(19)
(11) EP 2 929 294 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
24.06.2020 Bulletin 2020/26

(21) Application number: 13796213.0

(22) Date of filing: 15.11.2013
(51) International Patent Classification (IPC): 
G01S 5/00(2006.01)
G01C 21/28(2006.01)
G01S 19/49(2010.01)
G01C 21/16(2006.01)
G01C 25/00(2006.01)
(86) International application number:
PCT/US2013/070296
(87) International publication number:
WO 2014/088783 (12.06.2014 Gazette 2014/24)

(54)

DETERMINATION OF POSITION, VELOCITY AND/OR HEADING BY SIMULTANEOUS USE OF ON-DEVICE AND ON-VEHICLE INFORMATION

BESTIMMUNG EINER POSITION, GESCHWINDIGKEIT UND/ODER FAHRTRICHTUNG UNTER GLEICHZEITIGER VERWENDUNG VON INFORMATIONEN AUF EINER VORRICHTUNG UND AN BORD EINES FAHRZEUGES

DÉTERMINATION DE LA POSITION, DE LA VITESSE ET/OU DE L'AVANCEMENT PAR UTILISATION SIMULTANÉE D'INFORMATIONS DE DISPOSITIF ET DE VÉHICULE


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 06.12.2012 US 201261734326 P
15.03.2013 US 201361799560 P
14.11.2013 US 201314080514

(43) Date of publication of application:
14.10.2015 Bulletin 2015/42

(73) Proprietor: Qualcomm Incorporated
San Diego, CA 92121-1714 (US)

(72) Inventor:
  • RILEY, Wyatt Thomas
    San Diego, California 92121-1714 (US)

(74) Representative: Klang, Alexander H. 
Wagner & Geyer Partnerschaft mbB Patent- und Rechtsanwälte Gewürzmühlstrasse 5
80538 München
80538 München (DE)


(56) References cited: : 
EP-A1- 2 351 989
US-A1- 2008 147 321
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    CROSS-REFERENCE TO RELATED APPLICATIONS


    BACKGROUND


    I. Field of the Invention



    [0001] This disclosure relates generally to systems, apparatus and methods for in-vehicle navigation, and more particularly to integrating a navigation system of a mobile device with sensors of a navigation system of a vehicle.

    II. Background



    [0002] Mobile users often want to use navigation to find various places while on-board a vehicle. When navigating in area challenged to receive global position satellite (GPS) signals or other global navigation satellite system (GNSS) signals, such as in urban areas, both assistance data and on-device inertial sensors are used to supplement or in place of GNSS signals alone. Often a mobile device computes one navigation solution with its sensors and a vehicle will compute a separate solution with its sensors, which may include on-vehicle inertial and/or odometer sensors. What is needed is a way to unify and coordinate sensors of both the mobile device and the vehicle to provide a single navigation solution with information from the combined mobile device and vehicle sensors.

    [0003] Attention is drawn to document EP 2351 989 A1 which relates to a mobile transceiver device which includes a GPS receiver module to receive GPS signals and calculate current positions. The current positions are used in a navigation module. The mobile transceiver device includes one or more local interface technologies, such as Bluetooth and USB. These local interface technologies can be used to communicate with an automobile data system. In situations where there is sporadic GPS coverage, the mobile transceiver device receives inputs from the automobile data system, such as speed or velocity information, and heading information, such as output from a compass, as available. These inputs are used in the navigation module of the mobile transceiver device to navigate by dead reckoning until an updated position fix based on received GPS signals can be calculated.

    [0004] Further attention is drawn to document US 2008/147321 A1 which relates to vehicle data generated by circuitry of a vehicle which is received and functions of a personal navigation device, which are otherwise used to process device navigational data that are generated by navigational circuitry in the personal navigation device, are used to process the vehicle data to produce output navigational information. User interface commands and navigational data are communicated between a personal navigation device and a media head unit of a vehicle, the user interface commands and navigational data being associated with a device user interface of the device, and a vehicle navigation user interface at the media head unit displays navigational information and receives user input for control the display of the navigational information on the media head unit, the vehicle navigation user interface being coordinated with the user interface commands and navigational data associated with the device user interface.

    BRIEF SUMMARY



    [0005] In accordance with the present invention, a method as set forth in claim 1, and a system as set forth in claim 9, is provided. Further embodiments are claimed in the dependent claims.

    BRIEF DESCRIPTION OF THE DRAWING



    [0006] Embodiments of the invention will be described, by way of example only, with reference to the drawings.

    FIG. 1 illustrates a divide between navigation systems of a mobile device and a vehicle.

    FIGS. 2 and 3 illustrate communicatively coupling a navigation system of a mobile device and a navigation system of a vehicle, in accordance with some embodiments of the present invention.

    FIG. 4 shows a vehicle navigation system, in accordance with some embodiments of the present invention.

    FIG. 5 shows a mobile device with a navigation system, in accordance with some embodiments of the present invention.

    FIGS. 6 and 7 show a method 300 and system to combine in-vehicle and in-device sensors to compute an improved navigation solution.


    DETAILED DESCRIPTION



    [0007] The detailed description set forth below in connection with the appended drawings is intended as a description of various aspects of the present disclosure and is not intended to represent the only aspects in which the present disclosure may be practiced. Each aspect described in this disclosure is provided merely as an example or illustration of the present disclosure, and should not necessarily be construed as preferred or advantageous over other aspects. The detailed description includes specific details for the purpose of providing a thorough understanding of the present disclosure. However, it will be apparent to those skilled in the art that the present disclosure may be practiced without these specific details. In some instances, well-known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the present disclosure. Acronyms and other descriptive terminology may be used merely for convenience and clarity and are not intended to limit the scope of the disclosure.

    [0008] Position determination techniques described herein may be implemented in conjunction with various wireless communication networks such as a wireless wide area network (WWAN), a wireless local area network (WLAN), a wireless personal area network (WPAN), and so on. The term "network" and "system" are often used interchangeably. A WWAN may be a Code Division Multiple Access (CDMA) network, a Time Division Multiple Access (TDMA) network, a Frequency Division Multiple Access (FDMA) network, an Orthogonal Frequency Division Multiple Access (OFDMA) network, a Single-Carrier Frequency Division Multiple Access (SC-FDMA) network, Long Term Evolution (LTE), and so on. A CDMA network may implement one or more radio access technologies (RATs) such as cdma2000, Wideband-CDMA (W-CDMA), and so on. Cdma2000 includes IS-95, IS-2000, and IS-856 standards. A TDMA network may implement Global System for Mobile Communications (GSM), Digital Advanced Mobile Phone System (D-AMPS), or some other RAT. GSM and W-CDMA are described in documents from a consortium named "3rd Generation Partnership Project" (3GPP). Cdma2000 is described in documents from a consortium named "3rd Generation Partnership Project 2" (3GPP2). 3GPP and 3GPP2 documents are publicly available. A WLAN may be an IEEE 802.11x network, and a WPAN may be a Bluetooth network, an IEEE 802.15x, or some other type of network. The techniques may also be implemented in conjunction with any combination of WWAN, WLAN and/or WPAN.

    [0009] A satellite positioning system (SPS) typically includes a system of transmitters positioned to enable entities to determine their location on or above the Earth based, at least in part, on signals received from the transmitters. Such a transmitter typically transmits a signal marked with a repeating pseudo-random noise (PN) code of a set number of chips and may be located on ground based control stations, user equipment and/or space vehicles. In a particular example, such transmitters may be located on Earth orbiting satellite vehicles (SVs). For example, a SV in a constellation of Global Navigation Satellite System (GNSS) such as Global Positioning System (GPS), Galileo, GLONASS or Compass may transmit a signal marked with a PN code that is distinguishable from PN codes transmitted by other SVs in the constellation (e.g., using different PN codes for each satellite as in GPS or using the same code on different frequencies as in GLONASS). In accordance with certain aspects, the techniques presented herein are not restricted to global systems (e.g., GNSS) for SPS. For example, the techniques provided herein may be applied to or otherwise enabled for use in various regional systems, such as, e.g., Quasi-Zenith Satellite System (QZSS) over Japan, Indian Regional Navigational Satellite System (IRNSS) over India, Beidou over China, etc., and/or various augmentation systems (e.g., an Satellite Based Augmentation System (SBAS)) that may be associated with or otherwise enabled for use with one or more global and/or regional navigation satellite systems. By way of example but not limitation, an SBAS may include an augmentation system(s) that provides integrity information, differential corrections, etc., such as, e.g., Wide Area Augmentation System (WAAS), European Geostationary Navigation Overlay Service (EGNOS), Multi-functional Satellite Augmentation System (MSAS), GPS Aided Geo Augmented Navigation or GPS and Geo Augmented Navigation system (GAGAN), and/or the like. Thus, as used herein an SPS may include any combination of one or more global and/or regional navigation satellite systems and/or augmentation systems, and SPS signals may include SPS, SPS-like, and/or other signals associated with such one or more SPS.

    [0010] As used herein, a mobile device, sometimes referred to as a mobile station (MS) or user equipment (UE), such as a cellular phone, mobile phone or other wireless communication device, personal communication system (PCS) device, personal navigation device (PND), Personal Information Manager (PIM), Personal Digital Assistant (PDA), laptop or other suitable mobile device which is capable of receiving wireless communication and/or navigation signals. The term "mobile device" is also intended to include devices which communicate with a personal navigation device (PND), such as by short-range wireless, infrared, wireline connection, or other connection - regardless of whether satellite signal reception, assistance data reception, and/or position-related processing occurs at the device or at the PND. Also, "mobile device" is intended to include all devices, including wireless communication devices, computers, laptops, etc. which are capable of communication with a server, such as via the Internet, WiFi, or other network, and regardless of whether satellite signal reception, assistance data reception, and/or position-related processing occurs at the device, at a server, or at another device associated with the network. Any operable combination of the above are also considered a "mobile device."

    [0011] FIG. 1 illustrates a divide between navigation systems of a mobile device 100 and a vehicle navigation system 200. The navigation systems of the mobile device 100 and the vehicle navigation system 200 are naturally separate systems. Existing navigation solutions use GNSS and sensor information from within the navigation system.

    [0012] The mobile device 100 has a navigation system that has several components duplicated by the vehicle navigation system 200. The mobile device 100 includes one or more sensors 110, such as a 3-dimensional (3-D) accelerometer and/or a 3-D gyroscope (also referred to as a 3-D gyrometer). The sensors 110 may also include a compass providing a direction to magnetic north, a pressure sensor used to determine altitude, and the like. The mobile device 100 also includes a GNSS unit 120 and a processor 130. The vehicle navigation system 200 also includes one or more sensors 210, a GNSS unit 220 and a processor 230. The sensors 210 in the vehicle may include a 3-D accelerometer providing an accelerometer value, a 3-D gyroscope providing a gyroscope value, a turn-rate sensor providing a turn-rate value, an odometer providing an odometer value, a speedometer providing a speed value, and the like.

    [0013] Each navigation system computes a separate navigation solution without the benefit of the duplicate and/or additional sensors of the corresponding system. That is, the mobile device 100 does not use sensors 210 or GNSS unit 220 of the vehicle navigation system 200. Similarly, the vehicle navigation system 200 does not use sensors 110 or GNSS unit 220 of the mobile device 100.

    [0014] FIGS. 2 and 3 illustrate communicatively coupling a navigation system of a mobile device 100 and a vehicle navigation system 200, in accordance with some embodiments of the present invention. The mobile device 100 may receive vehicle information from the sensors 210 and GNSS unit 220 of the vehicle navigation system 200. Similarly, the vehicle navigation system 200 may receive mobile device information from the sensors 110 and GNSS unit 120 of the mobile device 100.

    [0015] A navigation system using a Kalman filter may now have additional inputs from the sensor signals of the other navigation system, thereby resulting in an improved navigation solution. For example, a mobile device 100 may have a Kalman filter with inputs based on signals from each of its own sensors. Now, the Kalman filter may have additional inputs for signals base on sensors of the vehicle navigation system 200.

    [0016] A navigation system of one device may be used to replace, combine, supplement, verify and/or calibrate sensor measurements and/or GNSS from a second navigation system.

    [0017] A navigation system may have a lower quality or lower resolution sensor but can replace sensor with a higher quality or higher resolution sensor from the other navigation system. For example, a mobile device 100 may have a GNSS receiver of its own but the GNSS receiver of the vehicle receives a signal of higher quality (e.g., by an outdoor antenna mounted on the vehicle). Similarly, a mobile device 100 may have an inexpensive accelerometer offering a low resolution signal but the vehicle navigation system 200 may have a more expensive higher resolution signal. A heading detector on the vehicle navigation system 200 may be provided to the mobile device 100. A vehicle navigation system 200 may only have a 2-D gyroscope so uses signals from a 3-D gyroscope 112 on the mobile device 100.

    [0018] A navigation system may be combined the same type of sensors and/or GNSS signals from two different navigation systems. For example, vehicle navigation system 200 may be receiving signals from a first satellite and a mobile device 100 may be receiving signals from a second satellite. Either navigation system may be insufficient alone to compute an adequate navigation solution. Therefore, one system may provide GNSS signals to the other system.

    [0019] A navigation system may be missing a particular type of sensor may supplement its sensors with sensors from another navigation system. For example, signals from a barometer (used to determine altitude and change in altitude) in a mobile device 100 may be provided to a vehicle navigation system 200. Signals from a turn-rate detector or a speedometer in a vehicle navigation system 200 may be provided to a mobile device 100 not having direct access to such information. A vehicle navigation system 200 may not have a gyroscope but uses signals from a gyroscope 112 on the mobile device 100.

    [0020] Sensor signals of one navigation system may be used to verify or calibrate sensor signals of another navigation system. For example, a mobile device 100 may verify that a sensor 110 providing measurements is within a tolerance threshold away from a sensor 210 on the vehicle navigation system 200. A speedometer in a vehicle navigation system 200 may be provided to a mobile device 100 to calibrate an accelerometer of the mobile device 100.

    [0021] In FIG. 2, the mobile device 100 and the vehicle navigation system 200 are communicatively coupled to exchange vehicle information and/or mobile device information. The mobile device 100 and the vehicle navigation system 200 may be wirelessly coupled, for example, via a Bluetooth interface, or connected by wire, for example, via a mount. The mobile device 100 may detect when the devices are no longer communicatively coupled and then fall back to determining a navigation solution without sensors 210 and the GNSS unit 220 of the vehicle navigation system 200. The vehicle information is sent from the vehicle navigation system 200 to the mobile device 100 and may include vehicle sensor information from the vehicle sensors 210 and/or GNSS information from the GNSS unit 220. The mobile device information similarly may include mobile device sensor information from sensors 110 and/or mobile device GNSS information from the GNSS unit 120, and is sent from the mobile device 100 to the vehicle navigation system 200. Methods described below may use sensor signals from either or both the mobile device 100 and the vehicle navigation system 200. The method may be performed in the mobile device 100 or in the vehicle navigation system 200.

    [0022] In FIG. 3, an embodiment is shown where the mobile device 100 by passes processor 230 of the vehicle navigation system 200. In effect, the processor 130 now has additional sensors 210 and additional GNSS unit 220 to replace, combine, supplement and/or verify sensors 110 and the GNSS unit 120. The processor 130 of the mobile device 100 directly communicates with the sensors 210 and the GNSS unit 220 of the vehicle navigation system 200 to acquire vehicle GNSS information and vehicle sensor information, respectfully. In this embodiment, the mobile device 100 acts as the master and the vehicle navigation system 200 acts as the slave. Often, the GNSS signals from GNSS unit 120 are inadequate and ignored. During the interim when GNSS signals are inadequate, navigation is provided by a dead-reckoning algorithm with the sensor signals.

    [0023] In an alternative embodiment, the vehicle navigation system 200 acts as the master and the mobile device 100 acts as the slave. The processor 230 of the vehicle navigation system 200 receives mobile device sensor information from the sensors 110 and mobile device GNSS information from the GNSS unit 120 both in the mobile device.

    [0024] FIG. 4 shows a vehicle navigation system, in accordance with some embodiments of the present invention. The vehicle navigation system 200 includes sensors 210, a GNSS unit 220, a processor 230 and an interface 240 to the mobile device 100. The sensors 210 include one or more of an accelerometer 211, a gyroscope 212, a turn-rate sensor 213, an odometer 214, a speedometer 215, a compass, and the like. The accelerometer 211 measures acceleration in one, two or three perpendicular dimensions. The gyroscope 212 measures angular acceleration in one, two or three perpendicular dimensions. The turn-rate sensor 213 measures the turning rate of the steering wheel and/or the turning rate of the vehicle. The odometer 214 measures the travel distance of the vehicle. The speedometer 215 measures a current speed of the vehicle. The sensors 210 may also include a compass or magnetometer, which measures an angle to magnetic north. Other sensors useful for the navigation process may also be included in the vehicle navigation system 200.

    [0025] The GNSS unit 220 includes a GNSS receiver, such as a GPS receiver, and a GNSS antenna. The processor 230 executes software modules necessary to compute a navigation solution. The interface 240 to the mobile device 100 couples the processor 230 to the sensors 110 and/or the GNSS unit 120 of the mobile device 100. Alternatively, or in addition to, the interface 240 couples the processor 230 of the vehicle navigation system 200 to the processor 130 of the mobile device 100.

    [0026] FIG. 5 shows a mobile device with a navigation system, in accordance with some embodiments of the present invention. The mobile device 100 includes sensors 110, a GNSS unit 120, a processor 130 and an interface 140 to vehicle navigation system 200. The sensors 110 include one or more of an accelerometer 111 and a gyroscope 112, described above with reference to the vehicle navigation system 200. Other sensors useful for the navigation process may also be included in the mobile device 100. The GNSS unit 120 includes a GNSS receiver, such as a GPS receiver, and a GNSS antenna.

    [0027] Often the GNSS antenna of the vehicle navigation system 200 is positioned in a more advantageous location than the GNSS antenna of the mobile device 100. The processor 130 executes software modules 150 necessary to compute a navigation solution. The modules 150 may include a dead-reckoning module 151 executing a dead-reckoning algorithm, a mount-state detection module 152, a sensor comparison module 153, a sensor integration module 154, and the like. The dead-reckoning module 151 computes the position, velocity and/or heading from the sensor information from sensors 110 and sensors 210. The mount-state detection module 152 determines whether or not the mobile device 100 is in a mounted state in the vehicle.

    [0028] The sensor comparison module 153 receives sensor signal from sensors 110 in the mobile device 100 and sensor signals from sensors 210 in the vehicle navigation system 200 and determines which is currently better. That is, a processor 130 determines a better sensor signal and a worse sensor signal from between the sensor signal from the sensors 110 in the mobile device 100 and the sensor signal from the sensors 210 in the vehicle navigation system 200. The processor 130 may use the better sensor signal and discards the worse sensor signal in determining the navigation information. Alternatively, the processor 130 may integrate the sensor signals from both sensors 110 and sensors 210 with sensor integration module 154, and then compute the navigation information. The sensor integration module 154 integrates the sensor signals from sensors 110 in the mobile device 100 and sensor signals from the vehicle navigation system 200 into a continuous stream of sensor signals for the dead-reckoning module 151.

    [0029] The interface 140 to the vehicle navigation system 200 couples the processor 130 to the sensors 210 and/or the GNSS unit 220 of the vehicle navigation system 200. Alternatively, or in addition to, the interface 140 couples the processor 130 of the mobile device 100 to the processor 230 of the vehicle navigation system 200. The processor 130 is also coupled to a display 160, for example, to display the computed navigation information, including the computed position, velocity and heading.

    [0030] The processor 230 may have modules similar to modules 150, thus allowing the vehicle navigation system 200 to use sensors 110 and GNSS unit 120 in the mobile device 100 to compute a navigation solution.

    [0031] The sensor signals from the sensors 210 of the vehicle navigation system 200 may be used to calibrate the sensors 110 in the mobile device. Similarly, the sensor signals from the sensors 110 in the mobile device may be used to calibrate the sensors 210 of the vehicle navigation system 200. For example, the vehicle sensor 210 may tell the sensors 110 in the mobile device when the vehicle is at rest, traveling at a constant speed (without linear or angular accelerations). The mobile device 100 may then calibrate its accelerometer 111 and gyroscope 112.

    [0032] FIGS. 6 and 7 show a method 300 and system to combine in-vehicle and in-device sensors to compute an improved navigation solution.

    [0033] In FIG. 6 at 310, a first navigation system 410 commutatively couples to a second navigation system 420. The first navigation system 410 may be a vehicle navigation system 200 and the second navigation system 420 may be a navigation system of a mobile device 100. Alternatively, the first navigation system 410 may be a navigation system of a mobile device 100 and the second navigation system 420 may be a vehicle navigation system 200.

    [0034] At 320, an interface 412 receives, at the first navigation system 410, a signal from the second navigation system 420. The signal may be a sensor signal from a sensor 424 in the second navigation system 420. The sensor signal may be a turn-rate value from a turn-rate sensor, a speedometer value from a speedometer, an accelerometer value from an accelerometer, a gyroscope value from a gyroscope, a pressure value from a barometric sensor, and/or the like.

    [0035] The signal from the second navigation system 420 comprises a GNSS signal (e.g., a GPS signal) from a GNSS receiver 426 in the second navigation system 420. A processor 418 in the first navigation system 410 determines that the GNSS signal from a GNSS receiver 416 in the first navigation system 410 is inadequate or insufficient because not enough satellites are received and/or the signal quality is not high enough to properly decode a satellite and/or any to an excessive amount of multipath exists.

    [0036] At 330, the processor 418 determines the navigation solution at the first navigation system 410 based on the signal from the second navigation system 420. The navigation solution may be a position, velocity, heading, and/or the like. The processor 418 may also receive a sensor signal from a sensor 414 in the first navigation system 410, select between the sensor signal from the first navigation system 410 and the signal from the second navigation system 420 based on a desired characteristic resulting in a signal with the desired characteristic, and determine the navigation solution at the first navigation system 410 based on the signal with the desired characteristic. The desired characteristic may be an SINR, an SNR, a number of satellite signals received, a single-path satellite signal, lower uncertainty and/or the like. The desired characteristic may be set or configured by a user. The processor 418 may select a better, stronger or larger signal from between sensor signal and/or the GNSS signal from the first navigation system 410 and the signal from the second navigation system 420. Instead of selecting between the signals from the two navigation systems (410, 420), the processor 418 may use both signals from both navigation systems (410, 420) to compute the navigation solution. For example, a gyroscope in a mobile device may be used with an accelerometer in a vehicle for applying a dead-reckoning algorithm.

    [0037] In some embodiments, a mount state detector determines a mobile device and a vehicle or communicatively couple, for example, via a wired connection and/or in a mounted state. Alternatively, a wireless detector may detect a wireless connection, for example, using Bluetooth, between a mobile device and a vehicle. The mount state detector or wireless detector may determine when the two devices are no longer communicatively coupled or in an un-mounted state.

    [0038] In some embodiments, signals from a first navigation system 410 are used to calibrate sensors 424 in the second navigation system 420. For example, a signal from a speedometer of a vehicle may be used to calibrate an accelerometer or a gyroscope of a mobile device. Similarly, a sensor in the first navigation system 410 may be calibrated with a signal from the second navigation system 420.

    [0039] In FIG. 7, a first navigation system 410 is communicatively coupled to a second navigation system 420. The systems may be communicatively coupled by a wired connection (e.g., via a mount) or wireless connection (e.g., via Bluetooth). The first navigation system 410 includes an interface 412 and a processor 418. The processor 418 acts as a means for performing the methods described herein. Optionally, the first navigation system 410 includes a sensor 414 and/or a GNSS receiver 416. The second navigation system 420 includes an interface 422 and at least one of a sensor 424 and a GNSS receiver 426. The second navigation system 420 optionally includes a processor 428.

    [0040] The methodologies described herein may be implemented by various means depending upon the application. For example, these methodologies may be implemented in hardware, firmware, software, or any combination thereof. For a hardware implementation, the processing units may be implemented within one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, controllers, micro-controllers, microprocessors, electronic devices, other electronic units designed to perform the functions described herein, or a combination thereof.

    [0041] For a firmware and/or software implementation, the methodologies may be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein. Any machine-readable medium tangibly embodying instructions may be used in implementing the methodologies described herein. For example, software codes may be stored in a memory and executed by a processor unit. Memory may be implemented within the processor unit or external to the processor unit. As used herein the term "memory" refers to any type of long term, short term, volatile, nonvolatile, or other memory and is not to be limited to any particular type of memory or number of memories, or type of media upon which memory is stored.

    [0042] If implemented in firmware and/or software, the functions may be stored as one or more instructions or code on a computer-readable medium. Examples include computer-readable media encoded with a data structure and computer-readable media encoded with a computer program. Computer-readable media includes physical computer storage media. A storage medium may be any available medium that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer; disk and disc, as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.

    [0043] In addition to storage on computer readable medium, instructions and/or data may be provided as signals on transmission media included in a communication apparatus. For example, a communication apparatus may include a transceiver having signals indicative of instructions and data. The instructions and data are configured to cause one or more processors to implement the functions outlined in the claims. That is, the communication apparatus includes transmission media with signals indicative of information to perform disclosed functions. At a first time, the transmission media included in the communication apparatus may include a first portion of the information to perform the disclosed functions, while at a second time the transmission media included in the communication apparatus may include a second portion of the information to perform the disclosed functions.

    [0044] The previous description of the disclosed aspects is provided to enable any person skilled in the art to make or use the present disclosure. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects without departing from the scope of the invention as defined by the appended claims.


    Claims

    1. A method (300) to provide a navigation solution, the method comprising:

    coupling communicatively (310) a first navigation system to a second navigation system;

    receiving (320), at the first navigation system, a signal from the second navigation system, wherein the signal comprises a global navigation satellite system, GNSS, signal; and

    determining (330) the navigation solution at the first navigation system using additional information from the signal from the second navigation system when the GNSS signal of the first navigation system is inadequate or insufficient because not enough satellites are received and/or the signal quality is not high enough to properly decode a satellite and/or any to an excessive amount of multipath exists.


     
    2. The method (300) of claim 1, wherein the first navigation system comprises a vehicle navigation system and the second navigation system comprises a navigation system of a mobile device.
     
    3. The method (300) of claim 1, wherein the first navigation system comprises a navigation system of a mobile device and the second navigation system comprises a vehicle navigation system.
     
    4. The method (300) of claim 1, wherein the signal from the second navigation system further comprises a sensor signal from a sensor of the second navigation system; and optionally wherein the sensor signal comprises one of a turn-rate value, a speedometer value, an accelerometer value and a gyroscope value.
     
    5. The method (300) of claim 1, wherein determining the navigation solution comprises:

    receiving a sensor signal from a sensor in the first navigation system;

    selecting between the sensor signal from the first navigation system and the signal from the second navigation system based on a characteristic of the signal; and

    determining the navigation solution at the first navigation system based on the signal with the desired characteristic;

    wherein the signal from the second navigation system further comprises a sensor signal from a sensor of the second navigation system; and

    wherein the characteristic comprises at least one of an SINR, an SNR, a number of satellite signals received, a single-path satellite signal, or lower uncertainty.


     
    6. The method (300) of claim 1, further comprising determining that one of the first navigation system and the second navigation system is in a mounted state.
     
    7. The method (300) of claim 1, further comprising calibrating a sensor of the first navigation system with the signal from the second navigation system.
     
    8. The method of claim 1, further comprising sending a sensor signal from the first navigation system to calibrate a sensor of the second navigation system.
     
    9. A system comprising a first navigation system (410) for providing a navigation solution and a second navigation system (420), the first navigation system (410) comprising:

    means (412) for coupling communicatively the first navigation system (410) to the second navigation system (420);

    means for receiving, at the first navigation system (410), a signal from the second navigation system (420), wherein the signal comprises a global navigation satellite system, GNSS, signal; and

    means (418) for determining the navigation solution at the first navigation system (410) using additional information from the signal from the second navigation system (420) when the GNSS signal of the first navigation system (410) is inadequate or insufficient because not enough satellites are received and/or the signal quality is not high enough to properly decode a satellite and/or any to an excessive amount of multipath exists.


     
    10. The system of claim 9, wherein the first navigation system (410) comprises a vehicle navigation system and the second navigation system (420) comprises a navigation system of a mobile device.
     
    11. The system of claim 9, wherein the first navigation system (410) comprises a navigation system of a mobile device and the second navigation system (420) comprises a vehicle navigation system.
     
    12. The system of claim 9, wherein the signal from the second navigation system (420) further comprises a sensor signal from the second navigation system (420).
     
    13. The system of claim 9, wherein the first navigation system (410) further comprises means for calibrating a sensor of the first navigation system with the signal from the second navigation system.
     
    14. The system of claim 9, wherein the first navigation system (410) further comprises means for sending a sensor signal from the first navigation system to calibrate a sensor of the second navigation system.
     
    15. A non-transitory computer-readable storage medium including program code stored thereon for a first navigation system (410) to provide a navigation solution, comprising program code to carry out the steps of any of claim 1 to 8.
     


    Ansprüche

    1. Ein Verfahren (300) zum Vorsehen einer Navigationslösung, wobei das Verfahren Folgendes aufweist:

    kommunikatives Koppeln (310) eines ersten Navigationssystems an ein zweites Navigationssystem;

    Empfangen (320), an dem ersten Navigationssystem, eines Signals von dem zweiten Navigationssystem, wobei das Signal ein Signal eines globalen Navigationssatellitensystems bzw. ein GNSS-Signal (GNSS = global navigation satellite system) aufweist; und

    Bestimmen (330) der Navigationslösung an dem ersten Navigationssystem unter Verwendung von zusätzlicher Information aus dem Signal von dem zweiten Navigationssystem, wenn das GNSS-Signal des ersten Navigationssystems nicht adäquat oder nicht ausreichend ist, da nicht genügend Satelliten empfangen werden, und/oder die Signalqualität nicht hoch genug ist, um einen Satelliten richtig zu decodieren und/oder irgendwelcher übermäßiger Multipath bzw. Mehrwege vorliegen.


     
    2. Verfahren (300) nach Anspruch 1, wobei das erste Navigationssystem ein Fahrzeugnavigationssystem aufweist und das zweite Navigationssystem ein Navigationssystem einer Mobileinrichtung aufweist.
     
    3. Verfahren (300) nach Anspruch 1, wobei das erste Navigationssystem ein Navigationssystem einer Mobileinrichtung aufweist und das zweite Navigationssystem ein Fahrzeugnavigationssystem aufweist.
     
    4. Verfahren (300) nach Anspruch 1, wobei das Signal von dem zweiten Navigationssystem weiter ein Sensorsignal von einem Sensor des zweiten Navigationssystems aufweist; und wobei optional das Sensorsignal einen Turn-Rate-Wert, einen Geschwindigkeitsmesserwert, einen Beschleunigungsmesserwert und einen Gyroskopwert aufweist.
     
    5. Verfahren (300) nach Anspruch 1, wobei das Bestimmen der Navigationslösung Folgendes aufweist:

    Empfangen eines Sensorsignals von einem Sensor in dem ersten Navigationssystem;

    Auswählen zwischen dem Sensorsignal von dem ersten Navigationssystem und dem Sensorsignal von dem zweiten Navigationssystem basierend auf einer Charakteristik des Signals; und

    Bestimmen der Navigationslösung an dem ersten Navigationssystem basierend auf dem Signal mit der erwünschten Charakteristik;

    wobei das Signal von dem zweiten Navigationssystem weiter ein Sensorsignal von einem Sensor des zweiten Navigationssystems aufweist; und

    wobei die Charakteristik wenigstens eines von einem SINR, einem SNR, einer Anzahl von empfangenen Satellitensignalen, einem Single-Path- bzw. Einzelwegsatellitensignal oder einer niedrigeren Ungewissheit aufweist.


     
    6. Verfahren (300) nach Anspruch 1, das weiter Bestimmen aufweist, dass eines von dem ersten Navigationssystem und dem zweiten Navigationssystem in einem installierten bzw. eingebauten Zustand ist.
     
    7. Verfahren (300) nach Anspruch 1, das weiter Kalibrieren eines Sensors des ersten Navigationssystems mit dem Signal von dem zweiten Navigationssystem aufweist.
     
    8. Verfahren nach Anspruch 1, das weiter Senden eines Sensorsignals von dem ersten Navigationssystem zum Kalibrieren eines Sensors des zweiten Navigationssystems aufweist.
     
    9. Ein System, das ein erstes Navigationssystem (410) zum Vorsehen einer Navigationslösung und ein zweites Navigationssystem (420) aufweist, wobei das erste Navigationssystem (410) Folgendes aufweist:

    Mittel (412) zum kommunikativen Koppeln des ersten Navigationssystems (410) einen das zweites Navigationssystem (420);

    Mittel zum Empfangen, an dem ersten Navigationssystem (410), eines Signals von dem zweiten Navigationssystem (420), wobei das Signal ein Signal eines globalen Navigationssatellitensystems bzw. ein GNSS-Signal aufweist; und

    Mittel (418) zum Bestimmen der Navigationslösung an dem ersten Navigationssystem (410) unter Verwendung von zusätzlicher Information aus dem Signal von dem zweiten Navigationssystem (420), wenn das GNSS-Signal des ersten Navigationssystems (410) nicht adäquat oder nicht ausreichend ist, da nicht genügend Satelliten empfangen werden, und/oder die Signalqualität nicht hoch genug ist, um einen Satelliten richtig zu Decodieren und/oder irgendwelcher übermäßiger Multipath bzw. Mehrwege vorliegen.


     
    10. System nach Anspruch 9, wobei das erste Navigationssystem (410) ein Fahrzeugnavigationssystem aufweist und das zweite Navigationssystem (420) ein Navigationssystem einer Mobileinrichtung aufweist.
     
    11. System nach Anspruch 9, wobei das erste Navigationssystem (410) ein Navigationssystem einer Mobileinrichtung aufweist und das zweite Navigationssystem (420) ein Fahrzeugnavigationssystem aufweist.
     
    12. System nach Anspruch 9, wobei das Signal von dem zweiten Navigationssystem (420) weiter ein Sensorsignal von dem zweiten Navigationssystem (420) aufweist.
     
    13. System nach Anspruch 9, wobei das erste Navigationssystem (410) weiter Mittel aufweist zum Kalibrieren eines Sensors des ersten Navigationssystems mit dem Signal von dem zweiten Navigationssystem.
     
    14. System nach Anspruch 9, wobei das erste Navigationssystem (410) weiter Mittel aufweist zum Senden eines Sensorsignal von dem ersten Navigationssystem zum Kalibrieren eines Sensors des zweiten Navigationssystems.
     
    15. Ein nicht transitorisches computerlesbares Speichermedium, das darauf gespeicherten Programmcode für ein erstes Navigationssystem (410) zum Vorsehen einer Navigationslösung aufweist, das Programmcode aufweist zum Durchführen der Schritte nach einem der Ansprüche 1 bis 8.
     


    Revendications

    1. Procédé (300) de fourniture d'une solution de navigation, le procédé comprenant les étapes suivantes :

    le couplage en communication (310) d'un premier système de navigation à un deuxième système de navigation ;

    la réception (320), au niveau du premier système de navigation, d'un signal provenant du deuxième système de navigation, dans lequel le signal comprend un signal de système de navigation global par satellite, GNSS ; et

    la détermination (330) de la solution de navigation au niveau du premier système de navigation en utilisant des informations supplémentaires à partir du signal provenant du deuxième système de navigation quand le signal de GNSS du premier système de navigation est inapproprié ou insuffisant car pas assez de satellites sont reçus et/ou la qualité de signal n'est pas assez élevée pour décoder convenablement un satellite et/ou un nombre quelconque excessif de trajets multiples existe.


     
    2. Procédé (300) selon la revendication 1, dans lequel le premier système de navigation comprend un système de navigation d'un véhicule et le deuxième système de navigation comprend un système de navigation d'un dispositif mobile.
     
    3. Procédé (300) selon la revendication 1, dans lequel le premier système de navigation comprend un système de navigation d'un dispositif mobile et le deuxième système de navigation comprend un système de navigation d'un véhicule.
     
    4. Procédé (300) selon la revendication 1, dans lequel le signal provenant du deuxième système de navigation comprend en outre un signal de capteur provenant d'un capteur du deuxième système de navigation ; et dans lequel optionnellement le signal de capteur comprend un élément parmi une valeur de taux de rotation, une valeur de capteur de vitesse, une valeur d'un accéléromètre et une valeur de gyroscope.
     
    5. Procédé (300) selon la revendication 1, dans lequel la détermination de la solution de navigation comprend les étapes suivantes :

    la réception d'un signal de capteur provenant d'un capteur dans le premier système de navigation ;

    la sélection entre le signal de capteur provenant du premier système de navigation et le signal provenant du deuxième système de navigation sur la base d'une caractéristique du signal ; et

    la détermination de la solution de navigation au niveau du premier système de navigation sur la base du signal ayant la caractéristique désirée ;

    dans lequel le signal provenant du deuxième système de navigation comprend en outre un signal de capteur provenant d'un capteur du deuxième système de navigation ; et

    dans lequel la caractéristique comprend au moins un élément parmi un SINR, un SNR, un certain nombre de signaux satellites reçus, un signal satellite à trajet unique, ou une incertitude plus faible.


     
    6. Procédé (300) selon la revendication 1, comprenant en outre la détermination qu'un système parmi le premier système de navigation et le deuxième système de navigation est dans un état monté.
     
    7. Procédé (300) selon la revendication 1, comprenant en outre l'étalonnage d'un capteur du premier système de navigation avec le signal provenant du deuxième système de navigation.
     
    8. Procédé selon la revendication 1, comprenant en outre l'envoi d'un signal de capteur provenant du premier système de navigation pour étalonner un capteur du deuxième système de navigation.
     
    9. Système comprenant un premier système de navigation (410) destiné à fournir une solution de navigation et un deuxième système de navigation (420), le premier système de navigation (410) comprenant :

    des moyens (412) pour coupler en communication le premier système de navigation (410) au deuxième système de navigation (420) ;

    des moyens pour recevoir, au niveau du premier système de navigation (410), un signal provenant du deuxième système de navigation (420), dans lequel le signal comprend un signal de système de navigation global par satellite, GNSS ; et

    des moyens (418) pour déterminer la solution de navigation au niveau du premier système de navigation (410) en utilisant des informations supplémentaires à partir du signal provenant du deuxième système de navigation (420) quand le signal de GNSS du premier système de navigation (410) est inapproprié ou insuffisant car pas assez de satellites sont reçus et/ou la qualité de signal n'est pas assez élevée pour décoder convenablement un satellite et/ou nombre quelconque excessif de trajets multiples existe.


     
    10. Système selon la revendication 9, dans lequel le premier système de navigation (410) comprend un système de navigation d'un véhicule et le deuxième système de navigation (420) comprend un système de navigation d'un dispositif mobile.
     
    11. Système selon la revendication 9, dans lequel le premier système de navigation (410) comprend un système de navigation d'un dispositif mobile et le deuxième système de navigation (420) comprend un système de navigation d'un véhicule.
     
    12. Système selon la revendication 9, dans lequel le signal provenant du deuxième système de navigation (420) comprend en outre un signal de capteur provenant du deuxième système de navigation (420).
     
    13. Système selon la revendication 9, dans lequel le premier système de navigation (410) comprend en outre des moyens pour étalonner un capteur du premier système de navigation avec le signal provenant du deuxième système de navigation.
     
    14. Système selon la revendication 9, dans lequel le premier système de navigation (410) comprend en outre des moyens pour envoyer un signal de capteur provenant du premier système de navigation pour étalonner un capteur du deuxième système de navigation.
     
    15. Support de stockage lisible par ordinateur non transitoire comportant un code de programme stocké en lui destiné à un premier système de navigation (410) pour fournir une solution de navigation, comprenant un code de programme pour mettre en oeuvre les étapes selon l'une quelconque des revendications 1 à 8.
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description