Christmas tree or the like. The first housing portion may comprise a mounting flange for mounting the subsea housing assembly to such metal body.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0021] 

    Fig. 1 is a schematic diagram showing a subsea housing assembly and a subsea sensor wherein the wall is integrally formed with a housing body and the coils forming the inductive coupler are placed on either side of the wall as discussed in embodiments of EP 3269921.

    Fig. 2 is a schematic diagram showing a subsea housing assembly mounted to a pipe section.

    Figs. 3, 4 and 5 show details of the subsea housing assembly's inductive coupler according to embodiments of the present invention.


    DETAILED DESCRIPTION



    [0022] Fig. 1 is a schematic of a subsea housing assembly 100 that is part of a subsea sensor 200. The subsea housing assembly 100 includes a first housing portion 10 and a second housing portion 20. The first housing portion 10 includes a first housing body 12 and a first chamber 11. The second housing portion 20 includes a second housing body 22 and a second chamber 21. The first and second housing bodies 12, 22 include flanges 18, 28, respectively, by means of which they are fixedly attached to each other. In the present example, both housing portions are bolted together.

    [0023] The first housing body 12 substantially surrounds the first chamber 11. In particular, the first housing portion 10 includes a wall 30 that provides a pressure barrier. This allows application of a high pressure difference across the walls of the first housing body 12. The wall 30 provides separation between the first chamber 11 and the second chamber 21. Accordingly, a safe and reliable sealing can be provided between the first and second chambers 11, 21 that is capable of withstanding high pressure differences, for example in excess of 1,000 or even 2,000 bar.

    [0024] At the other end, the first housing portion 10 may simply be closed, for example by means of a closing plate or the like. Such configuration may be employed when the subsea housing assembly 100 is used for a subsea canister, such as a subsea electronic canister or a control canister or control module. In the embodiment of Fig. 1, the subsea housing assembly 100 is used for a subsea sensor 200 and a first pressure barrier 17 is provided in the first housing portion 10. The first pressure barrier 17 provides sealing of the first chamber 11 towards a part of the first housing portion 10 in which a sensor element 61 is located and exposed to high pressures, such as the high pressure of a process fluid. Note that such exposure may be a direct exposure, or an indirect exposure, for example via a respective process diaphragm and a pressure transmission fluid such as oil or the like.

    [0025] When embodied as subsea sensor as in Fig. 1, the first chamber 11 may comprise sensor electronics 62, such as control electronics, data processing electronics and the like. The first chamber 11 may be a pressure resistant chamber in which a predefined pressure is maintained, even when the subsea housing assembly 100 is installed at a subsea location. Such pressure may be a pressure below 10 bar, it may preferably be a pressure below 5, or even below 1.5 bar. A close to atmospheric pressure may prevail in the first chamber 11, which may thus be termed an atmospheric chamber. Chamber 11 may be filled with a gas, such as nitrogen, or a gas mixture, such as air or a mixture of nitrogen with other gasses. It may thus be possible to operate conventional electric and electronic components within chamber 11.

    [0026] Accordingly, in the configuration of the subsea housing assembly as illustrated in Fig. 1, high pressures, such as of a process fluid, can effectively be confined to within the first chamber 11, even if the first pressure barrier 17 fails. The first pressure barrier 17 may for example comprise a feed through for an electric connection to the sensor element 61, or the sensor element 61 may itself be configured so as to constitute a pressure barrier. Under certain conditions, such pressure barrier may fail, thus allowing high pressure fluid to enter chamber 11. Wall 30 is constructed such that it provides a second barrier so that the pressure can be confined effectively within the first housing portion 10.

    [0027] For providing a data communication with an electronic component within the first housing section 10, an inductive coupler 50 comprising a first coupling section 51 and a second coupling section 52 is provided. The first coupling section 51 is disposed in the first chamber 11 and connected to an electrical connection 15 that provides at least data communication, in particular with the sensor element 61 or the sensor electronics 62 in the example of Fig. 1. The second coupling section 52 is disposed in the second chamber 21 and is connected to a second electrical connection 25 in the second housing portion 20. The inductive coupler 50 provides at least data communication between the first and second electrical connections 15, 25 across the wall 30. Besides transmitting data communications, the coupler 50 may also be configured to transfer power from the electrical connection 25 to the electrical connection 15.

    [0028] In order to improve the performance of the inductive coupler 50 a magnetic coupling element 53 is provided as shown in Fig. 3. Magnetic coupling element 53 traverses wall 30 such that the barrier function of wall 30 is not impeded. In particular, the opening in wall 30 through which magnetic coupling element 53 traverses is sealed by the magnetic coupling element 53 itself and/or by means of well-known sealing techniques (not shown). In a preferred embodiment magnetic coupling element 53 and wall 30 are in interference fit along their entire contact surface, for example by shrink-fitting and/or force fitting the magnetic coupling element 53 into the opening in wall 30. Alternatively or additionally the magnetic coupling element 53 may be welded to wall 30. In embodiments the wall's thickness may be increased around the junction of wall 30 and magnetic coupling element 53 as shown in Fig. 4, reference numeral 30A, so as to increase the contact surface between wall 30 and magnetic coupling element 53, thereby increasing the sealing area.

    [0029] In embodiments both the wall 30 and the magnetic coupling element 53 are made of metal thereby allowing the interference fit to be as reliable as desired. In the preferred embodiment the wall is made of a non-magnetic metal such as Iconel 625 which is often used to construct housings for subsea components. The magnetic coupling element 53 is preferably made of a soft magnetic material so as to propagate magnetic fields. A material suitable for making the magnetic coupling element 53 is known as soft iron.

    [0030] The magnetic coupling element 53 is preferably cylindrical because the manufacture of a cylindrical opening in wall 30 and the manufacture of a cylindrical magnetic coupling element 53 is typically more cost-effective than other shapes and allows for an optimal distribution of the stresses caused by the interference or shrink fit. Circumstances may however dictate other shapes such as square cross sections for magnetic coupling element 53 or a cross section that varies along the length of magnetic coupling element 53 and can be implemented without departing from the general principle of the invention described herein.

    [0031] The first and second coupling sections 51, 52 may for example be implemented as coils which are preferably placed on or around either end of magnetic coupling element 53 as shown in Figs. 3 and 4. An alternating current (AC) provided to the second coupling section 52 may for example create a alternating magnetic field in magnetic coupling element 53 which in turn induces a current in the first coupling section 51 which then may be used to provide electric power to electric and electronic components comprised in the first housing portion 10 including sensor electronics 62 and sensor element 61. For data transmission, modulation may be provided. As an example, the current applied to the coil 52 may be modulated, and such modulation will lead to a modulation of the current induced in the first coupling section 51. For this purpose, a receiver/transmitter 56 can be provided in the second housing portion 20 and can be coupled to the second electrical connection 25. Unit 56 can include a receiver and a transmitter, and it may modulate control signals received on line 41 for transmission via the inductive coupler 50, and it may demodulate signals received from the second coupling section 52 for further transmission via the line 41. Note that the transmitter/receiver 56 may also be located at a different position, for example at the other end of line 41, at a topside location, or at a subsea data processing hub.

    [0032] Similarly, a transmitter/receiver 55 is provided in the first housing portion 10 in chamber 11 and is connected to the first electrical connection 15 and the first coupling section 51. Unit 55 may for example detect a modulation of a current received from the first coupling section 51 and may provide corresponding control signals to the sensor electronics 62. Unit 55 may further receive sensor data from the sensor electronics 62 and may modulate such sensor data onto a signal that is provided to the first coupling section 51, so that an alternating magnetic field is created in magnetic coupling element which is coupled to second coupling section 52 and induces a current therein that is detected and demodulated by transmitter/receiver unit 56. Accordingly, data recorded by the sensor element 61 can be communicated on line 41, without requiring electric wires that penetrate wall 30 which provides the secondary pressure barrier.

    [0033] Inductive couplers 51 and 52 may comprise plural coupling sections, for example some dedicated to the transfer of electrical power and others dedicated to the transfer of data communications. Preferably, power and data communications are transmitted by the same coupling sections.

    [0034] In yet other embodiments multiple magnetic coupling elements 53 may be provided so as to provide multiple coupling paths to avoid signal degradation by magnetic interference of the inbound and the outbound signal and/or power transmission, or to provide redundancy (not shown).

    [0035] As the pressure is confined to within the first housing portion 10 by means of wall 30, the sealing of the second housing portion 20 is facilitated. In particular, the second chamber 21 can be a pressure compensated chamber the pressure of which is balanced to the surrounding ambient pressure, in particular the subsea pressure when the housing assembly 100 is installed subsea. The differential pressure across the walls of the second housing body 22 is accordingly relatively low. In the example of Fig. 1, the housing body 22 has an opening in which the second coupling section 52 is located. This opening is sealed against the first housing body 12, for example by means of O-ring seals 29. Double seals are preferably provided.

    [0036] The second chamber 21 may be filled with a substantially incompressible medium, in particular a dielectric liquid or gel, such as oil or the like. The electric and electronic components of the unit 56 can be adapted to operate in such environment, or, as mentioned above, unit 56 may be located outside the chamber 21, for example in a subsea canister to which the sensor 200 is connected or topside. Pressure compensation can occur by means of a dedicated pressure compensator forming part of the subsea housing assembly 100 (not shown). In other embodiments, the subsea housing assembly 100 may be connected to a subsea cable in form of an oil filled hose, wherein the inner volume of such hose is filled with a dielectric liquid (in particular oil) and is pressure compensated against the ambient environment due to the flexibility of the hose. Pressure compensation of the second chamber 21 can occur via such hose, for example by allowing a flow communication through the opening 26 between the inner volume of the hose and the chamber 21, or by providing some pressure transmitting element in the opening, such as a membrane or bellows.

    [0037] In other configurations the second chamber 21 may be a pressure resistant chamber. As an example, a predefined pressure below 10 bar, preferably below 5 bar or below 1.5 bar, such as close to atmospheric pressure may be maintained in chamber 21. For this purpose, a penetrator providing a pressure barrier can be provided in the opening 26. Since such penetrator has to withstand the differential pressure between the interior pressure of chamber 21 and the external subsea pressure when installed subsea, the pressure difference is relatively low compared to the pressure difference that can prevail when a barrier is exposed to the pressure of process fluid, such as the barrier provided by wall 30.

    [0038] The second housing portion 20 may for example comprise a fitting or connector for providing a connection to a subsea cable. In other configurations, a further unit, such as a control module or the like, may be mounted directly to the subsea housing assembly 100.

    [0039] By providing the inductive coupler 50, problems related to insulation resistance that occur with conventional glass penetrators may be overcome. In particular, insulation resistance would in such case be measured between the metal cage provided by the first and second housing bodies 12, 22 and the respective coupling section 51, 52, so that insulation resistance can be kept high. In particular, since no glass penetrators are used, the insulation resistance can also be maintained during high pressure testing.

    [0040] In Fig. 2, an embodiment of a subsea housing assembly 100 that is part of an embodiment of a subsea sensor 200 is illustrated. The explanations provided above with respect to Figs. 1, 3 and 4 are equally applicable to the embodiment of Fig. 2. In Fig. 2, the subsea housing assembly 100 is mounted to a subsea pipe 80 through which a process fluid flows. As shown the first housing body 12 is pressed against the subsea pipe 80 by means of the mounting flange 16 and sealed by means of the seal 19 which may for example be a metal gasket. Note that two seals 19 may be provided to provide a double barrier.

    [0041] Sensor element 61 may for example measure temperature and/or pressure of the process fluid flowing through the pipe section 80, and respective readings may be modulated and transmitted by the transmitter/receiver 55 via the inductive coupler 50.

    [0042] To the port opening 26 of the second housing portion 20, a subsea cable in form of an oil filled hose 40 is mounted. Note that the subsea cable may form part of the subsea sensor 200 and that a (wet mate or dry mate) connector may be provided at the other end of the subsea cable 40 for connecting the sensor 200 to another subsea device or to a topside installation. In the example of Fig. 2 line 41 of subsea cable 40 is directly connected to electrical connection 25 and second coupling section 52. It will be apparent to those with skills in the art that in other embodiments further electric and electronic components such as the transmitting/receiving unit 56 can be provided. Again, it is noted that the opening 26 may in some embodiments allow a flow communication between the interior of subsea cable 40 and the second chamber 21, while in other embodiments, separation may be provided. Such separation can be provided by a pressure transmitting element such as a membrane, or by means of a penetrator which allows the maintaining of a pressure difference across the opening 26.

    [0043] Figs. 3 and 4 show embodiments of the invention wherein the magnetic core 53 is essentially a soft magnetic rod requiring only one traversal of wall 30. In applications where the open magnetic coupling of a rod configuration is insufficient a closed configuration may be employed, shown schematically in Fig. 5, thereby improving the magnetic flux between the coupling sections 51 and 52. In the embodiment of Fig. 5 the wall 30 is traversed twice by a closed core magnetic coupling element 53 which can be constructed from a U- or C-shaped core section and an I-shaped core section as is well known in the art. For this and other embodiment(s) a square cross section may be chosen for the magnetic coupling element 53 instead of a circular cross section so as to allow the construction of magnetic coupling element 53 from electrically isolated thin metal layers, as is also well known in the art. Other closed core shapes such as oval shapes having two parallel cylindrical sections for traversing the wall 30 may also be employed. Of course it is possible to provide an increased wall thickness as shown in Fig. 4 for the two traversal points that are required for such an embodiment.

    [0044] The subsea housing assembly 100 is described above with respect to the use in a subsea sensor 200, yet it is to be understood that it may also be used in other applications, in particular where the integrity of a pressure barrier is of importance, for example for protecting electric and electronic components. Such applications may include the application in a subsea control unit where the integrity of a one atmospheric chamber needs to be ensured. Other applications are equally conceivable.

    [0045] While specific embodiments are disclosed herein, various changes and modifications can be made without departing from the scope of the invention. The present embodiments are to be considered in all respects as illustrative and non restrictive, and all changes coming within the meaning and equivalency range of the appended claims are intended to be embraced therein.


    Claims

    1. A subsea housing assembly, comprising:

    - a subsea housing;

    - a first housing portion (10) of the subsea housing, wherein the first housing portion (10) comprises a first electrical connection (15) for data communication;

    - a second housing portion (20) of the subsea housing, wherein the second housing portion (20) comprises a second electrical connection (25) for data communication;

    - a wall (30) providing separation between the first housing portion (10) and the second housing portion (20) of the subsea housing; and

    - an inductive coupler (50) comprising a first coupling section (51) disposed in the first housing portion (10) and a second coupling section (52) disposed in the second housing portion (20), wherein the inductive coupler (50) is configured to provide inductive coupling across the wall (30) for providing at least a data communication between the first electrical connection (15) in the first housing portion (10) and the second electrical connection (25) in the second housing portion (20);

    wherein the inductive coupler (50) further comprises a magnetic coupling element (53) which traverses the wall (30) and extends into the first housing portion (10) and into the second housing portion (20), wherein the magnetic coupling element (53) is made from a different material than the wall (30) .
     
    2. The subsea housing assembly according to claim 1, wherein the wall (30) is a pressure barrier configured to resist a predetermined minimum pressure difference across the wall (30) .
     
    3. The subsea housing assembly according to claim 1 or 2, wherein the inductive coupler (50) is further configured to inductively supply electrical power from the electrical connection (25) in the second housing portion (20) to the electrical connection (15) in the first housing portion (10).
     
    4. The subsea housing assembly according to any of the preceding claims, wherein the first housing portion (10) comprises at least a first chamber (11), wherein the first chamber (11) is a pressure resistant chamber in which a predetermined pressure, in particular a pressure of less than 10 bar, is maintained when the subsea housing assembly (100) is installed subsea.
     
    5. The subsea housing assembly according to any of the preceding claims, wherein the subsea housing is a subsea housing of a subsea electrical device (200), wherein the first housing portion (10) comprises at least a first chamber (11), and wherein electric and/or electronic components of the subsea electrical device (200) are disposed in the first chamber (11) .
     
    6. The subsea housing assembly according to any of the preceding claims, wherein the second housing portion (20) comprises at least a second chamber (21), wherein the second chamber (21) is a pressure compensated chamber that is pressure balanced against an ambient pressure, in particular against the seawater pressure when installed subsea.
     
    7. The subsea housing assembly according to claim 6, wherein the second housing portion (20) comprises a pressure compensator providing said pressure compensation, and/or wherein the second housing portion (20) is connected to a subsea cable (40) in form of an medium filled hose, wherein the second chamber (21) is pressure compensated via the medium filled hose (40).
     
    8. The subsea housing assembly according to any of the preceding claims, wherein the wall (30) is a pressure barrier providing separation between a first chamber (11) in the first housing portion (10) and a second chamber (21) in the second housing portion (20), wherein the first chamber (11) is a pressure resistant chamber or a pressure compensated chamber, and wherein the second chamber (21) is a pressure resistant chamber or a pressure compensated chamber.
     
    9. The subsea housing assembly according to any of the preceding claims, wherein the magnetic coupling element (53) is mounted in the wall (30) by way of an interference fit.
     
    10. The subsea housing assembly according to any of the preceding claims, wherein the magnetic coupling element (53) is welded to the wall (30).
     
    11. The subsea housing assembly according to any of the preceding claims, wherein the thickness of the wall (30) increases near the magnetic coupling element (30) so as to increase the area of contact between the wall and the magnetic coupling element.
     
    12. The subsea housing assembly according to any of the preceding claims, wherein the magnetic coupling element is made of a soft magnetic material, preferably soft iron.
     
    13. The subsea housing assembly according to any of the preceding claims, wherein the wall is made of a non-magnetic material, preferably a non-magnetic metal, preferably Iconel 625.
     
    14. The subsea housing assembly according to any of the preceding claims, wherein the first coupling section (51) and/or the second coupling section (52) of the inductive coupler (50) comprise(s) at least one respective coil arranged on a respective section of the magnetic coupling element (53).
     
    15. A subsea sensor comprising a subsea housing assembly (100) according to any of the preceding claims, wherein the subsea sensor (200) comprises a sensor element (61) disposed in the first housing portion (10), wherein the first electrical connection (15) is configured for providing communication with the sensor element (61), and wherein the second electrical connection (25) is configured to provide at least a sensor output of the subsea sensor (200).
     


    Ansprüche

    1. Untersee-Gehäusebaugruppe, die Folgendes umfasst:

    - ein Untersee-Gehäuse,

    - einen ersten Gehäuseabschnitt (10) des Untersee-Gehäuses, wobei der erste Gehäuseabschnitt (10) eine erste elektrische Verbindung (15) für den Datenaustausch umfasst,

    - einen zweiten Gehäuseabschnitt (20) des Untersee-Gehäuses, wobei der zweite Gehäuseabschnitt (20) eine zweite elektrische Verbindung (25) für den Datenaustausch umfasst,

    - eine Wand (30), die für eine Trennung zwischen dem ersten Gehäuseabschnitt (10) und dem zweiten Gehäuseabschnitt (20) des Untersee-Gehäuses sorgt, und

    - einen induktiven Koppler (50), der ein in dem ersten Gehäuseabschnitt (10) angeordnetes erstes Kopplungssegment (51) und ein in dem zweiten Gehäuseabschnitt (20) angeordnetes zweites Kopplungssegment (52) umfasst, wobei der induktive Koppler (50) so konfiguriert ist, dass er zum Ermöglichen eines Datenaustauschs zumindest zwischen der ersten elektrischen Verbindung (15) in dem ersten Gehäuseabschnitt (10) und der zweiten elektrischen Verbindung (25) in dem zweiten Gehäuseabschnitt (20) für eine induktive Kopplung durch die Wand (30) hindurch sorgt,

    wobei der induktive Koppler (50) ferner ein magnetisches Kopplungselement (53) umfasst, das durch die Wand (30) hindurch in den ersten Gehäuseabschnitt (10) und den zweiten Gehäuseabschnitt (20) hinein verläuft, wobei das magnetische Kopplungselement (53) aus einem anderen Material hergestellt ist als die Wand (30).
     
    2. Untersee-Gehäusebaugruppe nach Anspruch 1, wobei es sich bei der Wand (30) um eine Druckbarriere handelt, die so konfiguriert ist, dass sie einer vorgegebenen Mindestdruckdifferenz an der Wand (30) standhält.
     
    3. Untersee-Gehäusebaugruppe nach Anspruch 1 oder 2, wobei der induktive Koppler (50) ferner so konfiguriert ist, dass er induktiv Strom aus der elektrischen Verbindung (25) in dem zweiten Gehäuseabschnitt (20) zur elektrischen Verbindung (15) in dem ersten Gehäuseabschnitt (10) leitet.
     
    4. Untersee-Gehäusebaugruppe nach einem der vorhergehenden Ansprüche, wobei der erste Gehäuseabschnitt (10) zumindest eine erste Kammer (11) umfasst, wobei es sich bei der ersten Kammer (11) um eine druckfeste Kammer handelt, in der ein vorgegebener Druck, insbesondere ein Druck von unter 10 bar, aufrechterhalten wird, wenn die Untersee-Gehäusebaugruppe (100) unterseeisch installiert ist.
     
    5. Untersee-Gehäusebaugruppe nach einem der vorhergehenden Ansprüche, wobei es sich bei dem Untersee-Gehäuse um ein Untersee-Gehäuse einer elektrischen Untersee-Vorrichtung (200) handelt, wobei der erste Gehäuseabschnitt (10) zumindest eine erste Kammer (11) umfasst und elektrische und/oder elektronische Komponenten der elektrischen Untersee-Vorrichtung (200) in der ersten Kammer (11) angeordnet sind.
     
    6. Untersee-Gehäusebaugruppe nach einem der vorhergehenden Ansprüche, wobei der zweite Gehäuseabschnitt (20) zumindest eine zweite Kammer (21) umfasst, wobei es sich bei der zweiten Kammer (21) um eine druckentlastete Kammer handelt, die gegenüber einem Umgebungsdruck, insbesondere einem Meereswasserdruck, druckausgeglichen ist, wenn sie unterseeisch installiert ist.
     
    7. Untersee-Gehäusebaugruppe nach Anspruch 6, wobei der zweite Gehäuseabschnitt (20) einen Druckausgleicher umfasst, der für den Druckausgleich sorgt, und/oder mit einem Unterseekabel (40) in Form eines mit einem Mittel gefüllten Schlauchs verbunden ist, wobei die zweite Kammer (21) über den mit einem Mittel gefüllten Schlauch (40) druckentlastet ist.
     
    8. Untersee-Gehäusebaugruppe nach einem der vorhergehenden Ansprüche, wobei es sich bei der Wand (30) um eine Druckbarriere handelt, die für eine Trennung zwischen einer ersten Kammer (11) in dem ersten Gehäuseabschnitt (10) und einer zweiten Kammer (21) in dem zweiten Gehäuseabschnitt (20) sorgt, wobei es sich bei der ersten Kammer (11) und bei der zweiten Kammer (21) um eine druckfeste oder eine druckentlastete Kammer handelt.
     
    9. Untersee-Gehäusebaugruppe nach einem der vorhergehenden Ansprüche, wobei das magnetische Kopplungselement (53) per Presspassung in die Wand (30) eingebaut ist.
     
    10. Untersee-Gehäusebaugruppe nach einem der vorhergehenden Ansprüche, wobei das magnetische Kopplungselement (53) an die Wand (30) angeschweißt ist.
     
    11. Untersee-Gehäusebaugruppe nach einem der vorhergehenden Ansprüche, wobei sich die Dicke der Wand (30) in der Nähe des magnetischen Kopplungselements (30) erhöht, so dass sich die Kontaktfläche zwischen der Wand und dem magnetischen Kopplungselement vergrößert.
     
    12. Untersee-Gehäusebaugruppe nach einem der vorhergehenden Ansprüche, wobei das magnetische Kopplungselement aus einem weichmagnetischen Material, vorzugsweise Weicheisen, hergestellt ist.
     
    13. Untersee-Gehäusebaugruppe nach einem der vorhergehenden Ansprüche, wobei die Wand aus einem nichtmagnetischen Material, vorzugsweise einem nichtmagnetischen Metall, vorzugsweise Inconel 625, hergestellt ist.
     
    14. Untersee-Gehäusebaugruppe nach einem der vorhergehenden Ansprüche, wobei das erste Kopplungssegment (51) und/oder das zweite Kopplungssegment (52) des induktiven Kopplers (50) mindestens eine jeweilige Spule umfasst, die an einem jeweiligen Teil des magnetischen Kopplungselements (53) angeordnet ist.
     
    15. Untersee-Sensor mit einer Untersee-Gehäusebaugruppe (100) nach einem der vorhergehenden Ansprüche, wobei der Untersee-Sensor (200) ein Sensorelement (61) umfasst, das in dem ersten Gehäuseabschnitt (10) angeordnet ist, wobei die erste elektrische Verbindung (15) für das Ermöglichen einer Kommunikation mit dem Sensorelement (61) und die zweite elektrische Verbindung (25) zum Bereitstellen zumindest einer Sensorausgabe des Untersee-Sensors (200) konfiguriert ist.
     


    Revendications

    1. Ensemble à boîtier sous-marin, comprenant :

    - un boîtier sous-marin ;

    - une première partie (10) de boîtier du boîtier sous-marin, étant entendu que la première partie (10) de boîtier comprend une première connexion électrique (15) pour la communication de données ;

    - une deuxième partie (20) de boîtier du boîtier sous-marin, étant entendu que la deuxième partie (20) de boîtier comprend une deuxième connexion électrique (25) pour la communication de données ;

    - une paroi (30) assurant une séparation entre la première partie (10) de boîtier et la deuxième partie (20) de boîtier du boîtier sous-marin, et

    - un coupleur inductif (50) comprenant une première section de couplage (51) disposée dans la première partie (10) de boîtier et une deuxième section de couplage (52) disposée dans la deuxième partie (20) de boîtier, étant entendu que le coupleur inductif (50) est configuré en vue d'assurer un couplage inductif à travers la paroi (30) afin d'assurer au moins une communication de données entre la première connexion électrique (15), dans la première partie (10) de boîtier, et la deuxième connexion électrique (25), dans la deuxième partie (20) de boîtier,

    étant entendu que le coupleur inductif (50) comprend par ailleurs un élément de couplage magnétique (53) qui traverse la paroi (30) et s'étend jusque dans la première partie (10) de boîtier et jusque dans la deuxième partie (20) de boîtier, étant entendu que l'élément de couplage magnétique (53) est fait en un matériau différent de celui de la paroi (30).
     
    2. Ensemble à boîtier sous-marin selon la revendication 1, étant entendu que la paroi (30) est une barrière à la pression configurée en vue de résister à une différence de pression minimale prédéterminée de part et d'autre de la paroi (30).
     
    3. Ensemble à boîtier sous-marin selon la revendication 1 ou 2, étant entendu que le coupleur inductif (50) est par ailleurs configuré en vue de fournir par induction de l'énergie électrique provenant de la connexion électrique (25) de la deuxième partie (20) de boîtier à la connexion électrique (15) de la première partie (10) de boîtier.
     
    4. Ensemble à boîtier sous-marin selon l'une quelconque des revendications précédentes, étant entendu que la première partie (10) de boîtier comprend au moins une première chambre (11), étant entendu que la première chambre (11) est une chambre résistant à la pression dans laquelle une pression prédéterminée, en particulier une pression de moins de 10 bars, est maintenue lorsque l'ensemble (100) à boîtier sous-marin est installé sous mer.
     
    5. Ensemble à boîtier sous-marin selon l'une quelconque des revendications précédentes, étant entendu que le boîtier sous-marin est un boîtier sous-marin d'un dispositif électrique sous-marin (200), étant entendu que la première partie (10) de boîtier comprend au moins une première chambre (11) et étant entendu que les composants électriques et/ou électroniques du dispositif électrique sous-marin (200) sont disposés dans la première chambre (11).
     
    6. Ensemble à boîtier sous-marin selon l'une quelconque des revendications précédentes, étant entendu que la deuxième partie (20) de boîtier comprend au moins une deuxième chambre (21), la deuxième chambre (21) étant une chambre compensée en pression qui est équilibrée en pression par rapport à une pression ambiante, en particulier par rapport à la pression de l'eau de mer lors d'une installation sous mer.
     
    7. Ensemble à boîtier sous-marin selon la revendication 6, étant entendu que la deuxième partie (20) de boîtier comprend un dispositif compensateur de pression assurant ladite compensation de pression et/ou étant entendu que la deuxième partie (20) de boîtier est reliée à un câble sous-marin (40) sous la forme d'un tuyau flexible rempli d'un milieu, étant entendu que la deuxième chambre (21) est compensée en pression au moyen du tuyau flexible (40) rempli d'un milieu.
     
    8. Ensemble à boîtier sous-marin selon l'une quelconque des revendications précédentes, étant entendu que la paroi (30) est une barrière à la pression assurant une séparation entre une première chambre (11), dans la première partie (10) de boîtier, et une deuxième chambre (21), dans la deuxième partie (20) de boîtier, étant entendu que la première chambre (11) est une chambre résistant à la pression ou une chambre compensée en pression, et étant entendu que la deuxième chambre (21) est une chambre résistant à la pression ou une chambre compensée en pression.
     
    9. Ensemble à boîtier sous-marin selon l'une quelconque des revendications précédentes, étant entendu que l'élément de couplage magnétique (53) est monté dans la paroi (30) par le biais d'un ajustement serré.
     
    10. Ensemble à boîtier sous-marin selon l'une quelconque des revendications précédentes, étant entendu que l'élément de couplage magnétique (53) est soudé à la paroi (30).
     
    11. Ensemble à boîtier sous-marin selon l'une quelconque des revendications précédentes, étant entendu que l'épaisseur de la paroi (30) augmente près de l'élément de couplage magnétique (30) de sorte à augmenter l'aire de contact entre la paroi et l'élément de couplage magnétique.
     
    12. Ensemble à boîtier sous-marin selon l'une quelconque des revendications précédentes, étant entendu que l'élément de couplage magnétique est fait en un matériau magnétique doux, de préférence du fer doux.
     
    13. Ensemble à boîtier sous-marin selon l'une quelconque des revendications précédentes, étant entendu que la paroi est faite en un matériau non magnétique, de préférence un métal non magnétique, de préférence de l'Inconel 625.
     
    14. Ensemble à boîtier sous-marin selon l'une quelconque des revendications précédentes, étant entendu que la première partie de couplage (51) et/ou la deuxième partie de couplage (52) du coupleur inductif (50) comprend/comprennent au moins une bobine respective agencée sur une section respective de l'élément de couplage magnétique (53).
     
    15. Détecteur sous-marin comprenant un ensemble (100) à boîtier sous-marin selon l'une quelconque des revendications précédentes, étant entendu que le détecteur sous-marin (200) comprend un élément détecteur (61) disposé dans la première partie (10) de boîtier, étant entendu que la première connexion électrique (15) est configurée en vue d'assurer la communication avec l'élément détecteur (61) et étant entendu que la deuxième connexion électrique (25) est configurée pour fournir au moins une sortie de détecteur du détecteur sous-marin (200).
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description